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We propose the use of the meshfree radial basis point interpolation (RBPI) to solve the
Black–Scholes model for European and American options. The RBPI meshfree method offers
several advantages over the more conventional radial basis function approximation,
nevertheless it has never been applied to option pricing, at least to the very best of our
knowledge. In this paper the RBPI is combined with several numerical techniques, namely:
an exponential change of variables, which allows us to approximate the option prices on
their whole spatial domain, a mesh refinement algorithm, which turns out to be very suitable
for dealing with the non-smooth options’ payoff, and an implicit Euler Richardson
extrapolated scheme, which provides a satisfactory level of time accuracy. Finally, in order
to solve the free boundary problem that arises in the case of American options three
different approaches are used and compared: the projected successive overrelaxation
method (PSOR), the Bermudan approximation, and the penalty approach. Numerical
experiments are presented which demonstrate the computational efficiency of the RBPI
and the effectiveness of the various techniques employed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Over the last thirty years, financial derivatives have raised increasing popularity in the markets. In particular, large vol-
umes of options are traded everyday all over the world and it is therefore of great importance to give a correct valuation of
these instruments.

Options are contracts that give to the holder the right to buy (call) or to sell (put) an asset (underlying) at a previously
agreed price (strike price) on or before a given expiration date (maturity). The majority of options can be grouped in two
categories: European options, which can be exercised only at maturity, and American options, which can be exercised not
only at maturity but also at any time prior to maturity.

Options are priced using mathematical models that are often challenging to solve. In particular, the famous Black–Scholes
model [1] yields explicit pricing formulae for some kinds of European options, including vanilla call and put, but for
American options closed-form solutions are not available, and numerical approximations are needed. To this aim, the most
common approaches are the finite difference/finite element/finite volume methods (see, e.g., [2–18]) and the binomial/
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trinomial trees (see, e.g., [19–22]), nevertheless some authors have also proposed the use of meshfree algorithms based on
radial basis functions [23–28] and on quasi radial basis functions [29].

Meshfree methods are a very powerful tool for solving partial differential equations as they yield spectral accuracy (see
[30,31]), are very easy to implement (mesh generation is avoided), and can be applied with any (also very irregular) node
distribution. In the technical literature several meshfree discretization techniques have been proposed and for a comprehen-
sive description of them the interested reader is referred to [32].

One of the most common meshfree approaches is the so-called point interpolation method (PIM), see, e.g., [32], which is
often based on two different types of interpolations: Polynomial basis point interpolation (PBPI) [33,34], and radial basis
point interpolation (RBPI) [35,36]. In particular, the PBPI is one of the earliest interpolation schemes with the so-called
Kronecker property, which allows one to easily impose essential boundary and initial (or final) conditions. Unfortunately,
the PBPI has the disadvantage of requiring special care in choosing the polynomial basis (see [35]). In particular, if an
inappropriate basis is employed, then the resulting system of linear equations can be seriously ill conditioned.

The RBPI, originally proposed by Liu et al. [32,35], employs a basis of both polynomials and radial functions (see, e.g.,
[37,38]). Such an approach retains the Kronecker property, but is more stable than the PBPI and also more flexible for
arbitrary node distributions. RBPI methods have also been employed, for example, in [39,40].

Another meshfree discretization scheme has been recently developed by Krige [41]. This technique, which is referred to as
Kriging interpolation, is a sort of generalized linear regression that aims at finding the best approximation in a statistical
sense. More precisely, the interpolation error is required to be null in the mean and minimum in the variance. For a detailed
description of such an approach the reader is referred to [42–45]. Here we simply do mention that, as shown in [42], the
Kriging method can be made identical to the PIM by properly choosing the statistical measure (semivariogram) used to com-
pute the variance of the interpolation error.

To the best of our knowledge, the PIM has not yet been used in mathematical finance. Therefore, it appears to be inter-
esting to extend such a numerical technique also to option valuation, which is done in the present manuscript. In particular,
we develop a RBPI algorithm for pricing both European and American options under the Black–Scholes model. Note that,
with respect to the RBF meshfree methods employed in [23–28], the RBPI offers the following advantages: First of all, it
incorporates polynomial terms in the basis, which are useful to reduce the ill-conditioning of the resulting linear systems.
Second, it possesses the Kronecker property, so that essential boundary and initial (or final) conditions can be easily imposed.
Third, the RBPI can be reinterpreted as a Kriging method, and thus its interpolation error can be considered optimal also from
a statistical point of view.

In addition, in this paper the RBPI is used in conjunction with a suitable change of variables, which allows us to
approximate the option price on its whole semi-infinite spatial domain. This is a remarkable difference with previous
methods that replace the original domain with a finite one, or introduce unknown finite boundaries and prescribe artificial
conditions there. Furthermore, by exploiting the great flexibility of the RBPI to any (also very irregular) node distribution, a
local mesh refinement strategy is employed which allows us to easily and effectively handle the non-smoothness of the
options’ payoff (which is not differentiable at the strike price).

As far as the time discretization is concerned, we use the implicit Euler method, which is unconditionally stable [46] and
allows us to smooth the discontinuities of the options’ payoffs (see, e.g., [47]). Such an approach is only first-order accurate,
however a second-order time discretization is obtained by performing a Richardson extrapolation procedure with halved
time step.

Finally, in order to solve the free boundary problem that arises in the case of American options, three different approaches
are used and compared: the so-called projected successive overrelaxation (PSOR) method (see, for example, [48–50]), a time
discretization scheme which amounts to replacing the price of the American option with prices of Bermudan options (see
[8,9,22,24,51]), and the penalty approach (see, for example, [6,10,15,52,53]).

Numerical experiments are presented showing that the proposed approach is very efficient from the computational
standpoint. In particular, the prices of both European and American options can be computed with an error (in both the
maximum norm and the root mean square norm) of order 10�4 or 10�5 in few hundredth of a second. Moreover, the
Bermudan approximation reveals to be the most efficient of the three algorithms used to deal with the early exercise
opportunity, whereas the penalty method turns out to be the less accurate and fast (see SubSection 5).

We remark that the main contribution of this manuscript is to show that the RBPI, which, to the best of our knowledge,
has never been applied to problems in mathematical finance, can yield accurate and fast approximations of European and
American option prices. In particular, in order to efficiently handle the several peculiarities of the problems considered,
the RBPI is coupled with other numerical procedures, namely an implicit Euler Richardson extrapolated time stepping, a local
mesh refinement, a change of variables that allows us to cope with the unboundedness of the price domain, and a suitable
method to take into account the early exercise opportunity. Note that none of these techniques, if considered separately, is
new, nevertheless the combination of all of them has never been employed for option pricing. Furthermore, in the present
manuscript we also test and compare three of the main approaches to deal with the early exercise feature typical of
American options (the Bermudan approximation, the PSOR and the penalty method), which has not yet been done in the
context of meshless approximations.

The paper is organized as follows: In Section 2 a detailed description of the Black–Scholes model for European and
American options is provided. Section 3 is devoted to presenting the RBPI approach. The application of such a numerical
technique to the option pricing problems considered is shown in Section 4. The numerical results obtained are presented
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and discussed in Section 5. Finally, in Section 6 the conclusions are drawn and some possible directions for future research
are briefly outlined.

2. The Black–Scholes model for European and American options

For the sake of simplicity, from now we restrict our attention to options of put type, but the case of call options can be
treated in perfect analogy.

Let us consider a put option with maturity T and strike price E on an underlying asset s that follows (under the risk-
neutral measure) the stochastic differential equation (geometric Brownian motion):
ds ¼ rsdt þ rsdW; ð2:1Þ
where r and r are the interest rate and the volatility, respectively. Moreover let Vðs; tÞ denote the option price, and let us
define the Black–Scholes operator:
LVðs; tÞ ¼ � @

@t
Vðs; tÞ � r2

2
s2 @

2

@s2 Vðs; tÞ � rs
@

@s
Vðs; tÞ þ rVðs; tÞ: ð2:2Þ
2.1. European option

The option price Vðs; tÞ satisfies, for s 2 ð0;þ1Þ and t 2 ½0; TÞ, the following partial differential problem:
LVðs; tÞ ¼ 0; ð2:3Þ
with final condition:
Vðs; TÞ ¼ 1ðsÞ ð2:4Þ
and boundary conditions:
Vð0; tÞ ¼ E exp �rðT � tÞð Þ; lim
s!þ1

Vðs; tÞ ¼ 0; ð2:5Þ
where 1 is the so-called option’s payoff:
1ðsÞ ¼maxðE� s;0Þ; ð2:6Þ
which is clearly not differentiable at s ¼ E.
An exact analytical solution to the problem (2.3)–(2.5), i.e. the famous Black–Scholes formula, is available.

2.2. American option

The option price Vðs; tÞ satisfies, for s 2 ½0;þ1Þ and t 2 ½0; TÞ, the following partial differential problem:
LVðs; tÞ ¼ 0; s > BðtÞ; ð2:7Þ

Vðs; tÞ ¼ E� s; 0 6 s < BðtÞ; ð2:8Þ

@Vðs; tÞ
@s

����
s¼BðtÞ

¼ �1; ð2:9Þ

VðBðtÞ; tÞ ¼ E� BðtÞ ð2:10Þ
with final condition:
Vðs; TÞ ¼ 1ðsÞ ð2:11Þ
and boundary condition:
lim
s!þ1

Vðs; tÞ ¼ 0; ð2:12Þ
where BðtÞ denotes the so-called exercise boundary, which is unknown and is implicitly defined by (2.7)–(2.12). The above
free-boundary partial differential problem does not have an exact closed-form solution, and thus some numerical approxi-
mation is required.

Problem (2.7)–(2.12) can be reformulated as a linear complementarity problem:
LVðs; tÞP 0; ð2:13Þ

Vðs; tÞ � 1ðsÞP 0; ð2:14Þ
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LVðs; tÞð Þ � Vðs; tÞ � 1ðsÞð Þ ¼ 0; ð2:15Þ
which holds for s 2 ð0;þ1Þ and t 2 ½0; TÞ, with final condition:
Vðs; TÞ ¼ 1ðsÞ ð2:16Þ
and boundary conditions:
Vð0; tÞ ¼ E; lim
s!þ1

Vðs; tÞ ¼ 0: ð2:17Þ
Let us recall that the function 1 is the option’s payoff given by (2.6). Problem (2.13)–(2.17) can be solved using a penalty
approach [10,52], which amounts to computing Vðs; tÞ as the solution of the following problem:
LVðs; tÞ � Ce
Vðs; tÞ þ e� Eþ s

¼ 0; ð2:18Þ

Vðs; TÞ ¼ 1ðsÞ; ð2:19Þ

Vð0; tÞ ¼ E; lim
s!þ1

Vðs; tÞ ¼ 0: ð2:20Þ
Note that in (2.18) e is a (small) positive constant and C P rE is a constant (both e and C will be chosen in Section 5).

3. Methodology

3.1. Point interpolation method (PIM)

Let u : R! R be a generic function. According to the PIM, the value of u at any (given) point x 2 R is approximated by
interpolation at nþ 1 scattered nodes x0; x1; . . . ; xn (centers). Various different PIM approaches can be obtained depending
on the functions used to interpolate u. In this paper we focus our attention onto the so-called radial basis point interpolation
method (RBPI), which employs a combination of polynomials and radial basis functions.

3.1.1. Radial basis point interpolation (RBPI) method
The function that interpolates u, which we denote by uRBPI , is obtained as follows:
uRBPIðxÞ ¼
Xn

i¼0

RiðxÞai þ
Xm

j¼0

PjðxÞbj; ð3:1Þ
where P0; P1; . . . ; Pm denote the first mþ 1 monomials in ascending order (i.e. P0 ¼ 1; P1 ¼ x; . . . ; Pm ¼ xm) and R0, R1; . . . ;Rn

are nþ 1 radial functions centered at x0; x1; . . . ; xn, respectively. Moreover a0; a1; . . . ; an; b0; b1; . . . ; bm are nþmþ 2 real
coefficients that have to be determined.

As far as the radial basis functions R0;R1; . . . ;Rn are concerned, several choices are possible, such as the so-called multi-
quadrics, inverse multiquadrics, Gaussian RBFs or thin plate splines (see, for example, [54]). In particular, the multiquadrics,
the inverse multiquadrics and the Gaussian RBFs contain a free shape parameter on which the performances of the RBF
approximation strongly depend. Precisely, values of the shape parameters that yield a high spatial resolution (i.e. a high level
of accuracy) also lead to severely ill-conditioned linear systems. Therefore, one has to find a value of the shape parameter
such that a high level of accuracy is obtained and at the same time the numerical approximation does not blow up (due
to ill-conditioning problems). Now, in the technical literature, various approaches for selecting the RBF shape parameter
have been proposed, see, e.g., [55,36,24,56–64]. These algorithms, which are often based on rules of thumbs or on semi-
analytical relations, can yield satisfactory results in some circumstances. Nevertheless, to the best of our knowledge, a
method to choose the RBF shape parameter which is rigorously established and proven to perform well in the general case
is still lacking.

Therefore, in the present work we decide to use the thin plate splines, as they do not involve any free shape parameter. In
particular, we employ the very popular thin plate splines of second order, which are as follows:
RiðxÞ ¼ ðx� xiÞ4 logðjx� xijÞ; i ¼ 0;1; . . . ; n: ð3:2Þ
Note that the monomials P0; P1; . . . ; Pm are not always employed (if bi ¼ 0; i ¼ 0;1; . . . ;m, pure RBF approximation is
obtained). However, in the case of thin plate splines, their presence guarantees that the resulting interpolation matrix, i.e.
the matrix G used below, is non-singular [65]. In the present work, both the constant and the linear monomials are used
to augment the RBFs (i.e. we set m ¼ 1).

By requiring that the function uRBPI interpolate u at x0; x1; . . . ; xn, we obtain a set of nþ 1 equations in the nþmþ 2
unknown coefficients a0; a1; . . . ; an; b0, b1; . . . ; bm:
Xn

i¼0

RiðxkÞai þ
Xm

j¼0

PjðxkÞbj ¼ uk; k ¼ 0;1; . . . ;n: ð3:3Þ
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Moreover, in order to uniquely determine uRBPI , we also impose:
Xn

i¼0

PjðxiÞai ¼ 0; j ¼ 0;1; . . . ;m: ð3:4Þ
That is we have the following system of linear equations:
G
a
b

� �
¼

U
0

� �
;

where
U ¼ u0 u1 . . . un½ �T ¼ uðx0Þ uðx1Þ . . . uðxnÞ½ �T ; ð3:5Þ

G ¼
R P
PT 0

� �
;

R ¼

R0ðx0Þ R1ðx0Þ . . . Rnðx0Þ
R0ðx1Þ R1ðx1Þ . . . Rnðx1Þ

..

. ..
. . .

. ..
.

R0ðxnÞ R1ðxnÞ . . . RnðxnÞ

2
66664

3
77775;

P ¼

P0ðx0Þ P1ðx0Þ . . . Pmðx0Þ
P0ðx1Þ P1ðx1Þ . . . Pmðx1Þ

..

. ..
. . .

. ..
.

P0ðxnÞ P1ðxnÞ . . . PmðxnÞ

2
66664

3
77775;

a ¼ ½a0 a1 . . . am�T ; ð3:6Þ

b ¼ ½b0 b1 . . . bm�T ; ð3:7Þ
As already mentioned, the matrix R is non-singular, so that
a
b

� �
¼ G�1 U

0

� �
:

Accordingly, (3.1) can be rewritten as
uRBPIðxÞ ¼ ½RTðxÞ PTðxÞ�
a
b

� �
;

or, equivalently,
uRBPIðxÞ ¼ ½RTðxÞ PTðxÞ�G�1 U
0

� �
: ð3:8Þ
Let us define the vector of shape functions:
UðxÞ ¼ ½u0ðxÞ u1ðxÞ . . . unðxÞ�;
where
ukðxÞ ¼
Xn

i¼0

RiðxÞG�1
iþ1;kþ1 þ

Xm

j¼0

PjðxÞG�1
nþjþ2;kþ1; k ¼ 0;1; . . . ;n ð3:9Þ
and G�1
i;k is the ði; kÞ element of the matrix G�1.

Using (3.9) relations (3.8) are rewritten in the more compact form:
uRBPIðxÞ ¼ UðxÞU; ð3:10Þ
or, equivalently,
uRBPIðxÞ ¼
Xn

i¼0

ui/iðxÞ: ð3:11Þ
It can be easily shown that the shape functions (3.9) satisfy the so-called Kronecker property, that is
uiðxjÞ ¼ dij; ð3:12Þ
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where dij is the well-known Kronecker symbol, so that essential boundary and final conditions such as those considered in
Section 2 (e.g., (2.4), (2.5), (2.16), (2.17), (2.20), (2.21)) can be easily imposed. Note also that the derivatives of uRBPI (of any
order) with respect to x are easily obtained by direct differentiation in (3.11).

4. Numerical implementation of the proposed methods

Let us show how to apply the RBPI described above to the option pricing problems considered in Section 2.

4.1. Spatial change of variables

For both the European and the American options the underlying asset price s can take any value in ½0;þ1Þ. In this paper,
in order to numerically handle the unboundedness of the s-domain, we employ the following change of variables:
xðsÞ ¼ 1� exp � s
L

� �
; sðxÞ ¼ �L logð1� xÞ; ð4:1Þ
where the positive constant parameter L is the characteristic length of the mapping and will be chosen below.
Trivially, we have xð0Þ ¼ 0; lim

s!þ1
xðsÞ ¼ 1 and for 0 < x < 1
dx
ds
¼ 1� x

L
> 0:
The exponential change of variables (4.1) transforms the s-domain ½0;þ1Þ into the x-domain [0,1), so that we can easily
choose a finite number of equally spaced RBPI centers in [0,1] (which would not be possible in ½0;þ1Þ). We define
Uðx; tÞ ¼ VðsðxÞ; tÞ; ð4:2Þ

~LUðx; tÞ ¼ � @

@t
Uðx; tÞ þ AðxÞ @

2

@x2 Uðx; tÞ þ BðxÞ @
@x

Uðx; tÞ þ rUðx; tÞ; ð4:3Þ
where
AðxÞ ¼ �r2

2
ð1� xÞ2log2ð1� xÞ;

BðxÞ ¼ �r2

2
ðx� 1Þlog2ð1� xÞ þ rð1� xÞ logð1� xÞ:
Using the change of variables (4.1)–(4.3) the European option problem (2.3)–(2.5) is rewritten as follows:
~LUðx; tÞ ¼ 0;

Uðx; TÞ ¼ ~1ðxÞ;
Uð0; tÞ ¼ E exp �rðT � tÞð Þ; Uð1; tÞ ¼ 0;

8>><
>>: ð4:4Þ
where
~1ðxÞ ¼maxðEþ L logð1� xÞ;0Þ: ð4:5Þ
Accordingly, the American option problems (2.13)–(2.17) and (2.18)–(2.21) are rewritten as follows:
~LUðx; tÞP 0;

Uðx; tÞ � ~1ðxÞP 0;
~LUðx; tÞ
� �

� Uðx; tÞ � ~1ðxÞð Þ ¼ 0;

Uðx; TÞ ¼ ~1ðxÞ;
Uð0; tÞ ¼ E; Uð1; tÞ ¼ 0;

8>>>>>>>><
>>>>>>>>:

ð4:6Þ

~LUðx; tÞ � Ce
Uðx; tÞ þ e� E� L logð1� xÞ ¼ 0;

Uðx; TÞ ¼ ~1ðxÞ;
Uð0; tÞ ¼ E; Uð1; tÞ ¼ 0;

8>>>><
>>>>:

ð4:7Þ
respectively, where
~BðtÞ ¼ 1� exp �BðtÞ
L

	 

: ð4:8Þ
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4.2. Time discretization of the Black–Scholes operator

First of all, we discretize the Black–Scholes operator (4.3) in time. In ½0; T� let us consider M þ 1 times t0; t1; . . . ; tM , such
that tk ¼ kDt; Dt ¼ T

M. Then, we set UkðxÞ ¼ Uðx; kDtÞ, k ¼ 0;1; . . . ;M. Let us consider the following h-weighted scheme:
~LUkðxÞ ¼ � 1
Dt
ðUkþ1ðxÞ � UkðxÞÞ þ hAðxÞUkþ1

xx ðxÞ þ hBðxÞUkþ1
x ðxÞ þ hrUkþ1ðxÞ ð4:9Þ

þð1� hÞAðxÞUk
xxðxÞ þ ð1� hÞBðxÞUk

xðxÞ þ ð1� hÞrUkðxÞ: ð4:10Þ
The popular implicit Euler and Crank–Nicolson schemes are obtained by choosing h ¼ 0 and h ¼ 1=2, respectively. Now, in
[47] it is shown that the Crank–Nicolson scheme fails to achieve its usual second-order accuracy, due to the non-smoothness
of the options’ payoff. Therefore, in this work, following a common approach, we use the implicit Euler scheme, which is
unconditionally stable [46] and allows us to smooth the discontinuities of the options’ payoffs (see, e.g., [47]). That is we
apply (4.9) with h ¼ 0:
~LUkðxÞ ¼ � 1
Dt
ðUkþ1ðxÞ � UkðxÞÞ þ AðxÞUk

xxðxÞ þ BðxÞU
k
xðxÞ þ rUkðxÞ: ð4:11Þ
Then, the approximation (4.11), which is only first-order accurate, is improved by Richardson extrapolation. In particular,
we manage to obtain second-order accuracy by extrapolation of two solutions computed using M and 2M time steps (see, for
example, [8,9,24]).

In the following, for the sake of brevity, we will restrict our attention to first stage of the Richardson extrapolation
procedure, where M time steps are employed, and the fact that the partial differential problems considered are also solved
with 2M time steps will be understood.

4.3. RBPI discretization

In the interval ½0;1� let us consider a set of nþ 1 equally spaced points xi ¼ iDx; i ¼ 0;1; . . . ;n; Dx ¼ 1
n. Then based on

(3.11) we employ the following approximation Uk
RBPI of Uk:
Uk
RBPIðxÞ ¼

Xn

j¼0

kk
j ujðxÞ; k ¼ 0;1; . . . ;M; ð4:12Þ
where uj j ¼ 0;1; . . . ;n, are the PIM shape functions, which are computed using (3.9) and the coefficients
kk

j ; j ¼ 0;1; . . . ;n; k ¼ 0;1; . . . ;M are still to be determined.
Now we are in the position to select the length scale parameter L needed in (4.1). First of all, we note that relations (4.1)

map the equally spaced nodes x0; x1; . . . ; xn in the x-domain [0,1] to nodes s0; s1; . . . ; sn in the s-domain ½0;þ1Þ, where
si ¼ sðxiÞ; i ¼ 0;1; . . . ; n and sð�Þ is given by the second of (4.1) (to simplify things we adopt the convention that sn ¼ þ1).
Now, for the sake of computational efficiency, we would like that almost all the centers s0; s1; . . . ; sn be located in the interval
½0;2E�, where the option prices take values significantly different from zero (see [50,66]). To this aim, we note that the change
of variables (4.1) transforms the strike price E to the point 1� exp � E

L

� �
in the x-domain [0,1]. Therefore, we choose the

parameter L such that the seventy percent of the RBPI centers x0; x1; . . . ; xn lay in the interval 0;1� exp � E
L

� �� �
. By doing that,

we clearly have that the seventy percent of the centers s0; s1; . . . ; sn lay in the interval ½0; E�. However, thanks to the continuity
of the function sð�Þ, we also obtain that a significant fraction of centers are located in the interval ½E;2E� (see Fig. 1). As a
result, almost all of the RBPI centers s0; s1; . . . ; sn are placed in the interval ½0;2E� (but, clearly, we will also have some small
fraction of centers in the interval ½2E;þ1Þ, so that the option price is actually approximated on its whole spatial domain).

So, we choose L such that
1� exp � E
L

	 

¼ wDx; ð4:13Þ
where w is set equal to 7
10Dx. Note that L is readily obtained from (4.13):
L ¼ � E
logð1�wDxÞ : ð4:14Þ
Fig. 1. Local mesh refinement.
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Remark 1. The numerical method proposed in this paper approximates the option price on its whole semi-infinite spatial
domain. This is a remarkable difference with previous approaches that replace the original domain with a finite one, or
introduce unknown finite boundaries and prescribe artificial conditions there.
4.4. Local mesh refinement

The options’ payoffs considered in this paper are non-smooth functions, in particular their derivatives are discontinuous
at the strike price. Therefore, for the sake of computational efficiency, a refined mesh is used in the neighborhood of the
strike price, i.e. according to (4.13), in the neighborhood of wDx. Precisely, we apply a local mesh refinement technique
similar to that employed in [67,68], which is conveniently described by means of the following pseudocode:

begin

Set Dx0  Dx and k 1
repeat for a desired number of times

(1) Dxk  Dxk�1
2

(2) Consider the subdomain Xk ¼ ðwDx� 2Dxk�1;wDxþ 2Dxk�1Þ
(3) In the interior of Xk add 7 equally spaced nodes

for i ¼ 1;2; . . . ;7

xi;k ¼ wDx� 2Dxk�1 þ iDxk,
end

k kþ 1
end repeat

end

The RBPI centers obtained after performing the first three iterations of this algorithm are illustrated in Fig. 1. For the sake
of simplicity, from now, with abuse of notation, x0; x1; . . . ; xn will denote all the RBPI centers employed (including those
obtained by mesh refinement), and not only the equally space ones defined previously.

4.5. European option

Let us consider problem (4.4). Following a standard procedure (see [69]), we evaluate these equations at
t ¼ tk; k ¼ 0;1; . . . ;M, and substitute the Black–Scholes operator (4.3) with the time discretized operator (4.11). Then, we
substitute UkðxÞ with Uk

RBPIðxÞ (given by (4.12)) and evaluate the equations obtained at x ¼ xi; i ¼ 0;1; . . . ;n.
We end up with the following systems of linear equations:
BKk ¼ AKkþ1 þHk; ð4:15Þ
to be recursively solved for k ¼ M � 1;M � 2; . . . ; 0, starting from
KM ¼ P; ð4:16Þ
where
Kk ¼ ½ kk
0 kk

1 . . . kk
n �

T
; ð4:17Þ

A ¼ 1
Dt

U1; ð4:18Þ

B ¼Mr2U1 þ NrU1 þ r þ 1
Dt

	 

U1 þU2; ð4:19Þ

Hk ¼ ½Ukð0Þ 0 0 . . . Ukð1Þ �
T
; ð4:20Þ

M ¼ Diagð0;Aðx1Þ;Aðx2Þ; . . . ;Aðxn�1Þ; 0Þ;
N ¼ Diagð0;Bðx1Þ;Bðx2Þ; . . . ;Bðxn�1Þ;0Þ;

U1 ¼ ½0ðnþ1Þ�1 w1 w2 . . . wn�1 0ðnþ1Þ�1 �T ¼ Iðnþ1Þ�ðnþ1Þ �U2; ð4:21Þ

U2 ¼ ½w0 0ðnþ1Þ�ðn�1Þ wn �
T ¼ Diagð1;0; 0; . . . ; 0;0

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n�1

;1Þ;

wi ¼ ½u0ðxiÞ u1ðxiÞ . . . unðxiÞ �T ¼ ½ di0 di1 . . . din �T ;

P ¼ ½ ~1ðx0Þ ~1ðx1Þ . . . ~1ðxnÞ �T ; ð4:22Þ
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In (4.19), the symbols r and r2 mean that the functions u0;u1; . . .un in U1 has to be differentiated one and two times,
respectively, with respect to their argument. Moreover, in (4.20), according to the boundary conditions given by the third of
relations (4.4), we have Ukð0Þ ¼ E exp �rðT � tkÞð Þ and Ukð1Þ ¼ 0; k ¼ 0;1; . . . ;M � 1.

4.6. American option

The American option price is computed using three different algorithms. Two of them (Algorithm 1 and Algorithm 2) are
obtained by applying two different discretization approaches to the linear complementarity problem (4.6), whereas the third
one stems from the numerical approximation of problem (4.7).

4.6.1. Algorithm 1
We consider problem (4.6) and we apply to it the same numerical procedure used in the previous subsection. That is

we evaluate (4.6) at t ¼ tk; k ¼ 0;1; . . . ;M, and substitute the Black–Scholes operator (4.3) with (4.11). Then, we
substitute UkðxÞ with Uk

RBPIðxÞ (given by (4.12)) and evaluate the equations obtained at x ¼ xi; i ¼ 0;1; . . . ;n. This yields
the following systems:
BKk P AKkþ1 þHk;

Iðnþ1Þ�ðnþ1ÞK
k P P;

BKk � AKkþ1 �Hk
h iT

� Iðnþ1Þ�ðnþ1ÞK
k �P

h i
¼ 0;

8>>><
>>>: ð4:23Þ
to be recursively solved for k ¼ M � 1;M � 2; . . . ;0, starting from
KM ¼ P; ð4:24Þ
where Kk; A; B; Hk and P are defined as in (4.17)–(4.20), (4.22), respectively. Note that, according to (4.20), Hk involves
Ukð0Þ and Ukð1Þ which, by taking into account the boundary conditions given by the fifth of relations (4.6), are computed
as follows: Ukð0Þ ¼ E; Ukð1Þ ¼ 0; k ¼ 0;1; . . . ;M � 1.

Following a rather common approach (see, e.g., [50,49]), problem (4.23) and (4.24) is solved using the projected succes-
sive overrelaxation (PSOR) method, which is conveniently described by means of the pseudocode:

begin

Set m 0
Set Kk;m  Kkþ1

Do

bk ¼ AKkþ1 þHk,
for i ¼ 1;2; . . . ;nþ 1

Cmþ1
i ¼ 1

Bii
bk

i �
Xnþ1

j¼1;j>i
BijK

k;m
i �

Xnþ1

j¼1;j<i
BijK

k;mþ1
i

� �
,

Kk;mþ1
i ¼ max Kk;m

i þxðCmþ1
i � Kk;m

i Þ;Pi

� �
,

end

m mþ 1,

while kKk;mþ1 � Kk;mk2 < tolerance; tolerance ¼ 10�6

Kk ¼ Kk;mþ1,
end

In the above pseudocode x denotes a constant parameter, which, by employing a standard rule [46], is selected as
follows:
x ¼ 2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ; ð4:25Þ
where q is the spectral radius of the matrix D�1ðB� DÞ, and D is the diagonal matrix whose diagonal is equal to the diagonal
of B. In this paper, using the Gershgorin theorem [46], q is estimated as follows:
q ¼ max
i¼1;2;...;nþ1

1
Bii

Xnþ1

j¼1;j–i

jBijj: ð4:26Þ
4.6.2. Algorithm 2
The second Algorithm we use to compute the American option price stems from a time discretization of problem (4.6)

which is rather easy to implement (see [8,9,22,24,51]). In particular, we approximate the price of the American option with
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the price of a Bermudan option, that is an option that can be exercised not on the whole time interval ½0; T�, but only at the
dates t0; t1; . . . ; tM .

More precisely, we assume that in each time interval ðtk; tkþ1Þ; k ¼ 0;1; . . . ;M � 1, the first of relations (4.6) holds true
with the equality sign, together with its boundary conditions given by the fifth of (4.6). That is we consider the problems
~LUðx; tÞ ¼ 0;
Uð0; tÞ ¼ E; Uð1; tÞ ¼ 0;

(
ð4:27Þ
which hold in the time intervals ðt0; t1Þ; ðt1; t2Þ; . . . ; ðtM�1; tMÞ. By doing that also the third of relations (4.6) is automatically
satisfied in every time interval ðtk; tkþ1Þ, k ¼ 0;1; . . . ;M � 1. Moreover, the second of relations (4.6) is enforced only at times
t0; t1; . . . ; tM�1, by setting
Uðx; tkÞ ¼max lim
t!tþ

k

Uðt; xÞ; ~1ðxÞ
 !

; k ¼ 0;1; . . . ;M � 1: ð4:28Þ
Note that the function Uð�; tkÞ computed according to (4.28) is used as the final condition for the problem (4.27) that holds
in the time interval ðtk�1; tkÞ; k ¼ 1;2; . . . ;M � 1. Instead, the final condition for the problem (4.27) that holds in the time
interval ðtM�1; tMÞ, according to the fourth of relations (4.6), is prescribed as follows:
Uðx; tMÞ ¼ 1ðxÞ: ð4:29Þ
That is, in summary, problems (4.27) are recursively solved for k ¼ M � 1;M � 2; . . . ;0, starting from the condition (4.29),
and at each time tM�1; tM�2; . . . ; t0 the American constraint (4.28) is imposed.

It can be shown that the error due to such a time discretization decays like OðDtÞ as Dt tends to zero (see [51]). Never-
theless, in our work the first-order component of the error is suppressed by the Richardson extrapolation procedure
employed in SubSection (4.2), and second-order accuracy is achieved (see [22]).

Therefore, Algorithm 2 proceeds as follows: First of all problem (4.27) is approximated in time using (4.11). Then, in the
equations obtained, as well as in (4.28), (4.29), we substitute UkðxÞ with Uk

RBPIðxÞ given by (4.12). Finally, we evaluate all the
resulting equations at x ¼ xi; i ¼ 0;1; . . . ;n. This yields:
BNk ¼ AKkþ1 þHk;

Kk ¼max Nk;P
� �

;

(

to be recursively solved for k ¼ M � 1;M � 2; . . . ; 0, starting from
KM ¼ P; ð4:30Þ
where A; B; Hk and P are defined as in (4.18)–(4.20), (4.22), respectively.
Let us observe that the first of relations (4.30) comes from the discretization of (4.27), whereas the second of (4.30) is

obtained from (4.28). Note also that in (4.20) Hk is a function of Ukð0Þ and Ukð1Þ which, according to the second of (4.27),
are computed as follows: Ukð0Þ ¼ E; Ukð1Þ ¼ 0; k ¼ 0;1; . . . ;M � 1.

4.6.3. Algorithm 3
Algorithm 3 is directly based on solving problem (4.7), which is done as follows: First of all we evaluate (4.7)at

t ¼ tk; k ¼ 0;1; . . . ;M, and substitute the Black–Scholes operator (4.3) with (4.11). Then, we substitute UkðxÞ with
Uk

RBPIðxÞ (given by (4.12)), and evaluate the equations obtained at x ¼ xi; i ¼ 0;1; . . . ;n. This yields the systems of
equations:
BKk ¼ AKkþ1 þ Ce� O:=ðKk þ ðe� EÞOþ XÞ
� �

þHk; ð4:31Þ
to be recursively solved for k ¼ M � 1;M � 2; . . . ; 0, starting from
KM ¼ P; ð4:32Þ
where A; B; Hk; P are defined as in (4.18)–(4.20), (4.22), respectively, and
Oðnþ1Þ�1 ¼ ½1 1 . . . 1�T ;
Xðnþ1Þ�1 ¼ ½0 � L logð1� x1Þ � L logð1� x2Þ . . . � L logð1� xn�1Þ 0�T :

ð4:33Þ
In Eq. (4.31) the symbol := means componentwise division of two vectors. The above system of equations is non-
linear and thus is solved using an inner iteration cycle. Precisely, for each (fixed) value of k; k ¼ 0;1; . . . ;M � 1, we set
Kk;0 ¼ Kkþ1 and compute Kk;1, Kk;2; Kk;3; . . ., by recursively solving the following system of linear equations:
BKk;l ¼ AKkþ1 þ Ce� O:=ðKk;l�1 þ ðe� EÞOþ XÞ
� �

þHk: ð4:34Þ



J.A. Rad et al. / Applied Mathematics and Computation 251 (2015) 363–377 373
This inner cycle is stopped when
jjKk;l � Kk;l�1jj1 6 ek; ð4:35Þ
where ek ¼ 10�6. If condition (4.35) is satisfied, then we set Kk ¼ Kk;l and go ahead to the next time level.

Remark 2. Both the numerical method developed in Subsection 4.5 and Algorithm 2 require solving at every time step a
system of linear equations (systems (4.15) and (4.30), respectively). Also, when using Algorithm 3 one has to solve a system
of linear equations at every inner iteration (4.34). Now, the matrices associated to such systems are full and often ill-
conditioned (see [35,69]), but are not very large, as the RBPI can be applied with a relatively small number of centers (say
n 6 200). Therefore, the aforementioned linear systems are solved using the LU factorization method with partial pivoting,
which is particularly suitable for handling full and ill-conditioned matrices of relatively small dimension (see [46,70]).
Moreover, as the matrices to be inverted are the same for every time step (and in the case of Algorithm 3 also for every inner
iteration (4.34)), the LU factorization can be performed only once at the beginning of the numerical simulation, and thus at
each time step (or at each inner iteration (4.34)) the corresponding linear system is efficiently solved by forward and
backward recursion [46,70].
5. Numerical results

The numerical experiments are performed on a PC Laptop Intel(R) Core(TM)2 Duo CPU T9550 2.66 GHz 4 GB RAM and the
software programs are developed and run under Matlab R2010b, 64-bit. Following the notation employed in Section 3, let U
and URBPI respectively denote the option price (either European or American) and its approximation obtained using the RBPI
method developed in the previous section. The error on URBPI at the current time (t ¼ 0) is measured using both the discrete
maximum norm:
MaxError ¼ max
i¼0;1;...;n

URBPIðxi;0Þ � Uðxi;0Þj j ð5:1Þ
and the mean square norm:
RMSError ¼ 1
nþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼0

URBPIðxi;0Þ � Uðxi;0Þð Þ2
vuut : ð5:2Þ
Note that in the case of the American option the exact value of U is not available. Therefore, in (5.1), (5.2) we use instead a
very accurate approximation of it, which is obtained using the Algorithm 2 (described in SubSection 4.6.2) with a very large
number of centers and time steps (precisely we set n ¼ 300 and M ¼ 1000).

5.1. Test case 1

First of all, the proposed RBPI method is applied to a European put option. In particular, we consider the same test case
reported in [29,66], where the option and model parameters are chosen as follows: E ¼ 10, T ¼ 0:5 (years), r ¼ 0:05; r ¼ 0:2.
The number of time discretization steps is set equal to fifty (M ¼ 50). As we have experimentally checked, this choice is such
that in all the simulations performed the error due to the time discretization is negligible with respect to the error due to the
RBPI discretization (note that in the present work we are mainly concerned with the RBPI spatial approximation).

The error on the option price and the computer times are shown in Table 1. Note that these results are obtained by apply-
ing the mesh refinement algorithm described in SubSection 4.4 with three levels of refinement.

Looking at Table 1 we can see that the RBPI is very accurate and fast. In fact, for example, the option price can be com-
puted with an error of order 10�5 (in both the mean square norm and the maximum norm) in only 0.11 s. Furthermore, very
satisfactory levels of accuracy (errors of order 10�3 or 10�4) are achieved using a relatively small number of RBPI centers
(n ¼ 50 or n ¼ 75).

In Fig. 2 we present the spatial distribution of the RBPI centers. In particular, in this plot we consider 101 centers
(n ¼ 100) and we show the first 100 of them, i.e. s0; s1; . . . ; s99 (s100 being at infinity). As we can see, the change of variables
Table 1
Test case 1, efficiency of the RBPI.

n RMSError maxError CPU time (s)

25 1:33� 10�2 2:37� 10�2 0.01412

50 5:08� 10�3 6:56� 10�3 0.01783

75 9:53� 10�4 1:33� 10�3 0.02290

100 1:17� 10�4 4:82� 10�4 0.03024

150 7:83� 10�5 1:15� 10�4 0.04363

200 3:28� 10�5 9:51� 10�5 0.11112



0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

s

V

Exact
RBPI

Fig. 2. Test case 1, RBPI center distribution, n ¼ 100.

Fig. 3. Test case 1, mesh refinement (n ¼ 100).
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(4.1) and the mesh refinement technique described in SubSection 4.4 allow us to concentrate almost all of the centers in the
price interval ½0;2E�. However, there is still a relatively small fraction of centers in the interval ½2E;þ1Þ.

Finally, in Fig. 3 we show the effect of the local mesh refinement described in SubSection 4.4, which turns out to very
suitable for handling the non-smooth option’s payoff. In fact, as we can observe, only three levels of mesh refinement allow
us to reduce the error of a factor equal to some tens.

5.2. Test case 2

Let us consider the case of an American put option. In particular, the option and model parameters are chosen as in
[19,29,71]: E ¼ 100; T ¼ 1; r ¼ 0:1; r ¼ 0:3.

As done in Test case 1 we set M ¼ 100 (which again is such that the error due to the time discretization is negligible with
respect to the error due to the RBPI discretization). Moreover, the mesh refinement algorithm described in SubSection 4.4 is
applied with three levels of refinement.

Finally, it remains to choose the parameter C and e required by Algorithm 3 (see (4.34)). Following a common procedure
(see, e.g., [52,23]), we set C ¼ rE. Furthermore, we choose e ¼ 10�5, which, by numerical experiments, roughly minimizes the
error of the computed solutions.



Table 2
Test case 2, efficiency of the RBPI.

n Algorithm 1 Algorithm 2 Algorithm 3

RMSError MaxError CPU time (s) RMSError MaxError CPU time (s) RMSError MaxError CPU time (s)

50 5:46� 10�4 7:12� 10�4 0:1775 2:08� 10�3 5:33� 10�3 0:0365 4:89� 10�3 7:41� 10�3 0:1122

60 2:89� 10�4 5:37� 10�4 0:2190 8:97� 10�4 2:71� 10�3 0:0375 9:45� 10�4 3:24� 10�3 0:1126

70 9:02� 10�5 3:74� 10�4 0:2269 7:76� 10�4 9:10� 10�4 0:0421 7:92� 10�4 9:12� 10�4 0:1234

80 8:15� 10�5 1:60� 10�4 0:2533 4:63� 10�4 7:01� 10�4 0:0500 5:44� 10�4 8:11� 10�4 0:1541

90 6:11� 10�5 8:35� 10�5 0:3698 9:51� 10�5 3:34� 10�4 0:0600 1:70� 10�4 5:27� 10�4 0:1837

100 3:47� 10�5 6:02� 10�5 0:3937 7:66� 10�5 1:70� 10�4 0:0677 9:51� 10�5 3:91� 10�4 0:2001

Table 3
Value of optimal exercise boundary in American put option by using Dt ¼ 0:01.

Methods Bð0Þ

Algorithm 1 n ¼ 50 76.2022
n ¼ 60 76.2254
n ¼ 70 76.2267
n ¼ 80 76.2362
n ¼ 90 76.2434
n ¼ 100 6.2483

Algorithm 2 n ¼ 50 76.1903
n ¼ 60 76.1962
n ¼ 70 76.2070
n ¼ 80 76.2232
n ¼ 90 76.2304
n ¼ 100 76.2423

Algorithm 3 n ¼ 50 76.1903
n ¼ 60 76.1820
n ¼ 70 76.1883
n ¼ 80 76.1962
n ¼ 90 76.2024
n ¼ 100 76.2233

‘‘True’’ value 76.2491
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The errors and the computer times obtained are shown in Table 2. As we can see, also in this case the RBPI is very accurate
and fast. In fact, if, for example, Algorithm 1 is employed, then the price of the American option can be computed with an
error of order 10�5 (in both the mean square norm and the maximum norm) in only 0.39 s. We observe that, given the
number n of RBPI centers, Algorithm 1 is the most accurate of the three methods employed. However, Algorithm 2 is only
3� 5 times less accurate than Algorithm 1, but is also 5� 6 times faster than it. Therefore, if we think to measure the
computational efficiency by the ratio between the error and the computer time, then on the overall Algorithm 2
turns out to be slightly more efficient than Algorithm 1. Finally, Algorithm 3 reveals to be approximately as accurate as
Algorithm 2, but is about three times slower than it.

Finally, we want to compute the value of the exercise boundary (at the current time t ¼ 0). To this aim, first of all we
evaluate ~Bð0Þ by solving with the bisection method the equation
Uð~Bð0Þ;0Þ ¼ Eþ L logð1� ~Bð0ÞÞ ð5:3Þ
and then we evaluate
Bð0Þ ¼ �L logð1� ~Bð0ÞÞ: ð5:4Þ
The results obtained are shown in Table 3 (again the ‘‘true’’ value of the free boundary is computed using Algorithm 2
with n ¼ 300 and M ¼ 1000). As we can see, the proposed RBPI method allows us to obtain a very efficient approximation
of the free boundary. In fact, by using 101 centers, both Algorithm 1 and Algorithm 2 provide Bð0Þ with four correct decimal
digits in 0.39 s and 0.067 s, respectively (see also Table 2 where computer times are reported). Moreover, these two algo-
rithms yield a satisfactory approximation of the free boundary even if a relatively small number of centers are employed
(Algorithm 1 and Algorithm 2 allow us to obtain three correct decimal digits with 51 centers and 71 centers respectively).
Finally, as far as Algorithm 3 is concerned, it reveals to be slightly less accurate than Algorithm 1 and Algorithm 2.

6. Conclusions and future work

We have proposed a new meshfree RBPI method to price European and American options under the Black–Scholes model.
The RBPI approach offers several advantages over the more conventional radial basis function approximation, nevertheless it
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has never been used for option pricing, at least to the very best of our knowledge. In this paper the RBPI is combined with
several numerical techniques: an exponential change of variables, which allows us to approximate the option prices on their
whole spatial domain, a mesh refinement algorithm, which turns out to be very effective for dealing with the non-smooth
options’ payoffs, and an implicit Euler–Richardson extrapolated scheme, which provides a satisfactory level of time accuracy.
Moreover, in order to solve the free boundary problem that arises in the case of American options, three different approaches
are employed: the PSOR method, the Bermudan approximation, and the penalty approach. Numerical experiments are
presented which demonstrate the computational efficiency of the RBPI and the effectiveness of the various techniques
employed. In particular, the prices of both the European and the American options can be computed with an error of order
10�4 or 10�5 in only few hundredths of a second. Moreover, the PSOR reveals to be the most accurate of the three algorithms
used to deal with the early exercise opportunity, nevertheless the Bermudan discretization approach turns out to be slightly
more efficient than it if computer times are taken into account.

Finally, the proposed RBPI method is straightforward to implement and model independent, and thus could be applied to
a large variety of financial problems also different from the ones considered in this manuscript. For example, in order to
describe the option’s underlying asset, instead of the geometric Brownian motion (2.1) one could use a model with price
dependent volatility, such as the popular CEV model [72], or a model with jumps [73]. Moreover, one could extend the
numerical method developed in the present paper to the valuation of Asian options, i.e. options whose payoff depends on
the average of the underlying asset price on a given period of time. In fact, Asian option prices can be obtained by solving
one or a set of partial differential equations (depending wether the underlying asset price is continuously or discretely
monitored, see, e.g., [74–76]). These equations are very similar to the Black–Scholes Eq. (2.3), and thus the RBPI method
proposed in the present paper can be applied.
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