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a b s t r a c t

In this paper, a hybrid anomaly intrusion detection scheme using program system calls is proposed. In

this scheme, a hidden Markov model (HMM) detection engine and a normal database detection engine

have been combined to utilise their respective advantages. A fuzzy-based inference mechanism is used

to infer a soft boundary between anomalous and normal behaviour, which is otherwise very difficult to

determine when they overlap or are very close. To address the challenging issue of high cost in HMM

training, an incremental HMM training with optimal initialization of HMM parameters is suggested.

Experimental results show that the proposed fuzzy-based detection scheme can reduce false positive

alarms by 48%, compared to the single normal database detection scheme. Our HMM incremental

training with the optimal initialization produced a significant improvement in terms of training time

and storage as well. The HMM training time was reduced by four times and the memory requirement

was also reduced significantly.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Computer security has become an issue of growing concern,
and costs US firms nearly $67 billion per year (Evers, 2008).
Worms, viruses and Trojan horses are the most costly, followed by
computer theft, financial fraud and network intrusion, according
to the quoted survey. As complete prevention of computer attacks
is not possible, intrusion detection systems (IDS) play a very
important role in minimizing the damage caused by different
computer attacks. Detecting intrusions without prior knowledge
of the attack method is most challenging. Anomaly intrusion
detection approaches (Abadeh et al., 2007; Anderson et al., 1994,
1995; Bose et al., 2007; Forrest et al., 1996; Gòmez et al., 2003;
Hautamaki et al., 2004; Hoang et al., 2003a, 2003b; Hoang and
Hu, 2004; Hwang et al., 2007; Lee et al., 1999, 2000; Patcha and
Park, 2007; Tokhtabayev and Skormin, 2007; Warrender et al.,
1999) to name just a few here, seem to be promising, and have
attracted considerable attention. The principle of anomaly intru-
sion detection is to establish a normal profile of the monitored
object first and any significant deviation from this normal
profile is regarded as an anomaly which could flag an intrusion
(Denning, 1987). Anomaly intrusion detection techniques can be
generally classified into three categories: statistical detection
methods, data-mining-based methods, and machine learning-
ll rights reserved.

+613 96621617.
based methods (Patcha and Park, 2007). Statistical anomaly
detection methods build two profiles: a normal profile during a
training phase and the current profile during the detection phase.
They monitor activities, such as CPU usage, number of TCP
connections, in terms of statistical distribution. During operation
these two profiles are compared, and an anomaly is identified if
there is a significant difference between them. Smaha et al.
proposed modelling the activities statistically by using random
Gaussian distribution. An enhanced version of this approach was
implemented by intrusion detection expert system (IDES) (Lunt et
al., 1992) and next generation intrusion detection expert system
(NIDES) (Anderson et al., 1994, 1995). One difficulty with
statistical-based anomaly detection methods is determining what
a meaningful activity is.

Data-mining-based methods can automate the process of
finding meaningful activities and interesting features. They
include classification-based intrusion detection, clustering and
outlier detection and associate rule discovery (Anderson et al.,
1995; Hautamaki et al., 2004; Hoang et al., 2003b; Lee et al., 1999,
2000; Patcha and Park, 2007). Generally, they are computational
intensive and produce very high false alarm rates. System call-
based sequence analysis is one of the widely used machine
learning techniques for anomaly detection. A representative work
is the normal-sequence database detection scheme, where a
sliding window is used to partition sequences and an intrusion is
detected based on the comparison of observed sequences with
previously established sequences in the database (Forrest et al.,
1996; Warrender et al., 1999). Bayesian networks have also been
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used in anomaly intrusion detection. Such an approach has the
advantage of potentially detecting distributed attacks, in which
each individual attack session is not suspicious enough to
generate an alert. One major drawback of Bayesian networks is
that they require a very accurate behavioural model of the
monitored subject, which is unrealistic (Patcha and Park, 2007).
The hidden Markov model (HMM) is a very powerful machine
leaning-based tool for anomaly intrusion detection (Davis and
Lovell, 2002; Hoang et al., 2003a; Rabiner, 1989). It has been
demonstrated that the HMM model performs the best in terms of
detection rate and false alarm rate among normal-sequence
database schemes, neural networks schemes and data-mining
schemes. However, it has high computational costs (Warrender
et al., 1999).

The performance of an individual detection engine is rarely
satisfactory. In the field of machine learning, it is believed that
integration of multiple classifiers can produce better results than
individual classifiers. Webb et al. (2005) showed that a uniform
weighting of a set of classifiers outperformed any of the individual
classifiers; Oliver and Hand (1996) demonstrated that a decision
forest can classify better than any individual decision tree.
Recently, several attempts have been made to perform anomaly
intrusion detection by using multiple classifiers (Analoui et al.,
2007; Bose et al., 2007; Cho, 2002; Giacinto and Roli, 2002; Feng
et al., 2007; Hoang et al., 2003a; Tsang et al., 2005; Vokorokos et
al., 2008; Ye and Xu, 2000). Most of that work is either based on
the integration of multiple classifiers operating on different
feature sets of networks, such as packet header sets and TCP
protocol data sets, or integration of signature-based IDS and
anomaly IDS. Hoang et al. (2003a) proposed a multiple-layer
approach, where the HMM model and the normal database refer
to the same set of system calls. We believe that different detection
engines working with the same set of system calls can reveal
different aspects of the monitored program. This will provide a
more comprehensive understanding of the monitored behaviour,
and can subsequently help reduce the false alarm rate. In the
context of HMM model scheme and normal-sequence database
scheme chosen in this paper, the normal-sequence database
scheme is very reliable in making decisions based on frequently
observed sequences, but is fairly weak when it comes to
infrequently observed system sequences. On the other hand, the
HMM model performs well when judging such sequences, due to
the generation feature of the HMM model. Based on our previous
work (Hoang et al., 2003a), this paper explores effective ways of
integrating the HMM model and the normal-sequence database
scheme for program-based anomaly intrusion detection. Our
major contributions are: (i) a fuzzy framework proposed to
integrate HMM anomaly intrusion detection engine and the
normal-sequence database anomaly intrusion engine for pro-
gram-based anomaly intrusion detection. Note: while fuzzy-based
algorithms have been traditionally used as detection engines to
reduce false alarm rate (Abadeh et al., 2007; Dickerson et al.,
2001; Dong et al., 2005; Florez et al., 2002; Gómez and Dasgupta,
2002; Luo et al, 2001), our work is to use fuzzy-based algorithms
in integrating the outputs of different detection engines. (ii) To
address the challenging issue of high cost in HMM training, an
incremental HMM training with optimal initialization of HMM
parameters is suggested. (iii) Using the public intrusion system
calls database available from the project of Computer Immune
Systems at the University of New Mexico (University, 2005), the
proposed schemes have been experimentally verified. The
experimental results show that the proposed fuzzy-based detec-
tion scheme reduced false positive alarms by 48%, compared to
the single normal database detection scheme. Our HMM incre-
mental training with the optimal initialization also produced a
significant improvement in terms of training time and storage.
The HMM training time was reduced by four times, and the
memory requirements also decreased significantly.

The rest of this paper is organized as follows: Section 2
introduces the proposed HMM incremental training scheme with
the optimal initialization of HMM parameters. Section 3 describes
the proposed fuzzy-based scheme for program anomaly intrusion
detection using system calls. Section 4 presents the experimental
results and a discussion. Our conclusions and future work are in
Section 5.
2. HMM incremental training with initial optimization

2.1. Preliminaries of hidden Markov model

A hidden Markov model is a double embedded stochastic
process with two hierarchy levels. The upper level is a Markov
process, in which the states are not observable. Observations are
made at the lower level and are probabilistic functions of the
upper level Markov states. Different Markov states will have
different observation functions.

HMMs are very powerful modelling tools although they are
computationally expensive (Davis and Lovell, 2002; Gotoh et al.,
1998; Hoang et al., 2003a; Hoang and Hu, 2004; Patcha and Park,
2007; Rabiner, 1989; Varghese and Jacob, 2007). HMMs have been
widely used in DNA sequence modelling, speech recognition and
pattern recognition. For convenience, we use the same HMM
notations as in (Hoang et al., 2003a). A HMM has the following
elements:
�
 N: number of states in the model

�
 M: number of distinct observation symbols per states

�
 T: length of the observation sequence, i.e. the number of

symbols observed

�
 it: state in which we are in at time t
�
 V ¼ {v1, v2, y , vM}: the discrete set of possible observation
symbols

�
 p ¼ {pi}, pi ¼ P(i1 ¼ i): the probability of being in state i at

t ¼ 1

�
 A ¼ {aij}, aij ¼ P(it+1 ¼ j, it ¼ i): the probability of being in state j

at time t+1 given that we were in state i at time t.

�
 B ¼ {bj(k)}, bj(k) ¼ P(vk at tjit ¼ j): the probability of being

observing symbol vk given that we are state j.

�
 O ¼ {O1, O2, y, Ot, y, OT}: observation sequence; Ot denotes

observation symbol observed at time t.

And l ¼ {A, B, p} will be used as compact notation to denote an
HMM.

The Baum–Welch algorithm is the most popular method to
estimate HMM parameters from observations. HMM training
using the Baum–Welch algorithm is considered as batch training,
because it allows only one observation sequence. Given the
observation sequence O ¼ {O1, O2, y, OT}, the algorithm estimates
the HMM model’s parameters l ¼ {A, B, p}, to maximize P(Ojl).
The Baum–Welch algorithm can be described in brief as follows
(Gotoh et al., 1998):
1.
 Let initial model be l0
2.
 Compute the new model l based on l0 and observation
sequence O
3.
 If log(P(Ojl))�log(P(Ojl0))oDELTA go to step 5

4.
 Else set l0’l, and go to step 2

5.
 Stop

where DELTA is a pre-defined threshold value of the natural
logarithm of the probability.
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2.2. Optimal initialization of HMM parameters for HMM training
In the HMM training process, the HMM parameters l(A, B, p)
are adjusted so as to maximize the probability of the obser-
vation sequence O, P(Ojl). Initialization is the first step in this
training process, in which HMM parameters l(A, B, p) are
assigned to pre-selected initial values. In theory, the values of
HMM parameters in the training process should converge to a
local maximum of the likelihood function (Rabiner, 1989).
Choosing the initial values for HMM parameters so that the
local maximum is the global maximum of the likelihood function
is a crucial question. Unfortunately, there is no simple or
straightforward answer to this question (Patcha and Park, 2007;
Rabiner, 1989).

In order to find optimal initial values for HMM para-
meters, we propose to compute prior probabilities C ¼ {cij},
i ¼ 1, N; j ¼ 1, N, where N is the number of hidden states, and to
use these values to initialize the HMM training parameters. The
prior probabilities are defined as the occurrence frequencies of
two consecutive observation symbols in the input observation
sequence.

To compute prior probabilities, we count the number of
occurrences of each pair of consecutive symbols (Ot,Ot+1),
t ¼ 1,y,T�1 in input sequence O. After normalization, prior
probabilities C are used to initialize the HMM parameters in the
training process. We use C as the initial values for HMM
parameters A and B, since C is relatively close to these parameters
in probability terms.

The prior probabilities are computed using the following
simple algorithm:

Input: Observation sequence O ¼ {Ot}, t ¼ 1, T. Also noted that
we selected the number of hidden states equal to the number of
distinct observation symbols, or N ¼ M.

Output: The matrix of prior probabilities C ¼ {cij}, i ¼ 1, N;
j ¼ 1, N.
1.
 Set cij ¼ 0; i ¼ 1, N, j ¼ 1, N
2.
 For each pair of consecutive observations Ot and Ot+1 in
sequence O, t ¼ 1, T�1:
(a) Find the corresponding element of C, cij: i Ot, j Ot+1.
(b) Increase counter cij by 1: cij cij+1.
3.
Fig. 1. The proposed fuzzy-based detection scheme: (a) training stage and (b)

testing stage.
Normalize the C matrix based on the transition probability
distribution constraints.

2.3. HMM incremental training

Gotoh et al. (1998) proposed efficient HMM training schemes
using incremental ML and MAP estimation algorithms for speech
recognition. HMM incremental training has the advantage of
faster convergence than that of traditional batch training.
However, their algorithms require the subsets of training data
be independent. In our training data set, the system calls are
related and so the subsets are not independent. Davis and Lovell
(2002) proposed a simple method to learn HMM from multiple
observation sequences (HMMMOSA). In their approach, first the
set of sub-sequences are used to learn a set of sub-models
independently. Next, when the learning of all sub-models is
complete, the sub-models are merged, by using weights, to
produce the final HMM. The subsets do not have to be
independent in this method.

In our approach, we modify the HMMMOSA scheme (Davis and
Lovell, 2002) to make it incremental. Our new HMM training
scheme first divides the long training sequence into a number of
subsets of sequences. Next, each subset of data is used to train one
sub-model and then the sub-model is incrementally merged into
the final model. The training scheme has the following
steps:
1.
 Divide single observation sequence O into K sub-sequences
{O(1), O(2), y, O(K)}.
2.
 Initialize the HMM final model l’+ (empty model).

3.
 Take a sub-sequence O(k) to train sub-model l(k) using HMM

batch training algorithm.

4.
 Incrementally merge l(k) into final model l.

5.
 Repeat steps 3 and 4 for all sub-sequences.

The HMM parameters in the incremental merging step of the
sub-model l(k) and the final HMM l are calculated as follows:

aij ¼ wknaðkÞij þwnaij

bij ¼ wknbðkÞij þwnbij

pi ¼ wknp
ðkÞ
i þwnpi

where wk ¼ 1/P(O(k)jl(k)), P(O(k)jl(k)) is the probability to generate
sub-sequence Ok from model lk, and w ¼ 1/P(O(1), O(2), O(k�1)jl),
P(O(1), O(2), O(k�1)jl) is the probability to generate sub-sequences
{O(1), O(2), O(k�1)} from model l.
3. The proposed fuzzy-base program anomaly detection scheme

3.1. The proposed fuzzy-based detection scheme

Fig. 1 shows the proposed fuzzy-based detection scheme that is
developed in two stages: (a) training stage and (b) testing stage. In
the training stage, the detection model is constructed from the
training data, which consists of normal traces of system calls of a
program. In the testing stage, the constructed detection model is



ARTICLE IN PRESS

X.D. Hoang et al. / Journal of Network and Computer Applications 32 (2009) 1219–12281222
used to evaluate test traces of system calls in order to find possible
intrusions. The two stages of the proposed scheme can be
described as follows:
�

Fig
sys
Training stage: A normal database, an HMM model and fuzzy
sets are built from the training data.
J Normal database: The database is an ordered list of all

unique short sequences of system calls found in the training
data. The database is created from normal traces of system
calls using the method given in Forrest et al. (1996). Each
short sequence in the normal database has k system calls. In
addition, the occurrence frequency of each short sequence
in the training data is also recorded in the normal database.

J HMM model: The HMM model is trained using normal
traces of system calls, based on the HMM incremental
training scheme, given in our previous work (Hoang and
Hu, 2004).

J The fuzzy sets are created, as discussed in Section 3.2.
. 2.
tem
�
 Testing stage: First, short sequences are formed from
test traces of system calls using the sliding window
method (Forrest et al., 1996). The sequence length is k system
calls. Then, each short sequence is evaluated in two steps as
follows:
J Evaluation of the short sequence by the normal database

and by the HMM model: In this step, the normal database
and the HMM model are used to compute the input
parameters for the fuzzy inference engine.

J Classification of the test sequence by the fuzzy inference
engine: In this step, the fuzzy inference engine applies the
fuzzy sets and rules to interpret the input parameters in

order to produce the output which is the status of the short
sequence: normal or abnormal.
3.2. Fuzzy inference for sequence classification

As discussed in Section 3.1, the fuzzy inference engine
is used to evaluate each short sequence to find anomalies by
combining multiple sequence parameters. Fig. 2 shows the fuzzy
inference engine for the classification of short sequences of
system calls. The engine takes the sequence’s parameters as input,
and then applies the fuzzy sets and rules to produce the
sequence’s status as output. The sequence parameters include a
sequence probability P generated by the HMM model, and the
sequence distance D and frequency F produced by the normal
database.
The fuzzy inference engine for the classification of short sequences of

calls.
3.2.1. Creation of fuzzy sets and rules

As shown in Fig. 2, fuzzy sets and rules are used by the fuzzy
inference engine to interpret the input and generate the output.

3.2.1.1. Creation of fuzzy sets. We empirically created fuzzy sets to
represent the space of each sequence parameter as follows:
�
 Four fuzzy sets, namely VeryLow, Low, High and VeryHigh, are
created for the sequence probability P, to represent sequence
probabilities.

�
 Four more fuzzy sets, namely Zero, Small, Medium and Large,

are created to represent sequence distances, where zero means
matching sequences.

�
 Three fuzzy sets, namely Low, Medium and High, are created to

represent sequence frequencies.

�
 Two fuzzy sets, namely Normal and Abnormal, are created to

represent the space of the output sequence anomaly score
parameter. The anomaly score fuzzy sets are used in the
defuzzification process to convert the output fuzzy set to an
actual anomaly score of the sequence.

Appendix A is a graphical presentation of these fuzzy sets.

3.2.1.2. Creation of fuzzy rules. Since the input sequence para-
meters of the fuzzy rules, which include probability P, distance D

and frequency F, are generated by the HMM model and the normal
database, our fuzzy rules inherit the assumptions used by the
normal database and the HMM-based detection schemes. These
assumptions are as follows:
�
 A sequence, which is produced with a likely probability by the
HMM model, is considered to be normal.

�
 A sequence, which is produced with an unlikely probability by

the HMM model, is considered to be abnormal.

�
 A mismatching sequence is more suspicious than a matching

sequence. The larger the distance between a test sequence and
normal sequences is, the more likely the test sequence is
abnormal.

�
 A matching sequence with a low occurrence frequency is more

suspicious than a sequence with a high occurrence frequency.

Based on the above assumptions, we manually devised a set of
17 fuzzy rules for the sequence classification. An example of such
a rule reads ‘‘IF probability IS Low AND distance IS Zero AND
frequency IS Low THEN the test sequence IS abnormal’’. The full list
of fuzzy detection rules used in this paper are given in Appendix B.

3.2.2. Sequence classification using fuzzy reasoning

The fuzzy reasoning process, as shown in Fig. 2, evaluates each
sequence of system calls in three phases: fuzzification, fuzzy
inference and defuzzification. Fuzzification is the process of
transforming crisp input values into linguistic values which
usually are fuzzy sets. There are two tasks performed in the
fuzzification process: input values are converted to linguistic
values that are represented by fuzzy sets, and membership
functions are applied to compute the degree of truth for each
matched fuzzy set.

Defuzzification is the process of transforming the fuzzy value
into a crisp value. In our fuzzy inference engine, the output
anomaly score fuzzy set is defuzzified to produce the sequence’s
anomaly score. There are many defuzzification techniques avail-
able, such as the centroid method, max-membership method and
weighted average method. We used the max-membership method
to compute the crisp output from the output fuzzy set.
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In the fuzzy inference phase, all rules in the fuzzy rule-base are
applied to input parameters in order to produce an output. For
each rule, first, each premise is evaluated, and then all premises
connected by an AND are combined by taking the smallest value of
their degree of membership as the combination value of rule’s
truth value. The final output fuzzy set of the fuzzy rule-base is the
OR combination of the results of all individual rules that fire. It is
noted that the truth value of a rule that fires is non-zero. The
output fuzzy set is defuzzified to produce a crisp output value. A
sample of fuzzy inference of anomaly score A from probability P

and distance D is given in Fig. 11, Appendix A.
4. Experimental results and discussions

4.1. Data set

We used sendmail traces of system calls collected in a synthetic
environment, as given in University (2005). The format of system
call traces and the data collection procedures were discussed in
Forrest et al. (1996). The data sets include:
�

Tab
Tra

Ind

i ¼

0

1

2

3

4

5

6

7

The
Normal traces are those collected during the program’s normal
activity. Normal traces of the sendmail program include 2
traces with the total of 1,595,612 system calls.

�
 Abnormal traces are those that come from a program’s

abnormal runs generated by known intrusions. In the case of
sendmail abnormal traces, they consist of 1 trace of sm5x

intrusion, 1 trace of sm565a intrusion, 2 traces of syslog-local,
and 2 traces of syslog-remote intrusion.

4.2. Experimental design

In order to measure the detection rate and the false alarm rate
of our fuzzy-based detection model, our experiments were
designed as follows:
�
 Measurement of the efficiency of the proposed HMM incremental

training: In this test, first we measured the training time of the
Baum–Welch HMM batch training using the original training
set of 1,000,000 system calls, which had been selected from the
sendmail data sets. Then, we formed seven incremental
training options by dividing the original training set of
1,000,000 system calls into 2, 5, 10, 20, 30, 40 and 50 subsets.
For each incremental training option, each subset was used to
update the HMM model incrementally, until convergence.

�
 Measurement of the false positive rate: In this test, we used the

proposed fuzzy-based detection scheme to classify normal
traces of system calls, which had not been used in the
le 1
ining time of HMM batch training and incremental training on the number of subsets.

ex

0,y,7

Number of

subsets

Length of each

subset

Total training time

(min)

A B C

1a 1,000,000 123.92
2 500,000 127.72

5 200,000 98.03

10 100,000 90.75

20 50,000 65.93

30b 33,333 60.22

40 25,000 48.47

50 20,000 55.27

total length of each training set is 1,000,000 system calls.
a Batch training: number of subset is 1.
b There is 1 subset of 33,343 system calls in this incremental option.
construction of the normal database, the HMM model and the
fuzzy sets. Since the normal traces did not contain any
intrusions, any reported alarms were considered false posi-
tives. This experiment was set up as follows:
J Select the first 1,000,000 system calls of sendmail normal

traces as the full training set.
J Form 4 training sets which account for 30%, 50%, 80% and

100% of the size of the full training set.
J Construct normal databases and HMM models from these

training sets. The chosen values for the sequence length
were k ¼ 5, 11 and 15 system calls.

J For each training set and on each selected sequence length,
construct membership functions to fuzzy sets of three
sequence parameters, as discussed in Section 3.2.

J Select three test traces, each with 50,000 system calls from
the sendmail normal traces, which are not used in the
training process, to test for false positive alarms of our
scheme, the normal-sequence database scheme (Forrest et
al., 1996) and the two-layer scheme (Hoang et al., 2003a).
Reported abnormal short sequences were counted for each
test trace.
�
 Measurement of anomaly signals and the detection rate: In this
test, we use the proposed fuzzy-based scheme to classify
abnormal traces of system calls to find possible intrusions.
Since the abnormal traces have been collected from the
program’s abnormal runs with known intrusions, reported
alarms in this case can be considered true alarms or detected
intrusions. This experiment was designed as follows:
J Construct a normal database and an HMM model for the

sendmail program from normal traces of 1,000,000 system
calls. We chose the sequence length k ¼ 11 to construct the
normal database from normal traces, and to form short
sequences from abnormal traces for testing.

J Construct membership functions to fuzzy sets of the three
sequence parameters, as discussed in Section 3.2.

J Use the proposed fuzzy-based detection scheme to evaluate
abnormal traces to find abnormal sequences.

J Use temporally local regions to group individual abnormal
sequences to measure the anomaly signals. The selected
region length is r ¼ 20.
4.3. Experimental results

4.3.1. Reducing HMM training cost

Table 1 shows the training time of the Baum–Welch HMM
batch training and the proposed HMM incremental training
scheme. The experimental results of the HMM batch training
scheme, based on the Baum–Welch algorithm, are given in the
Average training time

per subset (min)

Normalized time difference between

incremental and batch training

Di ¼ Ci/Ai Ei ¼ (C0�Ci)/C0

123.92 0
63.86 �3.07%

19.75 20.89%

9.08 26.77%

4.80 46.79%

2.01 51.41%

1.21 60.89%

1.11 55.40%
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first row of the table. Other rows show the experimental results of
the proposed HMM incremental training scheme. There are seven
incremental training options with the number of training subsets,
ranging from 2 to 50. The difference between the training times of
HMM batch training and each incremental training option was
computed, normalized and given in the last column as a
percentage.

In Table 1, it is shown that the proposed incremental training
scheme can reduce training time substantially on all incremental
training options except the option with 2 subsets. While the
training time of the HMM batch training on a single set is
123.92 min, the training time of HMM incremental training on 40
subsets is 48.47 min. This is a 60.89% reduction. The correspond-
ing reductions in the training time of other HMM incremental
training options on 5, 10, 20, 30, and 50 subsets are also very good,
20.89%, 26.77%, 46.79%, 51.41%, 55.40%, respectively.

Fig. 3 shows the dependence of the training time on the
number of subsets. When the number of subsets increases from 1
(batch mode) to 2, the training time increases slightly, from
123.92 to 127.72 min. Then, the training time decreases
significantly, from 127.72 to 48.47 min. This is a reduction of
about 2.6 times, when the number of subsets increases from 2 to
40. When the number of subsets increases to 50, the training time
increases slightly again to 55.27 min. This means that the
proposed HMM incremental training gives best performance on
40 subsets, or 25,000 system calls per subset.
Fig. 3. The dependence of training time on the number of subsets in HMM

incremental training. 1 subset indicates HMM batch training. The total length of

each training set is 1,000,000 system calls.

Table 2
Overall false positive rate of the normal database scheme, the two-layer detection schem

and 15.

Training data sets (% of full data set) Normal database scheme 0 (%)

Sequence length, k ¼ 5; 3 test traces with the total of 149,988 sequences

30 0.131

50 0.099

80 0.094

100 0.094

Sequence length, k ¼ 11; 3 test traces with the total of 149,970 sequences

30 0.194

50 0.155

80 0.150

100 0.147

Sequence length, k ¼ 15; 3 test traces with the total of 149,958 sequences

30 0.225

50 0.176

80 0.174

100 0.171
When the number of training subsets is too small, the
proposed HMM incremental training scheme performs poorer
than the HMM batch training scheme. This is because the time is
not sufficient to compensate the extra training time caused
by the additional overhead of the HMM incremental weighted
merging. However, when the number of training subsets is larger,
the time saving increases, and this additional overhead becomes
insignificant.
4.3.2. False positive rate

Table 2 shows the overall false positive rate for three test traces
with a total of 150,000 system calls (each trace consisting of
50,000 system calls), as reported by the normal-sequence
database scheme (Forrest et al., 1996), by the two-layer
detection scheme (Hoang et al., 2003a) and by the fuzzy-based
detection scheme, on different training sets with the sequence
length k ¼ 5, 11 and 15. The total number of short sequences in the
test traces is dependent on the sequence length and is also given
in Table 2.

It can be seen from Table 2 that the false positive rate
of the fuzzy-based detection scheme is much lower than
that of the normal-sequence database scheme (Forrest et al.,
1996). For example, the fuzzy-based detection scheme pro-
duced 48.23%, 48.89% and 50.96% fewer false positive
alarms than the normal database scheme, for the training set of
80% of full set, with sequence lengths of k ¼ 5, 11 and 15,
respectively.

It is also noted that there is a significant reduction in the false
positive rate of the fuzzy-based detection scheme, compared to
that of the two-layer detection scheme (Hoang et al., 2003a). For
example, the fuzzy-based detection scheme produced 29.81%,
28.13% and 26.44% fewer false positive alarms than the two-layer
detection scheme for the training set of 80% of the full set,
with sequence lengths of k ¼ 5, 11 and 15, respectively (refers to
Table 2).

Fig. 4 shows the dependence of the false positive rate on the
size of the training sets with the sequence length k ¼ 11. When
the size of the training set increases, the false positive rate of the
normal database scheme (Evers, 2008) and the two-layer scheme
(Hoang et al., 2003a) decreases considerably, especially from the
training set of 30% of the full set to the set of 50% of the full set.
Since the fuzzy-based scheme has already achieved a low false
positive rate at the set of 30% of the full set, there is only a small
reduction in the false positive rate when the size of the training
set increases.
e and the fuzzy-based detection scheme with the short sequence length, k ¼ 5, 11

Two-layer scheme 0 (%) Fuzzy-based scheme (%)

0.112 0.067

0.079 0.057

0.069 0.049

0.069 0.049

0.170 0.099

0.115 0.081

0.107 0.077

0.107 0.077

0.164 0.107

0.121 0.091

0.116 0.085

0.116 0.085
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4.3.3. Anomaly signals and the detection rate

Table 3 shows a summary of the detection results of the two-
layer scheme and the fuzzy-based scheme for some abnormal
traces which were generated by some known intrusions. The
detection performance results of the normal database scheme are
taken from Table 3 of (Forrest et al., 1996). Similar to the anomaly
signal measurement method described in (Hoang et al., 2003a),
we measure anomaly signals based on temporally local regions.
The anomaly score A of a region is computed as the ratio of the
number of detected abnormal short sequences in the region to the
length of the region r. The average of anomaly scores are
computed over abnormal regions that have the anomaly score A

greater than the region score threshold Â (AZÂ), where Â ¼ 40.0%.
Fig. 4. The relationship between the size of training sets and the false positive rate

with k ¼ 11.

Table 3
Detection results produced by the normal database scheme, by the two-layer scheme

Name of test abnormal traces % detected abnormal sequences by 0 % of de

Two la

sm565a 0.60 38.46

sm5x 2.70 31.58

syslog-local No. 1 5.10 12.00

syslog-local No. 2 1.70 16.67

syslog-remote No. 1 4.00 28.26

syslog-remote No. 2 5.30 24.68

Fig. 5. Anomaly signal generated for syslog-local abnormal
It can be seen from Table 3 that the fuzzy-based scheme
produced significantly better detection results than the two-layer
scheme (Hoang et al., 2003a), in terms of the number of detected
abnormal regions and the generated anomaly signal level. For the
‘‘sm5x’’ intrusion trace, the rates of detected abnormal regions are
31.58% and 67.11% by the two-layer scheme and fuzzy-based
scheme, respectively. Also for this test trace, the fuzzy-based
scheme generated an average anomaly score of 72.55%, compared
to the average anomaly score of 60.42% produced by the two-layer
scheme.

Figs. 5 and 6 show the anomaly signals produced by the two-
layer scheme (Hoang et al., 2003a) and the fuzzy-based scheme
for syslog-local No. 1 and syslog-remote No. 1 abnormal traces,
respectively, with the sequence length k ¼ 11. It is noted that
anomaly signals are measured based on temporally local regions
for both schemes. These figures show that the proposed fuzzy-
based scheme generated much stronger anomaly signals than the
two-layer scheme (Hoang et al., 2003a.)
4.4. Discussions

Our HMM incremental training with optimal initialization of
HMM parameters achieved significant improvement in HMM
training time and storage requirement. As compared to HMM
batch training, our HMM incremental training scheme reduced
the training time by over four times, and decreased the required
storage space by K times, where K is the number of training
subsets used. This efficiency improvement is significant for
practical use.

The proposed fuzzy-based detection scheme generated much
fewer false positive alarms than the normal-sequence database
scheme (Forrest et al., 1996), as shown in Table 2. For example, the
and by the fuzzy-based scheme for some abnormal traces.

tected abnormal regions Average of scores of abnormal regions

yer (%) Fuzzy-based (%) Two layer (%) Fuzzy-based (%)

76.92 68.00 88.00

67.11 60.42 72.55

60.00 73.33 84.67

60.26 71.54 86.49

67.39 72.31 86.53

61.04 74.74 83.40

trace No. 1 by the two-layer and fuzzy-based schemes.
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Fig. 6. Anomaly signal generated for syslog-remote abnormal trace No. 1 by the two-layer and fuzzy-based schemes.

Fig. 7. Fuzzy sets for sequence probabilities P.

Fig. 8. Fuzzy sets for sequence distance D.

Fig. 9. Fuzzy sets for sequence frequency F.
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false positive rate of the normal database scheme is 0.174%, as
opposed to 0.085% of the proposed scheme, or a reduction of
50.96%, when using the training set of 50% of the full set with
k ¼ 15.

It is also noted that the proposed detection scheme
achieved a much lower false positive rate on small-size training
sets than the normal-sequence database scheme (Forrest et al.,
1996). On the training set of 30% of the full set, the false
positive rate of the proposed detection model is lower than
that of the normal database scheme on the full training set.
This means that the proposed detection model requires
significantly less training data to achieve a better level of
false positive rates than the normal-sequence database scheme
(Forrest et al., 1996).

According to experimental results presented in Table 3, our
scheme correctly detected all intrusions embedded in all
abnormal traces tested. In contrast, the normal database scheme
(Forrest et al., 1996) almost completely missed the sm565a
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intrusion, with only 0.6% of abnormal sequences detected.
The same scheme (Forrest et al., 1996) possibly also missed the
syslog-local intrusion, embedded in syslog-local trace No. 2, with
just 1.7% of abnormal sequences detected.

The fuzzy inference engine plays an important role in the
reduction of false positive alarms and in the increase of the
detection rate. The fuzzy inference engine that incorporates
multiple sequence information generated by the normal database
and by the HMM models, accurately classifies the majority of
sequences, and has few false alarms and a high detection rate.
5. Conclusions and future work

In this paper, we presented a fuzzy-based scheme for the
integration of HMM anomaly intrusion detection engine and
normal-sequence database detection engine for program
anomaly intrusion detection using system calls. Instead of using
crisp conditions, or fixed thresholds, fuzzy sets are created to
represent the space of sequence parameters. A set of fuzzy rules is
created, which combine multiple sequence parameters and
Fig. 10. Fuzzy sets of sequence anomaly score A.

Fig. 11. Calculation of sequence anom
determine the sequence status through a fuzzy reasoning
process. In order to address the issue of prohibitive computational
cost of HMM model training, an incremental HMM training
method and an initial optimization scheme have been
proposed. Experimental results have shown that the proposed
detection scheme reduced false positive alarms by 48% and 28%,
compared to the normal-sequence database scheme (Forrest et al.,
1996) and the two-layer scheme (Hoang et al., 2003a), respec-
tively. The proposed detection scheme also generated much
stronger anomaly signals, compared to the normal-sequence
database scheme (Forrest et al., 1996) and the two-layer scheme
(Hoang et al., 2003a). The HMM training time was reduced by
four times and the memory requirement was also decreased
significantly. These improvements have made a good progress
towards online and real-time intrusion detection. However, on-
going effort is needed before anomaly IDS technology can be
deployed for real-life online intrusion detection. In a most recent
work, a data pre-processing scheme has been proposed to reduce
the load of training (Hu et al., 2009). Our future work is to
investigate how to integrate these approaches together and
conduct real-life data test.
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Appendix A. Fuzzy sets

Fuzzy sets for sequence probabilities P, sequence distance D,
sequence frequency F, sequence anomaly score A and calcu-
lation of sequence anomaly score using fuzzy inference are given
in Figs. 7–11.
aly score using fuzzy inference.
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Appendix B. Fuzzy rules

(1) IF probability IS VeryLow AND distance IS Large THEN the
test sequence IS abnormal.

(2) IF probability IS VeryLow AND distance IS Medium THEN
the test sequence IS abnormal.

(3) IF probability IS VeryLow AND distance IS Small THEN the
test sequence IS abnormal.

(4) IF probability IS VeryLow AND distance IS Zero AND
frequency IS Low THEN the test sequence IS abnormal.

(5) IF probability IS VeryLow AND distance IS Zero AND
frequency IS Medium THEN the test sequence IS abnormal.

(6) IF probability IS VeryLow AND distance IS Zero AND
frequency IS High THEN the test sequence IS normal.

(7) IF probability IS Low AND distance IS Large THEN the test
sequence IS abnormal.

(8) IF probability IS Low AND distance IS Medium THEN the
test sequence IS abnormal.

(9) IF probability IS Low AND distance IS Small THEN the test
sequence IS abnormal.

(10) IF probability IS Low AND distance IS Zero AND frequency
IS Low THEN the test sequence IS abnormal.

(11) IF probability IS Low AND distance IS Zero AND frequency
IS Medium THEN the test sequence IS normal.

(12) IF probability IS Low AND distance IS Zero AND frequency
IS High THEN the test sequence IS normal.

(13) IF probability IS High AND distance IS Large THEN the test
sequence IS abnormal.

(14) IF probability IS High AND distance IS Medium THEN the
test sequence IS normal.

(15) IF probability IS High AND distance IS Small THEN the test
sequence IS normal.

(16) IF probability IS High AND distance IS Zero THEN the test
sequence IS normal.

(17) If probability is VeryHigh THEN the test sequence is
normal.
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