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In the wireless sensor networks with multiple mobile sinks, the movement of sinks or fail-
ure of sensor nodes may lead to the breakage of the existing routes. In most routing pro-
tocols, the query packets are broadcasted to repair a broken path from source node to
sink, which cause significant communication overhead in terms of both energy and delay.
In order to repair broken path with lower communication overhead, we propose an effi-
cient routing recovery protocol with endocrine cooperative particle swarm optimization
algorithm (ECPSOA) to establish and optimize the alternative path. In the ECPSOA, muta-
tion direction of the particle is determined by multi-swarm evolution equation, and its
diversity is enriched by the endocrine mechanism, which can enhance the capacity of glo-
bal search and improve the speed of convergence and accuracy of the algorithm. By using
this method, the alternative path from source nodes to the sink with the optimal QoS
parameters can be selected. Simulation results show that our routing protocol significantly
improves the robustness and adapts to rapid topological changes with multiple mobile
sinks, while efficiently reducing the communication overhead and the energy
consumption.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Internet-of-Things (IoTs) are regarded as the extension of current Internet to the real world of physical objects [5].
The basic idea of IoT is pervasively providing us with a variety of things or objects, such as radio frequency identification
(RFID) tags, sensors, wireless sensor networks (WSNs), and mobile phones, which are able to interact and cooperate with
each other to realize the tasks of communication, computation, and service. An important direction of the IoTs is to facilitate
suitable WSNs technologies based on an efficient standard protocol to support the network of things [10,6].

Several data dissemination protocols have been proposed for the WSNs with a static sink [21,26,29]. For example, the
directed diffusion approach [11] assumes that each sink needs to periodically flood its location information through the
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sensor field. The procedure sets up a gradient from the sensor nodes to the sink, so that each sensor is aware of the sink
location for sending future events and measurements. However, the static sink may limit the network lifetime as the
1-hop neighbors of the sink, which is the bottleneck of the network. The WSNs with mobile sink is a powerful solution to
take advantage of short-range transmission. When the energy of the sensors around one sink is exhausted, the sink can move
to a new location in an area with richer sensors’ energy [20]. This approach can balance the energy consumption and prolong
the network lifetime.

The method of adding mobile sinks to the WSNs infrastructure has attracted much attention recently, such as the meth-
ods in [12,27]. Scalable Energy-efficient Asynchronous Dissemination (SEAD) [28], is a mechanism for routing sensing data to
mobile sinks. The idea is to construct a minimum Steiner tree for the mobile sink and designate some nodes on the tree as
access points. The mobile sink registers itself with the closest access node. When the sink moves out of range of the access
node, the route is extended through the inclusion of new access node. Such partial path extension is allowed only for a lim-
ited number of hops and then the branch of the Steiner tree for that sink is modified by finding the least cost path to the sink.

In the ALURP [31], a sink only floods its location to the nodes within an adaptive area if the sink only moves in the adap-
tive area. The ALURP can significantly reduce unnecessary transmissions overhead by local flooding, but the mobile sink still
needs to flood its location information throughout the entire network to announce a new adaptive area.

The Two-Tier Data Dissemination (TTDD) [18] represents the early work on data dissemination of the WSNs with mobile
sinks. The protocol initially builds a grid structure which divides the network into cells with several dissemination nodes.
When the sink requests data, the query packets are flooded locally within the cell until it reaches a dissemination node.
A data path from the source to the dissemination node is then established. But the TTDD is not suitable for applications
where the flooding area expands as the cell size grows, while a small sized grid structure incurs high overhead for the grid
construction.

The Intelligent Agent-Based Routing Protocol (IAR) [13] provides efficient data delivery to mobile sinks. The IAR algorithm
reduces signal overhead and improves degraded route called triangular routing problem. The sink periodically examines its
distance from the current immediate relay, initiates a new relay path establishment, and reduces the packet loss as the
experiment results and signaling overhead.

However, the routing recovery mechanism for the movement of multiple mobile sinks and sensor node failure has rarely
been considered. As the fault-tolerant optimization problem to find the optimal routing is a NP-hard one, the heuristic deter-
ministic methods always fall into local optimum, and obtain the approximate optimal routing result. Moreover, in these
routing protocols, packets are broadcasted to repair a broken route from source node to sink, which causes significant com-
munication overhead in terms of both energy and delay.

We design an efficient swarm intelligent algorithm to optimize the alternative path from the sources to the sinks in this
paper. Our proposed method is developed based on IAR and differs from the above works. We address the routing problem of
the WSNs consisting of a large number of sensor nodes and multiple mobile sinks for data gathering. The multiple mobile
sinks form a virtual backbone and are concerned with maintaining the backbone connectivity as a result of sinks’ move-
ments. When the energy of the nodes around these sinks is exhausted, these sinks can move to a new location with richer
sensor energy to gather information. This approach can balance energy consumption and prolong network lifetime.

The main contributions of this paper are as follows: (1) We build the WSNs model with multiple mobile sinks, address to
its routing recovery problem with both the movement of multiple sinks and sensor node failure. (2) We propose an endo-
crine cooperative particle swarm optimization algorithm (ECPSOA), which offers faster global convergence and higher solu-
tion quality, and provides fast bio-heuristic routing recovery for the path from source node to the mobile sink. (3) The
ECPSOA based routing recovery protocol is designed and proposed for efficiently solving the path breakage problem of
the WSNs with multiple mobile sinks, which can decrease the control overhead and minimize energy consumption.

The rest of this paper is organized as follows. Section 2 formulates the routing recovery problem and states our network
model. Section 3 describes the proposed algorithm in details, and the routing recovery protocol is presented and analyzed.
Section 4 reports the experiment results of the propose approach. Finally, Section 5 concludes the paper.
2. Definition and analysis of network model

The WSNs with multiple mobile sinks is modeled as a connected graph GðV ; EÞ [7,2], where V is a finite set of sensor nodes
and E is the set of edges representing connection between these nodes. Suppose there exist n source nodes and m mobile
sinks, several source nodes can route the packets through multi-hops to one mobile sink. As such, there would benpaths from

n given source nodes to m given mobile sinks, which are denoted by pj ðj 2 1;2; . . . ;nÞ. Each source v j
s connects a sink v i

sin k

(i 2 1;2; . . . ;mÞwith one path pj. The k-th relay node on the path pj is denoted by vk
j ; k 2 1;2; . . . ;hj, where hj is the hop count

on path pj. em
j represents the m-th direct edge between two neighbor nodes on pj. Let NðpjÞ ¼ v1

j ;v2
j ; . . . ;vk

j ; . . . ;vn
j

n o
� NðvÞ

be the set of the sensor nodes existing along the path pj, where k represents the distance from the sink to the node on a hop
scale. We introduce an agent to directly connect the mobile sink with 1-hop. This similar concept is adopted with different
terminologies by several protocols in [20,19,23].

An example of the network model is shown in Fig. 1. There exist 4 source nodes fv1
s ;v2

s ;v3
s ; v4

s g and 2 mobile sinks
fv1

sin k;v2
sin kg in the network. Four paths fp1; p2; p3; p4g connect the corresponding sources with the sinks, in which p1 contains
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Fig. 1. The network model and routing recovery process for sinks’ movement problem.
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5 relay nodes fv1
1;v2

1;v3
1;v4

1;v5
1g, and six relay edges e1

1; e
2
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. The relay node which is the closest (1-hop) to its

mobile sink v1
sin k;v2

sin k

� �
is regarded as an agent node v1

agent;v2
agent

n o
. The nomenclature of used symbols is provided in

Table 1, and the routing recovery procedure of the model is described as follows.

2.1. Selection of agent node

To select an agent, the i-th mobile sink v i
sin k in the network proposes the following processes. It firstly broadcasts an

Agent Request (AR) packet. The relay node which receives the AR will reply with an Agent Answer (AA) packet. The AA
includes the sender’s distance and remaining energy, therefore v i

sin k can easily determine which node is the closest node
around itself. This node is selected as the agent node v i

agent. Then we would discuss the following procedure with two cases:

(1) When the sink moves away.
Table 1
The nom

pj

pb

v j
s

v i
sin k

vk
j

v i
agen

v i
CR

em
j

GðV ;
Np

Nðpj

NðvÞ
Step 1: When v i
sin k moves within the communication range of v i

agent, it can receive the gathered packet directly from
v i

agent. However, when v i
sin k moves out of the range of v i

agent, it will select the closest relay node v i
CR among its neighbor

nodes to relay packets from v i
agent to v i

sin k. To be specific, v i
sin k finds that it is out of the communication range of v i

agent

when there is no packet received from v i
agent for a fixed time interval T. The sink will broadcast a Closest Node Request

(CNR) packet to its neighbors. The neighbor nodes reply to the CNR packet with a Closest Node Answer (CNA) packet,
which includes the coordinates and remaining energy of the sending node. Therefore, the sink can find the closest
node v i

CR based on this information, as shown in Fig. 1.
Then v i

sin k sends an Alternative Path Setup (APS) packet to v i
agent via the selected v i

CR, and v i
agent transmits the

packet along the previous path to the closest source node v j
s. Since v i

sin k has moved out of the range, v i
agent will tem-

porally store the packets transmitted to the sink in order to prevent the packet loss in this time interval. These stored
packets are routed to v i

sin k when v i
agent receives the APS packet. v i

CR becomes the new agent for v i
sin k. As shown in Fig. 1,
enclature of used symbols.

The path from the j-th source node in the network to its mobile sink
The best (optimal) path we have calculated from the j-th source node in the network to its mobile sink
The source node on the path pj

The i-th mobile sink in the network

The k-th relay node on the path pj

t The agent node belonging to the i-th sink in the network

The closest relay node belonging to the i-th mobile sink in the network

The m-th direct edge between two neighbor nodes on the path pj

EÞ or G The connected graph containing all the nodes in the network
The set of nodes which can be used to establish an alternative path pj

Þ The set of the sensor nodes existing along the path pj

The set of all the sensor nodes in the network
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since two sinks (v1
sin k;v2

sin kÞ have moved to the new places, v1
CR and v2

CR are selected to establish the new alternative
paths for source nodes v1

s ;v2
s ;v3

s ; v4
s

� �
.

Step 2: To establish the optimal path, the source v j
s broadcasts a Relay Node Selection (RNS) packet to the other nodes

in the network. Each node relays the RNS packet containing its own state information (coordinate, remaining energy,
delay and so on), until a new agent receives the RNS packet. The new agent will gather the information, and select a
new optimal alternative path from source node to mobile sink using the proposed ECPSOA. The alternative path is the
multi-hop path from the source node to the agent.

(2) When the relay node fails.
When one relay node fails due to physical damage or energy depletion, v i

sin k will find there is no packet received from
v i

agent although it is still within the communication range of v i
agent, as shown in Fig. 2. Then v i

sin k directly sends an Alter-
native Path Setup (APS) packet to v i

agent, and v i
agent transmits the packet through the previous path to the source node to

establish a new path. This procedure is the same as the Step 2 in (1).

2.2. Establishment of alternative path

The procedure of how to establish an optimal path is described as follows. v i
agent gathers all the packets and information of

these nodes, and extracts the set of nodes Np to establish a new alternative path pj in GðV ; EÞ. Each node represents a particle,

and the particle population size is n. Some nodes of Np can form a particle sequence v1
pj
;v2

pj
;v3

pj
; . . . ;vm

pj

n o
(m 6 nÞ according

to their order, which can form a path pj from the source v j
s to the sink v i

sin k. The ECPSOA optimizes the particle sequence to
obtain the optimal path pb with the optimal fitness fitnessðpbÞ, where pb includes the following nodes

vb
s ;v1

pb
;v2

pb
;v3

pb
; . . . ; vm

pb
;vb

sin k

n o
, as shown in Fig. 2.
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Fig. 2. Routing recovery process for the relay sensor node failure problem.
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where f 1 is the distance of the edges of pj versus the distance of all the edges in the network, f 2 is the delay of the nodes on
path pj versus the delay of all the nodes, f 3 is the energy consumed by the nodes on path pj versus the energy consumed by
all the nodes in the network. x1;x2, and x3 are the weights of remaining energy, delay, and distance constraints in the fit-
ness function, respectively, and x1 þx2 þx3 ¼ 1. We set x1 ¼ 0:4;x2 ¼ 0:2;x3 ¼ 0:4. Eq. (5) is the path constraint equa-
tion, in which ene states for the energy constraint, D is the delay constraint, and L means the distance constraint. The higher
fitness value indicates the more optimal path, at last the best path pb with the optimal fitness fitnessðpbÞ will be selected.
Then v i

agent transmits a Previous Path Clear (PPC) packet through the previous path to delete this previous path, and the
new alternative path is established.

2.3. Assumption of network model

We use the energy model proposed in [22,1] for the WSNs model with multiple mobile sinks, in order to achieve an
acceptable signal-to-noise ratio, the energy consumption equation of sensing and transferring m bit data is as follows:
enesenðmÞ ¼ a1m ð6Þ
enetxðm;dÞ ¼ ðb1 þ b2dnÞm ð7Þ
enerxðmÞ ¼ c1m ð8Þ
where d is the distance from a node to its neighbor node, enesenðmÞ is the energy consumption of sensing m bits of data,
enetxðm; dÞ and enerxðmÞ are the energy consumption of sending and receiving m bits of data, n is the channel attenuation
index, a1; b1; b2 and c1 are energy consumption parameters of sensing circuit, sending circuit, sending amplifier and receiving
circuit, respectively. For the ECPSOA, the energy consumption of the particle updating and the endocrine selection is defined
as enePU ; eneES per iteration, respectively. By using this method, the total energy consumption of the data transmission and
executing the proposed ECPSOA per round can be calculated in the simulation.

The simple fault model proposed in [3] is also adopted. The fault-model is easy to analyze, but also sophisticated enough
to capture the fault behavior effectively. The probability of the sensor nodes failure in the network is given by pnode, and the
probability of the mobile sink failure is assumed to be psin k � 0. If any sensor node is failed, our routing recovery method
dealing with node failure problem is implemented.

The design of the method for the network is based on the following assumptions: (1) An area is covered by a large number
of homogeneous sensor nodes which communicate with each other through short-range radios. Sensor nodes are stationary,
but the multiple sinks move and change their positions constantly with a fixed speed. (2) Data is sensed and transmitted
from each source node to the closest mobile sink in each time period T. (3) The sinks move in a limited region. Each sensor
node and mobile sink can sense its own location.
3. Design of the protocol for the WSNs with multiple mobile sinks

3.1. PSOAs

As we known, particle swarm optimization algorithm (PSOA) searches for an optimum through each particle flying in the
search space and adjusting its flying trajectory according to its personal and global best experience. Owing to its simple
structure and high efficiency, the PSOA has become a widely adopted optimization technique [30,8].

In the traditional PSOA, each particle is a potential solution to the problem. Assume N particles fly in the D-dimensional
search space, the position of the i-th particle is xt

i ¼ xt
i1; x

t
i2; . . . ; xt

iD

� �T , and its velocity is v t
i ¼ v t

i1;v t
i2; . . . ;v t

iD

� �T .
pi ¼ pt

i1; p
t
i2; . . . ; pt

iD

� �
is the best previous position of the particle, and pg is the best global position of the whole particle

swarm. Therefore in each time step t, the velocity V and the position X of each particle is updated with following equations
[14,24]:
v tþ1
id ¼ wv t

id þ c1rand1 pt
id � xt

id

� �
þ c2rand2 pt

gd � xt
id

� �
ð9Þ

xtþ1
id ¼ xt

id þ v tþ1
id ð10Þ
where c1; c2 are learning factors, we select c1 ¼ c2 ¼ 2. Rand1 and Rand2 are random numbers uniformly distributed in ½0;1�.
In the PSOA, the diversity of population will decrease in the late stage of evolution, and optimizing stops when reaching a

local optimal solution, which exhibits premature convergence problem. In order to improve the performance of the PSOA,
Ratnaweera and Halgamure [25] introduced the accelerating factor to modify the parameters c1 and c2. The static non-linear
method of modifying the inertia weight was introduced in [16] to improve the performance of the PSOAs. Lin and Chen pro-
posed a cooperative PSOA (CPSOA) [17], which used the cooperative behavior of multiple swarms to improve the PSOAs by
jumping out local minimum. It can compensate the limitation of an individual by a number of individuals from other sym-
biotic groups in the interaction, thus avoid mistake of judgment caused by single exchange of information. However, it still
evolves with the formula of the SPSOA. The trajectory of each particle is unable to yield high diversity of particles to enlarge
search space, so it may get a suboptimal solution.
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Therefore, we apply the adjustment mechanism of the endocrine system [15] to propose the ECPSOA. We consider the
best position of a particle and the global best position of a swarm in current generation. Then, we combine the supervision
and controlling principle between stimulation hormones (SH) and releasing hormones (RH) of the endocrine system, and use
the individual of the current solution set to control the nearest class of swarm. The particles are grouped by the SH, and the
best positions of classes are proposed to update the positions of particles, so the convergence and distribution performance
of the ECPSOA can be improved. The global optimization position of the class can reflect the influence of the nearest optimal
particle to other particles, so that the ECPSOA can jump out of local optimization, improve the searching capability, and
maintain the diversity of solution set.

3.2. Description of the proposed ECPSOA

The ECPOSA is used to address the problem of data transmission from the source nodes to the mobile sink. It can provide a
fast recovery mechanism from path failure due to the sinks movement, or physical damage and energy depletion of sensor
node problem. The flowchart of the ECPSOA is shown in Fig. 3, and the detailed procedures are described as follows.

3.2.1. Initialization step
To initialize the ECPSOA, the population size of particle is n, the division factor is k, so each particle swarm includes n=k

particles. Then the D-dimensional vector (vector of particle’s position and velocity) is divided into k swarms. The position
and velocity of the i-th particle in t-th time is respectively xt

i ¼ ðxt
i1; x

t
i2; . . . ; xt

iDÞ
T and v t

i ¼ ðv t
i1;v t

i2; . . . ;v t
iDÞ

T . As the path should
have n points (nodes), the number of which is the same as the number of particles, so the initial particle swarm can be rep-
resented as a matrix by ½D� 3n�. The first n columns of the matrix are the positions of particle, the middle n columns are the
velocities of particle, and the last n columns are the amount of hormone (one column represents a particle). The optimal
position vector of the whole sub-swarms is presented by a vector function bð�Þ:
bðL; iÞ ¼ pgS1; . . . ;pgSi�1; L;pgSiþ1; . . . ;pgSk

� �
ð11Þ
where xmSi represents the position vector of the m-th particle in the i-th swarm, pmSi is the optimal history position vector of
the m-th particle in the i-th swarm, and pgSi represents the optimal experience position vector of the i-th swarm.

3.2.2. Particle updating step
The velocity and position of the particle are updated as Eqs. (9) and (10). The updating equation of optimal position vector

of particles in each sub-swarm is as follows:
Calculate new fitness of each 
sub swarm’s particle

Update velocity and position 
of each sub swarm’s particle

confirmed?
Termination condition 

confirmed?

Ends

Update best history position of 
each sub swarm

Update best history position of 
each particle

No

Yes

Initialize parameter of each 
sub swarm

Routing recovery operations

Update class global best 
position of  SH and RH

Gen=Gen+1

Fig. 3. The flowchart of the ECPSOA.
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b pmSi; ið Þ ¼
bðxmSi; iÞ; fitnessðbðxmSi; iÞÞP fitnessðbðpmSi; iÞÞ
bðpmSi; iÞ; fitnessðbðxmSi; iÞÞ < fitnessðbðpmSi; iÞÞ

�
ð12Þ
where 1 6 i 6 k. The updating equation of optimal position of each sub-swarm is:
bðpgSi; iÞ ¼ arg
PðpmSi ;iÞ

max fitnessðbðpmSi; iÞÞ; 1 6 m 6 n=k; 1 6 i 6 k ð13Þ
Eq. (13) indicates that the optimal position of the m-th sub-swarm selects the personal optimal position with the optimal
fitness of particle in the swarm. In this step, the limitation of an individual can be compensated by a number of individuals
from other symbiotic groups in the interaction. It can avoid mistake of judgment caused by single exchange of information.

3.2.3. Endocrine step
In this process, according to the endocrine principle, we initialize two swarms for each sub-swarm: stimulation hormone

(SH) St and releasing hormone (RH) Rt , which both have the same structure and size [32].
Firstly, we combine the swarm St and Rt , and generate the new swarm Ut (Ut ¼ St [ RtÞ. The optimal solution of Ut is

selected as the candidate swarm CSt of SH. Then all the solution crowding distances of CSt are sorted in descending order
according to the crowding distance algorithm in [4]. The first q solutions are selected as Stþ1, where q is a constant. The
method is as follows:

(a) If the solution number of CSt is smaller than or equal to q, then Stþ1 ¼ CSt .
(b) If the solution number of CSt is bigger than q, then Stþ1 is confirmed by:
Stþ1 ¼ [fxi ¼ ui;ui 2 CStþ1; i ¼ 1;2 . . . qg ð14Þ

We assume that the size of St in SH is NðSÞ ¼ sizeof ðStÞ, and select the 0:1� NðSÞ individuals with bigger crowd dis-
tance to generate a solution set according to NðSÞ. Then an individual of the set is selected randomly as the current
global best position PgðtÞ of particle.
As the SH plays the supervision role for the RH, we classify the RH in NðSÞ classes, each individual Si of the SH controls a
class CðSiÞ as shown in Eq. (15):
CðSiÞ ¼ fc 2 P;distðc; SiÞ ¼minðdistðc; SjÞÞg j ¼ 1;2 . . . NðSÞ ð15Þ
Therefore, a supervisor Si coming from the same class CðSiÞ is embedded in each individual of the RH during the updating
step. Si is used as the class global best position Cgd of CðSiÞ. By using this method, each particle flies to the best history direc-
tion due to the selection of local best position. It flies to the solution with large crowd distance of searching domain due to
the selection of searching domain global best position, thus avoids convergence to local optimum area. The global best posi-
tion in a class plays the role of maintaining swarm dispersion, thus the global information and local information are com-
bined completely.

Thereafter, in each time step t, the velocity and position of each particle are updated according to the following equations:
v idðt þ 1Þ ¼ wv idðtÞ þ c1Rand1ðpid � xidðtÞÞ þ c2Rand2ðpgd � xidðtÞÞ þ c3Rand3ðCgd � xidðtÞÞ ð16Þ
xidðt þ 1Þ ¼ xidðtÞ þ v idðtÞ ð17Þ
where c1; c2; c3 are learning factors. We select c1 ¼ c2 ¼ 2:05, and c3 ¼ 2. Rand1;Rand2 and Rand3 are uniformly distributed in
½0;1�. w plays an important role to the convergence of the result among the adjustable parameters [9]. To improve the system
performance, we propose the decreased weight w as follows:
wðtÞ ¼ wmax � ðwmax �wminÞ � exp � pid

pgd
� 1

t

 !
ð18Þ
As the iteration time increases, the weight becomes lower. Moreover, the best global and personal positions of the particle
are involved, so the weight can take specific condition into consideration, and alter adaptively for better convergence. Here
we set wmax ¼ 0:85;wmin ¼ 0:35.

3.2.4. Termination criterion
If the solution is satisfied with the termination conditions: The fitness of function fitð�Þ is the optimal fitness or the num-

ber of iterations decreases from 80 to zero, then the procedure ends; Otherwise returns to Step 2. Thereafter the optimal
alternative path would be established.

3.3. Framework of proposed routing recovery protocol

The ECPSOA is the kernel algorithm of our routing recovery protocol of the WSNs with multiple mobile sinks. To deal with
the path failure problem due to the movement of sinks and the physical damage or energy depletion of nodes, the ECPSOA
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optimizes the path fitness function to provide the fast routing recovery mechanism with an alternative optimal-fitness path.
Apparently, the more suitable alternative path selected contains more available energy, less path distance, less energy con-
sumption and less delay from the source to the mobile sink. We now demonstrate with an example how the routing recovery
protocol for the sinks’ movement or nodes’ failure is implemented in our protocol.

Step 1: As illustrated in Fig. 1, if the i-th sink v i
sin k moves out of the communication range of its agent v i

agent, it will broad-
cast the CNR to select the closest node v i

CR, else go to Step 2. Then it sends the APS to the agent via v i
CR, and v i

agent transmits
the stored packets to v i

sin k. Go to Step 3.
Step 2: As illustrated in Fig. 2, if v i

sin k finds that a relay node is failed in the previous path, it sends the APS via v i
agent to the

source to establish an alternative path. Go to Step 3.
Step 3: The source v j

s broadcasts the RNS to the surrounding relay nodes. Each relay node relays the RNS with its own
state information, until the RNS reaches v i

agent. Then v i
agent gathers the information, and selects the new optimal path

Pb from v j
s to v i

sin k using the proposed ECPSOA algorithm.
Step 4: The optimal alternative path (OAP) packet that we proposed includes the IDs of selected nodes

v1
pb
; v2

pb
;v3

pb
; . . . ;vn

pb

n o
on Pb. v i

agent sends the packet to the sink, and transmits through the new alternative path to the

source v j
s. Once v j

s and v i
sin k receive this packet, the alternative path from v j

s to v i
sin k is established, and v i

agent sends the
PPC along the previous path to delete this previous path information. Then the protocol ends.
(a) f1, Rastrigrin

(b) f2, (c) f3, Griewank
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Fig. 4. Comparison of the ECPSOA, the SPSOA and the CPSOA.



Table 2
Comparison results of various PSOAs on three functions.

Function SPSOA CPSOA ECPSOA

f 1 Mean 39.4 25.15 0.04
SD 10.1 5.06 0.09
t1/s 7.93 9.12 7.67

f 2 Mean 12.5 35.6 1.31
SD 13.65 28.35 1.24
t2/s 6.90 8.25 8.50

f 3 Mean 8.58 � 10�3 5.12 � 10�3 0.02
SD 1.05 � 10�2 9.24 � 10�3 0.01
t3/s 10.65 14.50 8.56
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3.4. Overhead analysis of proposed protocol

The communication overhead control of the protocol is very important to reduce its energy consumption. Assume that N
sensor nodes are randomly distributed in area A, and

ffiffiffiffi
N
p

nodes are on each side, the path connecting the source and the sink
is assumed to be the square of the area A, which contains

ffiffiffiffiffiffiffi
2N
p

nodes. The communication radius of nodes is r, and the num-
ber of neighbor nodes of a node is calculated as follows:
Nnn ¼ N
pr2

A
ð19Þ
Both the request and the response packets have the same size S. The communication overhead of a node generated by the
packets CNR, APS, RNS, PPC and OAP is:
O ¼ 3
ffiffiffiffiffiffiffi
2N
p

þ Nnn

� �
Sþ 4S ¼ 3

ffiffiffiffiffiffiffi
2N
p

þ 4þ N
pr2

A


 �
S ð20Þ
We can see that our protocol generates almost the same control overhead with the IAR, and less than most of other con-
ventional protocols for the WSNs.

4. Experimental result evaluation

4.1. Performance comparison between the ECPSOA and the PSOAs

We have conducted several simulation experiments in Matlab platform to evaluate the performance of the ECPSOA and
compare it with the PSOAs. The simulation is constructed on Windows 7 with Intel core i3-2100 Dual-Core CPU (3.10 GHz)
Fig. 5. The snapshot of establishing the alternative path using the ECPSOA.
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and 4 GB RAM. Firstly, three well-known test functions adopted widely in benchmarking optimization algorithms, namely
Rastrigrin, Rosenbrock, and Griewank, are used to evaluate the ECPSOA. The standard PSOA (SPSOA) [8] and the CPSOA
[17] are used for comparisons, as they are typical PSOAs that are reported to perform well on complex optimization prob-
lems. The parameters used for the test are: function dimension D ¼ 40, iterated generations PGen ¼ 1000. The simulation
results presented in Fig. 4(a)–(c) illustrate the evolution of optimal fitness for these PSOAs.
ð1Þ Rastrigrin f 1ðxÞ ¼
Xn

i¼1

ðx2
i � 10 cosð2pxiÞÞ þ 10 xi 2 ½�5;5� ð21Þ

ð2Þ Rosenbrock f 2ðxÞ ¼
Xn

i¼1

100 xiþ1 � x2
i

� �2 þ ð1� xiÞ2 xi 2 ½�100;100� ð22Þ

ð3Þ Griewank f 3ðxÞ ¼
1

4000

Xn

i¼1

x2
i �

Yn

i¼1

cos
xiffiffi

i
p

 �

þ 1 xi 2 ½�600;600� ð23Þ
f 1 (Rastrigrin) is a multimodal function with high dimensionality. The search improvements of the SPSOA are a bit slower
but eventually better than the CPSOA. The ECPSOA performs best and gives consistently a near-optimum result, whereas
other methods stagnate with no further improvement. The ECPSOA demonstrates the best performance among the three
PSOAs for the multimodal function.

f 2 (Rosenbrock) is unimodal in a search space but can be treated as a multimodal function in high-dimensional cases. Its
convergence to the global optimum is difficult. The SPSOA converges slowly and ultimately produces poor optimal fitness for
(a) When the node failure probability is 0.01 (b) When the node failure probability is 0.02

(c) When the node failure probability is 0.04

Fig. 6. Average packet delivery ratio with respect to different node failure probabilities.



(a) When the node failure probability is 0.01  (b) When the node failure probability is 0.02

(c) When the node failure probability is 0.04

Fig. 7. Average end-to-end delay with respect to different node failure probabilities.
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this case. In contrast, the ECPSOA improves the average optimum solution significantly, and performs better than the SPSOA
and the CPSOA in terms of convergence speed and final solution.

f 3 (Griewank) is a rotated multimodal function. It can be used to test the capability of exploring global optimal solution of
proposed algorithms in multi-dimension space. As shown in Fig. 4(c), the SPSOA leads to local minimum solution in initial iter-
ations, and fails to make further progress in later iterations for solving multi-dimensional function. We can see that the ECPSOA
can overcome the shortcoming of converging to local optimum for the other PSOAs, and improve the global search ability.

Table 2 shows the global mean values, the standard deviation (SD) of the final solutions and the average running time
during 10 rounds simulation. We can observe that the ECPSOA achieves the best solution on most of the functions. These
comparisons verify that the multi-swarm evolution strategy and the endocrine mechanism indeed make the ECPSOA per-
form better than the other PSOAs in most of the test functions. It offers the ability of avoiding local optima and premature
convergence, providing optimal solution accuracy in multimodal functions. The time required by these algorithms converg-
ing to the optimal solution is also shown in Table 2. t1; t2 and t3 represent average running time for the PSOAs, which also
reflect the computational time complexity. From Table 2, we can see that the ECPSOA consumes less time than the SPSOA
and the CPSOA. The reason is that it takes less iteration times for the ECPSOA to converge to the optimal value, due to its
contribution to the capability improvement of diversity and jumping out of likely local optima of multi-dimension function.

4.2. Applied to routing problem of multiple mobile sinks

4.2.1. Simulation model
In this section, we have conducted several experiments to analyze the performance of the proposed protocol, and the

experiment environment is the same as the performance simulation of the PSOAs in Section 4.1. From 50 to 450 sensor nodes
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are randomly deployed in a two-dimensional area (5000 � 5000 m2). The sensor nodes are homogeneous and have the same
initial energy of 120 J. Their sensing radius is 300 m, and communication radius is 600 m. We assume there exist five mobile
sinks in the network, and their speeds change within the range of 5 m/s to 20 m/s. The probability of node failure pnode

changes from 0.01 to 0.04. The source node delivers packets at the rate of 20 data packets per round, with 1 KB of each packet
size, and the simulation lasts for 600 rounds. According to the description of energy model in Section 2.3, we select
a1 ¼ 60 nJ=bit; b1 ¼ 45 nJ=bit; b2 ¼ 10 nJ=bit; c1 ¼ 135 pJ=bit=m2, channel attenuation index n ¼ 2. For the ECPSOA,
enePU ¼ 80 pJ; eneES ¼ 50 pJ at per iteration. We consider that the sinks have sufficient energy and thus ignore the energy
consumed by the sinks. The parameters used for the ECPSOA are: function dimension D ¼ 30, division factor k ¼ 6, and iter-
ated generation PGen ¼ 800. The purpose of the experiment is to demonstrate that the ECPSOA can provide a more robust
transmission environment in a mobile sink network.

We take a snapshot during the simulation to illustrate the effect of the proposed protocol. Fig. 5 illustrates an area
(2000 � 2000 m2) of the network with the two available paths, one is from the source node v1

s (node 29) to the mobile sink
v1

sin k, and the other is from v2
s (node 9) to the mobile sink v2

sin k. We can see that whenever v1
sin k moves to a new place A, the

source node v1
s immediately establishes an optimal alternative path (path 29-3-30-2-10-47-25-Sink1 in Fig. 5) to reach v1

sin k.
Once a relay node (node 1) of the second path fails in the place B, another optimal alternative path (path 9-39-28-4-41-8-
Sink2 in Fig. 5) will be established to reconnect v2

s and v2
sin k, so as to replace the previous broken path.

4.2.2. Evaluation of the experimental results
We now present the simulation results of our proposed protocol along with the protocol IAR and TTDD, which are both

suitable for dealing with routing problem of multiple mobile sinks. We observe the following metrics: average packet deliv-
ery ratio (measured as the average number of successfully delivered packet versus required packet per round), average
(a) When the moving speed of sinks is 5m/s (b) When the moving speed of sinks is 10m/s

(c) When the moving speed of sinks is 20m/s

Fig. 8. Average energy consumption ratio with respect to different speeds of mobile sinks.
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end-to-end delay [20], and average energy consumption ratio (measured as the average energy consumption from source to
sink versus the initial energy per round). We compare the average packet delivery ratio and the average end-to-end delay for
different network size (size is from 50 to 450 nodes) with respect to several node failure probabilities (value of 0.01, 0.02 and
0.04) in Figs. 6 and 7, while maintaining the mobile sink speed as 5 m/s. Then the average energy consumption ratio is com-
pared for different network sizes with respect to several sink speeds (speed of 5 m/s, 10 m/s and 20 m/s) in Fig. 8, while
maintaining the node failure probability as 0.01. Using this measurement, the influence of node failure probability and
mobile sink speed to the network performance can be measured respectively.

Fig. 6(a)–(c) shows that our robust routing protocol with the ECPSOA outperforms TTDD and IAR up to 12% and 6% in aver-
age packet delivery ratio, respectively. The improvement is attributed to its fast responsiveness to the changing sink position
and node failure. It provides an efficient routing recovery mechanism from the path failure with an optimal alternative path,
and improves the successful delivery rate whenever the path link is broken. Note that the packet delivery ratio will reduce
with the increase of the node failure probability pnode by comparing Fig. 6(a)–(c), but the ECPSOA can still deliver more packet
than the other protocols with the same network size.

From Fig. 7(a), the end-to-end delay of our routing protocol is only slightly outgo to TTDD and IAR. This is because our
protocol adopts the ECPSOA algorithm, and the node selection procedure with the algorithm during establishing the alter-
native path will prolong the time delay. Nevertheless, the more efficient routing recovery and less communication control
overhead still make its end-to-end delay better than the other protocols. Routing information is stored in each relay node
in the ECPSOA protocol to improve the speed of generating the alternative path, and packets are immediately forwarded
from agent node or source nodes once the path is repaired. Note that the end-to-end delay increases with pnode as shown
in Fig. 7(a)–(c), as the less stable topology consumes more time for the protocols to maintain the network and prolong
the delay.

As shown in Fig. 8, the energy consumption ratio of all these protocols increases as the mobile sinks move faster, because
the change of the frequent topology will incur heavier communication overhead. We can see that the energy consumption of
our routing protocol is much less than that of IAR and TTDD, for the proposed protocol will select the relay node with opti-
mized QoS parameters (energy, delay, energy consumption and so on) to establish an alternative path. Also, the communi-
cation overhead in the network is minimized and indirectly reduces energy consumption. At the same time, as the network
size grows, the difference between our proposed protocol and the other protocols will become larger.

It can be explained by the reason that the larger network size indicates the longer delivery length of the path, thus the
advantage of the proposed ECPSOA with the better alternative path selection is demonstrated more obviously, which means
that our proposed protocol is more suitable for deploying in the large scale networks with multiple mobile sinks.

5. Conclusions

This study presents a novel routing recovery protocol based on the ECPSOA for the WSNs with multiple mobile sinks. The
ECPSOA controls route keeping and routing recovery by estimating the sink mobility and node’s failure. Once the previous
path is broken due to the sinks movement or sensor nodes failure, an alternative reliable path is established for the packet
delivery. Based on the path quality, the alternative path is able to adapt to the unpredictable varying network topology with
multiple sinks, minimize the energy consumption, and prolong the network lifetime. In our proposed ECPSOA, the multi-
swarm strategy guides particles to fly in better directions, and the endocrine mechanism yields high diversity of particles
to increase search space, which can jump out of local optimization and improve the searching capability. Both analysis
and simulation results show that our routing recovery protocol outperforms the other aforementioned protocols in commu-
nication overhead in terms of both energy and delay, and the network robustness against path breakage due to multiple
sinks movement or nodes failure is also improved.

For the future work, we will focus on improving the convergence performance, reducing the computational complexity of
the ECPSOA, and validating the proposed protocol on different scenarios with various movement trajectories of multiple
mobile sinks. Maximizing the network lifetime is the most important optimization objective.
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