
RESEARCH ARTICLE

Network intrusion detection based on system calls and
data mining

Xinguang TIAN (✉)1, Xueqi CHENG1, Miyi DUAN1,2, Rui LIAO2, Hong CHEN3, Xiaojuan CHEN4

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
2 Institute of Computing Technology, Beijing Jiaotong University, Beijing 100029, China
3 Zhengzhou Information Science and Technology Institute, Zhengzhou 450004, China

4 College of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100037, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Abstract Anomaly intrusion detection is currently an
active research topic in the field of network security. This
paper proposes a novel method for detecting anomalous
program behavior, which is applicable to host-based
intrusion detection systems monitoring system call
activities. The method employs data mining techniques
to model the normal behavior of a privileged program, and
extracts normal system call sequences according to their
supports and confidences in the training data. At the
detection stage, a fixed-length sequence pattern matching
algorithm is utilized to perform the comparison of the
current behavior and historic normal behavior, which is
less computationally expensive than the variable-length
pattern matching algorithm proposed by Hofmeyr et al. At
the detection stage, the temporal correlation of the audit
data is taken into account, and two alternative schemes
could be used to distinguish between normalities and
intrusions. The method gives attention to both computa-
tional efficiency and detection accuracy, and is especially
suitable for online detection. It has been applied to
practical hosted-based intrusion detection systems, and
has achieved high detection performance.

Keywords intrusion detection, data mining, system call,
anomaly detection

1 Introduction

Intrusion detection is one of the main directions of
research in network security. There are two main
techniques for network intrusion detection: misuse
detection and anomaly detection [1,2]. Misuse detection
systems model attacks as specific patterns, and use the
patterns of known attacks to identify a matched activity as
an attack instance. Misuse detection is not effective
against unknown attacks [3]. Anomaly detection systems
use established normal behavior profile of a subject, e.g., a
user, a program, or a host machine, to identify any
unacceptable deviation as the result of an attack [4,5]. The
main advantage of anomaly detection lies in its ability to
detect novel and unknown attacks, and it acts as the major
direction of research in intrusion detection.
Many anomaly detection methods establishing normal

behavior profiles for programs or users have been
developed in recent years [1–9]. Yan et al., [5] introduced
a method for detecting anomalous program behavior
based on hidden Markov models (HMMs). The empirical
evaluation described in Ref. [5] demonstrates that the
method can achieve high detection accuracy, but it is
computationally expensive. Lane et al., [6] presented a
method for anomaly detection of user behavior on the
basis of instance-based learning techniques. The method
was tested on user shell command data, and the test results
show that the profiled user can be accurately differentiated
from alternative users when sufficient training data is
available. Tian et al., [2] introduced an anomaly detection
approach based on shell commands and homogeneous

Received December 12, 2008; accepted March 15, 2010

E-mail: tianxinguang@163.com

Front. Comput. Sci. China 2010, 4(4): 522–528
DOI 10.1007/s11704-010-0570-9

Markov chains. The advantage of this approach is
computational efficiency, but its detection accuracy is
not very high [2]. Its true positive rate is about 80% when
the false positive rate is 0.1%.
This paper presents an anomaly detection method to

detect intrusions by monitoring privileged program
behavior. Compared with the anomaly detection methods
in Refs. [3,5,8], the method in this paper gives attention to
both computational efficiency and detection accuracy, and
is especially suitable for online detection. It has been
applied to practical hosted-based intrusion detection
systems, and achieved high detection performance.
We analyze privileged processes and system calls in

Section 2 and give the training method to establish normal
behavior profiles for programs in Section 3. We present
the operation to perform detection in Section 4 and discuss
our evaluation results in Section 5. Then we conclude the
paper in Section 6.

2 Analysis of privileged processes and
system calls

There are many different levels on which an anomaly
intrusion detection system can monitor system behavior.
Privileged processes are a good level to focus on because
exploitation of vulnerabilities in privileged processes can
give an intruder super-user status. Furthermore, privileged
processes, especially those that listen to a particular port,
constitute a natural boundary for a computer [1,5].
Compared to user behavior, process or program behavior
is relatively stable over time. Users can carry out a wide
variety of actions, whereas processes usually perform a
specific, limited function [6,7]. Privileged processes are
running programs that perform services, such as sending
or receiving mail, which require access to system
resources that are inaccessible to ordinary users. This is
a simple definition, but the meaning of a privileged
process varies from program to program. For some
programs, a privileged process corresponds to a single
task. For other programs, multiple privileged processes
are required to complete a task [8].
In anomaly detection of program behavior, observable

data (audit data) is required to distinguish between normal
and intrusive behavior. In the work reported here, we
choose system calls into the kernel of an operating system
as the observable data. Each process is represented by its
trace: the ordered list of system calls used by the process
from the beginning to the end of its execution. This

observable trace is much simpler than other proposals,
especially those based on standard audit packages [10].
There are many ways in which system call data could be

used to represent the normal behavior of a program and
thus to detect anomalies, each of which involves building
or training a model using traces of normal processes [11].
In this paper, a model based on data mining techniques is
used to characterize the normal behavior of a program. In
a traditional classification task, both positive and negative
examples of the target concept are required for training
[12]. We characterize program behavior purely from
positive examples, and invoke the assumption that
anything not seen in the historical data represents an
anomaly; this is considered to be a reasonable assumption
in many former studies on anomaly detection because
divergence from past normal behavior is a practical and
important indication of intrusion [11].
In the method presented in this paper, two different

stages, the training stage and the detection stage, are
needed to perform anomaly detection of program
behavior. At the training stage, normal system call
sequences are extracted in the training data according to
their supports and confidences, and a dictionary of system
call sequences is constructed to represent the normal
behavior profile of the program. During the detection
stage, a fixed-length sequence pattern matching algorithm
is utilized to compare the current behavior with the
historic normal behavior, and the two different schemes
can be used to determine whether the monitored
program’s behavior is normal or anomalous while the
temporal correlation of the audit data is taken into account.

3 Training

During training, we make the stationary assumption, that
is, we assume that the action sequence of a privileged
process is not related to the time of its execution. In fact,
processes often have different distributions of system calls
at the beginning of their execution than they do at the end.
But the above assumption can greatly reduce the
computational complexity. Compared to the computation
of the HMM’s parameters in [5], the training here is
relatively simple. Furthermore, when new training data is
acquired, we can firstly compute the supports and
confidences of system call sequences in the new training
data, and then calculate the general supports and
confidences according to the proportion of the new data
to all the training data, and thus update the system call

Xinguang TIAN et al. Network intrusion detection based on system calls and data mining 523

sequences in the dictionary. The following steps are
carried out to characterize the normal behavior profile of a
process in the training stage.

3.1 Collecting training data

It is assumed here that the collected training data set
consists of M traces. The M traces are denoted by R1,
R2,..., RM , where Ri is an ordered list of system calls
issued by a normal process which was created by the

program in history (1£i£M). Ri ¼ fsi1, si2,:::, sirðiÞg,
where rðiÞ denotes the number of the system calls

in Ri, and sij denotes the jth system call in Ri. Let

r ¼ rð1Þ þ rð2Þþ� � � þ rðMÞ. Here, r equals the total
number of the system calls in the collected training data
set.

3.2 Segmenting the training data into overlapping

sequences

Then, segment each of the M traces R1, R2,..., RM , into
overlapping sequences of system calls, and thus generate a
system call sequence list from each of the M traces.
Let S1, S2,..., SM denote theM system call sequence lists

generated from R1, R2,..., RM respectively, where Si is the
system call sequence list generated from Rij1£i£M .

And Si ¼ fSeqi1, Seqi2,:::, SeqirðiÞ – 1g, where Seqij ¼
ðsij, sijþ1Þ. Seqij denotes the jth system call sequence in Si.

Here 1£j£rðiÞ – 1. The length of each system call
sequence in the sequence lists is 2. That is, each sequence
contains two system calls.

3.3 Computing the supports and confidences of the system

call sequences

Let s�1, s
�
2,..., s

�
D denote the unique system calls in the

training data set R1, R2,..., RM , whereD equals the number
of the unique system calls. Let Seq ¼ ðs�i , s�j Þ denote the

system call sequence in which the first system call is s*i ,
and the second system call is s�j ð1£i, j£DÞ. The support
of Seq ¼ ðs�i , s�j Þ in the training data set could be

computed as follow:

supportðSeqÞ ¼ numberðSeqÞ=ðr –MÞ, (1)

where support(Seq) denotes the support of the sequence
Seq ¼ ðs�i , s�j Þ in the training data set; number(Seq)

denotes the number of occurrences of Seq ¼ ðs�i , s�j Þ in

the M system call sequence lists generated from the

training data set R1, R2,..., RM ; r –M is the total number of
the system call sequences in the M system call sequence
lists. Support(Seq) is the occurrence probability of
Seq ¼ ðs�i , s�j Þ.
Let Seq� ¼ ðs�i , s�Þ denote system call sequences whose

first system calls are s�i . In Seq� ¼ ðs�i , s�Þ, s� denotes an
unfixed (random) system call. The confidence of the
sequence Seq ¼ ðs�i , s�j Þ in the training data set can be

computed as follow:

conf idenceðSeqÞ ¼ numberðSeqÞ=numberðSeq�Þ, (2)

where conf idenceðSeqÞ denotes the confidence of the
sequence Seq ¼ ðs�i , s�j Þ in the training data set;

numberðSeq�Þ denotes the number of occurrences of
Seq� ¼ ðs�i , s�Þ in the M system call sequence lists
generated from the training data set R1, R2,..., RM . In
many cases, numberðSeq�Þ equals the number of occur-
rences of the system call s�i in the training data set.
confidenceðSeqÞ is the probability of transition from s�i to
s�j . According the above definitions, we can compute the

supports and confidences of the system call sequences in
the M system call sequence lists S1, S2,..., SM .

3.4 Constructing a dictionary of system call sequences

Here, a dictionary of system call sequences needs to be
constructed to characterize the normal behavior of the
program. First, two parameters need to be set. They are the
minimum support and the minimum confidence. Let min-
sup denote the minimum support, and Let minconf denote
the minimum confidence.
Let K be the number of the system call sequences

whose supports are above or equal to minsup in the M
system call sequence lists S1, S2,..., SM . The set of the K
system call sequences, whose supports are above or equal
to minsup, is denoted as Ωs ¼ fSeq�1, Seq�2,:::, Seq�Kg:
Let W be the number of the system call sequences

whose confidences are above or equal to minconf in theM
system call sequence lists. The set of the W system call
sequences, whose confidences are above or equal to
minconf is denoted as

Ωc ¼ fSeqþ1 , Seqþ2 ,:::, SeqþWg:
Let Ωd denote the constructed dictionary of system call

sequences which is used to characterize the normal
behavior of the program. Ωd could be Ωs, Ωc, Ωs[Ωc,
or Ωs\Ωc. Here we choose the system call sequences in
Ωs\Ωc to construct the dictionary, i.e., Ωd ¼ Ωs\Ωc.

524 Front. Comput. Sci. China 2010, 4(4): 522–528

4 Performing detection

During the detection stage, observable data needs to be
acquired and processed. The dictionary of system call
sequences is used to classify the behavior of the monitored
processes created by the program as normal or anomalous.
Detection is performed as follows.

4.1 Acquiring observable data

Let R ¼ ðs1, s2, :::, srÞ denote the observable data acquired
during the detection stage. It is a trace generated by the

monitored process, where si is the ith system call in R, and

r is the number of the system calls in R ð1£i£rÞ. In the
case of online detection, the system calls in the trace are
acquired in time order.

4.2 Segmenting the trace into overlapping sequences of

system calls

The fundamental data units analyzed in the detection are
system call sequences. To analyze the temporal behavior

of the monitored process, the trace R ¼ ðs1, s2, :::, srÞ is
segmented to form a stream of overlapping system call

sequences which is denoted by S ¼ ðSeq1, Seq2, :::,
Seqr – 1Þ, where Seqi denotes the ith system call sequence

in the stream ð1£i£r – 1Þ, and Seqi ¼ ðsi, siþ1Þ. The
length of each system call sequence in the sequence
stream is 2, i.e., each sequence contains two system calls.

4.3 Sequence matching and normality analysis

For each system call sequence Seqi in the sequence

stream S ¼ ðSeq1, Seq2, :::, Seqr – 1Þ, compare Seqi with
the sequences in the sequence dictionary Ωd. If any

sequence in Ωd is identical to Seqi (i.e., Seqi 2 Ωd),

the system call sequence Seqi will be considered normal,
and the score of the normality measure corresponding to

Seqi will be assigned as CnormalðSeqiÞ :¼ 1. Otherwise,

Seqi will be considered abnormal, and CnormalðSeqiÞ :¼ 0.

Thus, a normality measure stream ðCnormalðSeq1Þ,
CnormalðSeq2Þ, :::,CnormalðSeqr – 1ÞÞ can be obtained.

4.4 Smoothing the normality measure stream and

classifying the process behavior

According to our study [1], intrusive traces generally
resemble normal traces. All of the real intrusions we have

studied produce abnormal system calls in temporally local
clusters. On the basis of this fact, we apply windowed
mean-value filters to smooth the normality measure

stream ðCnormalðSeq1Þ,CnormalðSeq2Þ, :::,CnormalðSeqr – 1ÞÞ.
Here, smoothing the normality measure stream and
classifying the process behavior are performed jointly.
Two alternative schemes are proposed for smoothing the
stream and classifying the behavior.
In the first scheme, the normality measure stream is

smoothed with a window of fixed length, e, and the
process behavior is classified with a fixed threshold, l.

The normality measure stream ðCnormalðSeq1Þ,
CnormalðSeq2Þ, :::,CnormalðSeqr – 1ÞÞ is smoothed as fol-
lows:

DðkÞ ¼ 1

e

Xk

i¼k – eþ1

CnormalðSeqiÞ, (3)

where e£k£r – 1. DðkÞ is called a locality frame
proportion, and it equals the proportion of normal
sequences in the locality frame of the e system call

sequences Seqk – eþ1, Seqk – eþ2, ..., Seqk . DðkÞ gives us a
signal for anomaly detection. The signal can indicate
the number of abnormal sequences in the temporally
local cluster. The mean-value filter can provide a
locality frame proportion for each normality measure

behind the eth measure in the input stream ðCnormalðSeq1Þ,
CnormalðSeq2Þ, :::,CnormalðSeqr – 1ÞÞ. This is convenient for
online detection.
Subsequently, the current behavior of the monitored

process could be classified according to DðkÞ and the
threshold l. If DðkÞ³l, the current behavior of the
monitored process will be considered normal. If
DðkÞ < l, the current behavior will be flagged as
anomalous. Here the current behavior corresponds to the

e system call sequences Seqk – eþ1, Seqk – eþ2, ..., Seqk ,
and also corresponds to the eþ 1 system calls sk – eþ1,
sk – eþ2,..., skþ1 that are generated by the monitored
process. The threshold l on the locality frame proportions
is a primary sensitivity parameter. A higher threshold
tends to catch more intrusions but also gives more false
positives. A lower threshold will result in fewer intrusions
detected and fewer false positives.
In the second scheme, the normality measure stream

is smoothed with windows of different lengths, and
the process behavior is classified using more than one
threshold. Here, we need to choose the number of the
window lengths which is denoted by V , V window

Xinguang TIAN et al. Network intrusion detection based on system calls and data mining 525

lengths which are denoted by eð1Þ, eð2Þ, ..., eðV Þ, V
upper thresholds which are denoted by uð1Þ, uð2Þ, ...,
uðV Þ, and V lower thresholds which are denoted by
dð1Þ, dð2Þ, ..., dðV Þ, where eð1Þ < eð2Þ < ::: < eðV Þ,
and uð1Þ > uð2Þ > ::: > uðV – 1Þ > uðV Þ ¼ dðV Þ >
dðV – 1Þ > ::: > dð2Þ > dð1Þ. uðnÞ and dðnÞ correspond
to the nth window length eðnÞ. After computing the

kth normality measure CnormalðSeqkÞ in the stream

ðCnormal ðSeq1Þ, Cnormal ðSeq2Þ, :::, Cnormal ðSeqr – 1ÞÞ, the
stream can be smoothed and the current behavior of the
monitored process can be classified as follows.

Step 1 Define a variable n, and assign an initial value as
n :¼ 1.
Step 2 If k³eðnÞ, go to Step 3. If k < eðnÞ, do not

execute the following steps, and do not classify the current
behavior of the monitored process.
Step 3 Compute the mean value Dðk, nÞ:

Dðk, nÞ ¼ 1

eðnÞ
Xk

i¼k – eðnÞþ1

CnormalðSeqiÞ: (4)

Step 4 If Dðk, nÞ > uðnÞ, the current behavior of the
monitored process is classified as normal (consistent).
Step 5 If Dðk, nÞ£dðnÞ, the current behavior of the

monitored process is classified as anomalous.
Step 6 If dðnÞ < Dðk, nÞ£uðnÞ, then n :¼ nþ 1, and

go to Step 2.

Compared to the first scheme, the second scheme is
computationally more expensive, but can also achieve
higher detection accuracy.
It should be emphasized that the above operations

including the acquirement of the observable data, trace
segmentation, normality analysis, normality measure
stream smoothing and process behavior classification are
performed in parallel in the case of online detection. In the
case of the first scheme, after the monitored process
generates eþ 1 system calls, whenever it generates a new
system call, a new system call sequence will be formed,
and the normality measure of the sequence will be
assigned. Subsequently a new locality frame proportion
will be produced by the mean-value filter, and thus the
current behavior of the monitored process can be
classified according to the threshold.
Compared with the anomaly detection method based on

hidden Markov models in Ref. [5], our method is less
computationally expensive during the detection stage, and
is more applicable to online detection. In practical

detection, the computational efficiency can be improved
by optimizing the matching of system calls. In addition,
our method has high flexibility in the classification of
process behavior; the threshold l can be adjusted to
control the true and false positive rates according to
practical detection demands. In practical application, the
parameters in the method including the minimum support,
minimum confidence, window lengths and thresholds can
be determined from training data by cross-validation
which is popularly used in intrusion detection.

5 Experimental analysis

We tested the anomaly detection method described above
using the experimental data set issued by the University of
NewMexico [11] which is publicly available. The data set
we chose includes 85 traces of the sendmail program,
among which 79 traces are normal and 6 traces are
intrusive that contains SCCP or DECODE attacks. These
traces vary in their size and complexity. In the experiment,
we used 13 normal traces as the training data to construct
the dictionary of system call sequences. The 6 intrusive
traces and 10 normal traces are used as the test data to
evaluate the true and false positive rate respectively.
There are 289180 system call sequences in the 13

system call sequence lists generated from the 13 normal
traces in the training. We set the minimum confidence as
minconf ¼ 0. During the detection stage, the first scheme
is used to smooth the normality measure stream and
classify the process behavior. When the minimum support
minsup was set to 0, and the window length was set as
e ¼ 7, the curves of locality frame proportions output by
the mean-value filter during the detection stage are shown
in Fig. 1, where the continuous line represents the locality
frame proportions corresponding to the normal data (10
normal traces), and the broken line represents the intrusive
data (6 traces containing attacks). Figure 2 shows the
curves of locality frame proportions when the minimum
support minsup was set to 0, and the window length was
set as e ¼ 20.
Table 1 presents the experimental results when the

minimum support minsup and the threshold l change. The
false positive rate is the percentage of decisions in which
normal behavior was flagged as anomalous [1,11]. The
false positive rate was computed differently from the true
positive rate. To detect an intrusion (anomaly), we require
only that the signal D(k) falls below the preset threshold l.
However, making a single determination as to whether a

526 Front. Comput. Sci. China 2010, 4(4): 522–528

normal trace appears anomalous or not is insufficient,
especially for very long traces. Each time that the behavior
seen in the trace is flagged as anomalous should be
counted separately [11]. Then, the false positive rate is the
percentage of decisions in which normal behavior was
flagged as anomalous.
According to the experimental results in Table 1, higher

minsup will result in more true positives but also gives
more false positives. In addition, we also tested the
HMM-based method in Ref. [5] and the sequence-based
method in Ref. [8]. using the same experimental data set.
In Ref. [5], the number of the states of the hidden Markov
model is set to 48, which is equal to the number of unique
system calls in the training data. In Ref. [8], the length of
system call sequences was set to 6, and the window length
was set to 20. Table 2 presents the experimental results.

As is shown in Table 2, the true positive rate of the
method in this paper is much higher than that of the
method presented in Ref. [8], while the false positive rate
of the our method is also lower. This means that our
method can provide higher detection accuracy. The
experimental duration in Table 2 is the time taken for
training and testing, which reflects the computational
costs of the different methods. We see from the results that
the computational cost of our method is much smaller than
that of the method in Ref. [5].
Furthermore, we changed the threshold l gradually to

get different true positive rates corresponding to different
false positive rates while minsup is set to 0, and thus drew
the ROC curve that reflects the relationship between the
true and false positive rates. In the experiment of the
methods in Refs. [5] and [8], we also drew the ROC
curves by changing the corresponding thresholds. In the
ROC curves, the x axis is false positive rate; the y axis is
true positive rate; different points can be achieved by
changing the thresholds l. Figure 3 shows the ROC curves
corresponding to the three methods. According to Fig. 3,
the general detection accuracy of our method is much
higher than that of Refs. [5] and [8].

6 Conclusion

In this paper we propose a novel intrusion detection
method by establishing normal behavior profiles for
privileged programs on the basis of the data mining
technique, which has been applied to practical host-based
intrusion detection systems. The method gives attention to
both computational efficiency and detection accuracy, and
is especially suitable for online detection. The results of
our experience show our method can achieve higher
detection accuracy than the existing typical methods such
as HMM-based method in Ref. [5] and the sequence-
based method in Ref. [8], while computational cost of our
method is much smaller. The proposed method is also
applicable to discrete behavior data from other subjects
such as shell commands from a user and audit events from
a host machine.

Fig. 1 Curves of locality frame proportions when e = 7

Fig. 2 Curves of locality frame proportions when e = 20

Table 1 Experimental results when minsup and l change

minsup Threshold False positive rate/% True positive rate/% Number of sequences in Ωd

2/289180 0.5 0 83 120

6/289180 0.2 0 83 99

10/289180 0.9 0.89 100 57

10/289180 0.2 0.02 100 57

Xinguang TIAN et al. Network intrusion detection based on system calls and data mining 527

Acknowledgements This work was supported by the National High-
Technology Research and Development Program of China
(2006AA01Z452), and National Information Security 242 Program of
China (2005C39).

References

1. Tian X G, Duan M Y, Sun C L, Li W F. Intrusion detection based

on system calls and homogeneous Markov chains. Journal of

Systems Engineering and Electronics, 2008, 19(3): 598–605

2. Tian X G, Duan M Y, Li W F, Sun C L. Anomaly detection of user

behavior based on shell commands and homogeneous Markov

chains. Chinese Journal of Electronics, 2008, 17(2): 231–236

3. Mukkamala S, Sung A H, Abraham A. Intrusion detection using an

ensemble of intelligent paradigms. Journal of Network and

Computer Applications, 2005, 28(2): 167–182

4. Oh S H, Lee W S. A clustering-based anomaly intrusion detector

for a host computer. IEICE Transactions on Information and

Systems. E (Norwalk, Conn.), 2004, 87-D(8): 2086–2094

5. Yan Q, Xie W X, Yang B, Song G. An anomaly intrusion detection

method based on HMM. Electronics Letters, 2002, 38(13): 663–

664

6. Lane T, Brodley C E. An empirical study of two approaches to

sequence learning for anomaly detection. Machine Learning, 2003,

51(1): 73–107

7. Lee W, Dong X. Information-theoretic measures for anomaly

detection. In: Proceedings of the 2001 IEEE Symposium on

Security and Privacys, May 2001, Oakland, USA, IEEE Computer

Society, 2001: 130–134

8. Hofmeyr S A, Forrest S, Somayaji A. Intrusion detection using

sequences of system calls. Journal of Computer Security, 1999, 6

(3): 151–180

9. Ye N, Emran S M, Chen Q, Vilbert S. Multivariate statistical

analysis of audit trails for host-based intrusion detection. IEEE

Transactions on Computers, 2002, 51(7): 810–820

10. Verwoerd T, Hunt R. Intrusion detection techniques and

approaches. Computer Communications, 2002, 25(15): 1356–1365

11. Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using

system calls: alternative data models. In: Proceedings of the 1999

IEEE Symposium on Security and Privacy, May 1999, Berkely,

USA, IEEE Computer Society, 1999: 133–145

12. Tian X G, Gao L Z, Sun C L, Duan M Y, Zhang E Y. A method for

anomaly detection of user behaviors based on machine learning.

The Journal of China Universities of Post and Telecommunica-

tions, 2006, 13(2): 61–65, 78

Table 2 Experimental results of three methods

Performance index False positive rate/% True positive rate/% Experimental duration/s

Method in Ref. [5] 0.02 83.33 49696

Method in Ref. [8] 0.15 66.67 8235

Our method 0 83.33 8072

Fig. 3 ROC curves corresponding to the three methods

528 Front. Comput. Sci. China 2010, 4(4): 522–528

	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

