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Abstract

This paper proposes a method for solving linear programming problems where all the coefficients are, in general,
fuzzy numbers. We use a fuzzy ranking method to rank the fuzzy objective values and to deal with the inequality rela-
tion on constraints. It allows us to work with the concept of feasibility degree. The bigger the feasibility degree is, the
worst the objective value will be. We offer the decision-maker (DM) the optimal solution for several different degrees of
feasibility. With this information the DM is able to establish a fuzzy goal. We build a fuzzy subset in the decision space
whose membership function represents the balance between feasibility degree of constraints and satisfaction degree of
the goal. A reasonable solution is the one that has the biggest membership degree to this fuzzy subset. Finally, to illus-
trate our method, we solve a numerical example.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Linear programming (LP) is the optimisation technique most frequently applied in real-world problems
and therefore it is very important to introduce new tools in the approach that allow the model to fit into the
real world as much as possible.
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Any linear programming model representing real-world situations involves a lot of parameters whose
values are assigned by experts, and in the conventional approach, they are required to fix an exact value
to the aforementioned parameters. However, both experts and the DM frequently do not precisely know
the value of those parameters. If exact values are suggested these are only statistical inference from past
data and their stability is doubtful, so the parameters of the problem are usually defined by the DM in
a uncertain way or by means of language statement parameters. Therefore, it is useful to consider the
knowledge of experts about the parameters as fuzzy data.

This paper considers LP problems whose parameters are fuzzy numbers but whose decision variables are
crisp. The aim of this paper is to introduce a resolution method for this type of problems that permits the
interactive participation of DM in all steps of decision process, expressing his/her opinions in linguistic
terms.

Two key questions may be found in these kinds of problems: how to handle the relationship between the
fuzzy left and the fuzzy right hand side of the constraints, and how to find the optimal value for the fuzzy
objective function. The answer is related to the problem of ranking fuzzy numbers.

A variety of methods for comparing or ranking fuzzy numbers have been reported in the literature
(Wang and Kerre, 1996) and ranking methods do not always agree with each other. Different properties
have been applied to justify ranking methods, such as: distinguishability (Bortolan and Degani, 1985),
rationality (Nakamura, 1986), fuzzy or linguistic presentation (Delgado et al., 1988; Tong and Bonissone,
1980) and robustness (Yuan, 1991). In this paper we use a method (Jiménez, 1996) that verifies all the above
properties and that, besides, is computationally efficient to solve an LP problem, because it preserves its
linearity.

Looking at the property of representing the preference relationship in linguistic or fuzzy terms, ranking
methods can be classified into two approaches. One of them associates, by means of different functions,
each fuzzy number to a single point of the real line and then a total crisp order relationship between fuzzy
numbers is established. The other approach ranks fuzzy numbers by means of a fuzzy relationship. It allows
DM to present his/her preferences in a gradual way, which in an LP problem allows it to be handled with
different degrees of satisfaction of constraints and, with regard to objective value, it allows us to look for a
non-dominated satisfying solution. In Section 3 we show how we use our method to rank fuzzy numbers in
order to define the feasibility degree of the decision vector and to define the acceptable optimal solution
concept.

Obviously if the DM establishes a high degree of satisfaction of constraints for a solution, the feasible
solution set becomes smaller and, consequently, the objective optimal value is worse. So, the DM has to
find a balanced solution between two objectives in conflict: to improve the objective function value and
to improve the degree of satisfaction of constraints. In Section 4 we show how we can operate in an inter-
active way in order to evaluate the two aforementioned conflicting factors. Finally in Section 5 we solve a
numerical example.

2. Notation and basic definitions

A fuzzy set A of a universe Q is characterized by its membership function Wy Q —[0,1]. Where
r = pz(x); x € Q, is the membership degree of x to A (Zadeh, 1965).

When 4 is an uncertain value parameter, the membership degree u;(x) can be viewed as the plausibility
degree of 4 taking value x. Zadeh (1978) defines a possibility distribution associated with 4 as numerically
equal to ;.

A fuzzy number is a fuzzy set a on the real line R whose membership function y; is upper semi-contin-
uous (we will suppose that it is continuous) and such that



ARTICLE IN PRESS

M. Jiménez et al. | European Journal of Operational Research xxx (2005) xxx—xxx 3
0 Vxe (*OO,LZ]],
fu(x) increasing on [a},as],

r=u(x)=¢1 Vx€la,as), (1)

g.(x) decreasing on [a3, a4],

0 Vx € [ag,00).

A r-cut of a fuzzy number a is defined by a, = {x € Q|u;(x) = r}. Since y; is upper semi-continuous the 7-
cuts are closed and bounded intervals and we represent them by a, = [f,'(r), g, ' (r)].

A fuzzy number is trapezoidal if f, and g, are linear functions. We will denote it by a = (ay,a,, a3, a4). If
a» = as, we obtain a triangular fuzzy number.
Following Heilpern (1992) we define the expected interval of a fuzzy number a, noted EI(a), by

51(a) = (51,59 = | | o, / P ar| )

The expected value of a fuzzy number a, noted EV (a), is the half point of its expected interval (Heilpern,
1992)
E{ + Ef
EV(a) = = ; 2, (3)

From (2) if a fuzzy number a is trapezoidal or triangular, its expected interval and its expected value are
easily calculated as follows:

_ 1 1 - 1
El(a) = §(a1 +a2)7§(a3 +ay)|; EV(a)= Z(al +ay + as + aq). 4)

Fuzzy arithmetic: given tow fuzzy numbers @, b, any arithmetic operation & b, can be aggregated to a fuzzy
number by Zadeh’s minimum extension principle (Zadeh, 1978):

Hai(2) = sup min{g; (x), u;(»)}.

Z=X%y

When the extended minimum principle is used to aggregate fuzzy numbers Dubois and Prade (1978) show
the following relationship for the r-cuts:

(1) & ()] = 1AL (1) + 0057 (), 285" () + 985 (1), (5)

where a, b are fuzzy numbers and A, y are non-negative real numbers.
From expressions (2), (3) and (5) it is easily deduced that

EI(Ja + yb) = JEI(a) + yEI(b), (6)
EV(Ja + yb) = JEV(a) + yEV (b). (7)

3. Presentation of the problem
Let us consider the following linear programming problem with fuzzy parameters:
minimize z = ¢&'x

subject to x € N(Z,i)) ={xeRax=b, i=1,...,m x>0}, (8)
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where ¢ = (¢1,¢,...,8,),4 = [Ez,-j]mxn,i) = (by, bs, ..., b,)" represent, respectively, fuzzy parameters involved
in the objective function and constraints. The possibility distribution of fuzzy parameters is assumed to be
characterized by fuzzy numbers. x = (xy, x,. .., X,) is the crisp decision vector.

The uncertain and/or imprecise nature of the parameters of the problem leads us to compare fuzzy num-
bers that involves two main problems: feasibility and optimality, therefore it is necessary to answer two
questions:

(1) How to define the feasibility of a decision vector x, when the constraints involve fuzzy numbers.
(2) How to define the optimality for an objective function with fuzzy coefficients.

Several focuses have been developed to solve this problem and to answer these questions (see i.e. Sak-
awa, 1993; Lai and Hwang, 1994; Rommelfanger and Slowinski, 1998). A variety of methods for comparing
or ranking fuzzy numbers has been reported in the literature (Wang and Kerre, 1996). Different properties
have been applied to justify ranking methods, such as: distinguishability, rationality, fuzzy or linguistic rep-
resentation and robustness. In this paper we use a fuzzy relationship to compare fuzzy numbers [Jiménez,
1996] that verifies all the above suitable properties and that, besides, is computationally efficient to solve
linear problems because it preserves its linearity.

Definition 1 Jiménez, 1996. For any pair of fuzzy numbers a and b, the degree in which a is bigger than b is
the following:

0 if E5—E% <0,
~ Ea_Eb
a,b) = 2 if 0 € [EY — E5 E¢ — EY], 9
luM( ) EZ_EIIJ_(E(II_EIZJ) [ 1 2 2 1] ( )
1 if Ef—E5>0,

where [E¢, E%] and [E?, E3] are the expected intervals of @ and . When p,, (@, b) = 0.5 we will say that @ and b
are indifferent.

When y,,(a, B) > o we will say that a is bigger than, or equal, to b at least in a degree « and we will rep-

resent it by a=,b
Definition 2. Given a decision vector x € R", we will say that it is feasible in degree o (or o-feasible) if

min {a (@x,5)} = (10)

where @, = (1, dp, - - -, Ain)-
That is to say
ax=,bi, i=1,....m, (11)
keeping in mind (9) it is equivalent to:

aix b;
E2 _El

o, i=1,...,m 12
E;;x _ ET,-x + E}27, _ E117, ( )

or (bearing in mind (6)):
[(1 — 0)EY + aE%]x = aEY + (1 — a)EY. (13)

The set of the decision vectors that are a-feasible will be denoted by R(«). It is evident that:
o < 0 = N(Oﬁl) D) N(O(z). (14)
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By means of Definition 2 we have answered the first question, that is, how to define the feasibility of a
vector decision. From that it is deduced that 1 — « provides a measure of the risk of unfeasibility of a deci-
sion vector.

Regarding the second question, that is to say: how to define the optimality for an objective function with
fuzzy coefficients, let us consider the following problem:

min z=27%
subject to x € N(4,h) ={x €R"|axx = b;, i=1,...m, x = 0}, (15)
where the only fuzzy coefficients are in the objective function. That is, ¢ is a fuzzy vector but 4 and b are

crisp. According to the ranking method that we have introduced in Definition 1, we can define a solution of
the model (15) as follows:

Definition 3. A vector x* € X(4, b) is an acceptable optimal solution of the model (15) if it is verified that:

ty (E%,8X°) = Vx € X(4,b),

1
2
thus:

&x= 1% Vx € R(4,b),
therefore x° is a better choice (with the objective of minimizing) at least in degree 1/2 as opposed to the
other feasible vectors.

If we apply Definition 1, the previous expression can be written as:

c'x o x0
ES™ — EY 1

>
clx clx c!x0 clix0 =
EZ - El + E2 - El 2

or

Eg’x _‘_Ei‘x > ES/XO + ETIXO
2 7 2 '
Keeping in mind (3) and (7), this expression allows us to set the following proposition:

Proposition 1. A vector x° € R" is an acceptable optimal solution of the model (15) if it is a optimal solution to
the following crisp linear program:

minimize EV(¢)x
subject to x € N(4,b),
where EV (¢) = (EV(¢,),EV(C2),...,EV(¢,)) represents the expected value of the fuzzy vector ¢.
According to this result we may establish the following definition related to the initial fuzzy model (8).

Definition 4. A vector x°(«) € R" is a a-acceptable optimal solution of the model (8) if it is an optimal
solution to the following problem:

minimize EV(¢)x
subject to  x € N,(4,b) = {x € R"|ax>=,b;, i=1,...m, x > 0}. (16)

Model (16) is a crisp a-parametric linear program (see expressions (11) and (13)), very difficult to solve.
In order to handle it we propose an interactive procedure in the next section.
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4. Interactive resolution method

From (14) the obtaining of a better value to the optimal objective function implies a lesser degree of fea-
sibility of the constraints. Then the DM runs into two conflicting objectives: to improve the objective func-
tion value and to improve the degree of satisfaction of constraints. In Jiménez et al. (2000) we proposed to
solve this problem through compromise programming, now we show how it can be solved in an interactive
way as well.

The best way to reflect DM preferences is to express them through natural language, establishing a
semantic correspondence for the different degrees of feasibility (Zadeh, 1975). The number of elements
on the semantic scale depends on the number of linguistic labels the DM is able to distinguish. Following
Kaufmann and Gil Aluja (1992), we are inclined to establish 11 scales, which allow for sufficient distinction
between levels without being excessive. Then the term set is:

0 Unacceptable solution
0.1 Practically unacceptable solution
0.2 Almost unacceptable solution
0.3 Very unacceptable solution
0.4 Quite unacceptable solutions
0.5 Neither acceptable nor unacceptable solution
0.6 Quite acceptable solution
0.7 Very acceptable solution
0.8 Almost acceptable solution
0.9 Practically acceptable

1 Completely acceptable solution

Obviously, depending of wishes of DM, other scales can be used.
If o is the minimum constraint feasibility degree that the DM is willing to admit, the feasibility interval
of o is reduced to oy < o < 1 and, according to the semantic scale, we will work with discrete values of o:

1—
M:{OCkZOCO—FO.lkVC:O,l,..., Olao}C[O,l}
In the first step of our method, we solve the corresponding ordinary linear program (16) for each o;. We
obtain the space O = {x°(o;), o € M} of the oy-acceptable optimal solution of the original problem (8),
and the corresponding possibility distribution of the objective value: 2°(x;) = &x°(o4) (see Fig. 1).

(=)

SR 4

G

Fig. 1. Possibility distribution of the objective values and the fuzzy goal provided by the DM.
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In order to get a decision vector that complies with the expectations of the DM, we should evaluate two
conflicting factors: the feasibility degree and the reaching of an acceptable value for the objective function.
After seeing the information given by the different (), the DM is asked to specify a goal G and its tol-
erance threshold G. So, if z < G he will find it totally satisfactory, but if z > G, his degree of satisfaction
will be null. Then the goal is expressed by means of a fuzzy set G whose membership function is as follows
(see Fig. 1):

1 if z< G,
te(z) =< 2 €[0,1] decreasing on G <z < G,
0 ifz>G.

The DM wants to obtain a maximum satisfaction degree. But a lower level of fulfilment of constraints
will be achieved, in order to get a better objective value. Given these circumstances the DM might want a
lower degree of satisfaction of his/her objectives in exchange for a better constraints fulfilment degree.

Fig. 1 shows the different 2°(o;;) and the goal G (for simplicity we assume that g is a linear function, but
any other shape can be used without increasing the resolution difficulty).

The aim is to obtain a crisp solution x* that fulfils the DM’s wishes.

In the second step of our method we have to compute the degree of satisfaction of the fuzzy goal G by
each a-acceptable optimal solution, that is to say the membership degree of each fuzzy number 2°(a;) to the
fuzzy set G.

There are several methods to do this (see i.e. Dubois et al., 2000). We suggest using an index proposed by
Yager (1979)

I by (2) - g (2)dz
Ity (2) dz

where the denominator is the area under y(,) and, in the numerator, the possibility of occurrence i, (2)
of each crisp value z is weighted by its satisfaction degree p(z) of the goal G (see Fig. 2). This is an exten-
sion of the widely accepted center of gravity defuzzification method, using the goal function ug as a weight-
ing value. Yager index has the following suitable properties: (a) the two sides of the fuzzy numbers are
exploited, (b) it is compensatory, that is to say, a low membership degree, j(,(z), can be compensated
by a high satisfaction degree 15(z), (c) the fuzzy goal G is understood as a fuzzy constraint and not as
an ideal fuzzy set or a utility function and (d) it is very easy to figure it out, even though p,0 and ug were
nonlinear functions.

In the third step of our method we look for a balanced solution between the feasibility degree and the
degree of satisfaction. Thus, we consider the space of the ai-acceptable optimal solutions O and over it

we define two fuzzy sets: F and S with the following membership functions: u;(x°(%)) = o and
s(x°(on)) = K&(2°(o% ), respectively.

K2 (@) =

; (17)

N\
“;,“(a)(z) #)
M (2)

/ 6

z

Fig. 2. Occurrence possiblity of a crisp objective value z and its goal satisfaction degree.
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Then we define the fuzzy decision D = F N S (Bellman and Zadeh, 1970), i.e.:
1 (2 (o)) = o+ K (2 (o)), (18)

where * represents a -norm which can be the minimum, the algebraic product, etc.
As we want to have a crisp decision, we propose as a solution, to the fuzzy linear program (8), those,
x* € 0, with the highest membership degree in the fuzzy set decision:

pp(x") = max{ay x K5(z *(a)}- (19)

5. Numerical example

To illustrate our method, we will solve the following linear programming problem with fuzzy parame-
ters, which is the same as that proposed in Jiménez et al. (2000):

min (19,20,21)x; + (29,30,31)x,
s.t.
(4.5,5,5.5)x; + (2.5,3,4)x, = (194,200,206), (20)
(3,4,5)x; + (6.5,7,7.5)x, = (230,240, 250),
x1 = 0,x, = 0.
For simplicity we have supposed that all imprecise parameters are triangular fuzzy numbers, but any other
fuzzy number could be used.

Bearing in mind the expression (13) and the Definition 4, we will calculate the a-acceptable optimal solu-
tions of the problem (20) with the following ordinary a-parametric linear program:

min 20x; + 30x,

subject to,

((1 —a)5.25 4+ 04.75)x; + (1 — )3.5+ a2.75)x, = 2203 + (1 — «)197,
(1 — )45+ a3.5)x; + ((1 — 2)7.25 4+ 06.75)x; = 0245 + (1 — 2)235,
x1 =0, x, =0.

Let us suppose that the feasibility degrees «, that the DM is willing to consider, are the following ones,
(we suppose that the DM will not be willing to admit high risks in the violation of the constraints):

M ={0.4,0.5,0.6,0.7,0.8,0.9, 1} (21)

The results are as in Table 1.

Table 1
a-acceptable optimal solutions

Feasibility degree, o Decision vector, x%(c) Possibility distribution of objective
value, ZO(O() = C1X] + C2x2

0.4 xp = 2851, x, = 17.32 20(0 4) = (1043.97,1089.80, 1135.63)
0.5 x; = 28.89, x, = 17.78 £(0.5) = (1064.53,1111.20, 1157.87)
0.6 X1 =29.28, x, = 18.24 2(0.6) = (1085.28,1132.80, 1159.32)
0.7 X1 =29.70, x, = 18.72 2(0.7) = (1107.18,1155.60, 1204.02)
0.8 xp = 30.13, x, = 19.20 2(0.8) = (1129.27, 1178.60, 1227.93)
0.9 x1 = 30.58, x, = 19.70 £(0.9) = (1152.32,1202.60, 1252.88)
1 x; = 31.04, x, = 20.20 2(1) = (1175.56,1226.80, 1278.04)
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As a result of this, the DM is asked to establish an aspiration level G. We will suppose that the DM is
fully satisfied with an objective value lower than 1044 and that he will not be able to assume a cost of more
than 1278, and if, for simplicity, we suppose that the membership function is linear, the goal will be
expressed by the following fuzzy subset:

1 if z< 1044,
1278 —z .
e = —F <z<
Ue(2) 578 — 1044 if 1044 < z < 1278,
0 if z > 1278.

Let us calculate the compatibility index of each solution with DM’s aspirations (see (17))
K:(2°(0.4)) = 0.80; K(z°(0.5)) =0.71; Kz(z"(0.6)) = 0.65,
K:(2°(0.8)) = 0.58; K;(z°(0.8)) =0.42; K:(z°(0.9)) = 0.32, (22)
K:(2°(1)) = 0.22,

so, according to (18), if we use the /-norm algebraic product, the membership degree of each a-acceptable
optimal solution to D (the fuzzy set that represents the balance between feasibility degree of constraints and
satisfaction degree of the goal) is the following:

5(x°(0.4)) = 0.4-0.80 = 0.32;  115(x°(0.5)) = 0.5-0.71 = 0.36;

Hp 0(

,ub(xO(O.6)) =0.6-0.65=0.39; ,ub(xo(O.7)) =0.7-0.58 =0.41;
(23)

1p(x° (0.

5(x°(0.8)) = 0.8-0.42 = 0.34;  115(x°(0.9)) = 0.9 0.32 = 0.29;
up(°(1)) = 1-0.22 = 0.22

and, in agreement with (19), the solution of the fuzzy problem (20) will be the one which has the greatest
membership degree. In (23) we observe that the 0.7-feasible optimal solution, x; = 29.70, x, = 18.72 (see
Table 1), has the greatest membership degree: 0.41. (This solution is practically the same as what we have
obtained, by compromise programming, to L., metric in Jiménez et al. (2000).) If the DM is not satisfied
with this solution, he can change the goal and its tolerance threshold, or refine the values of the different
degree of feasibility that he considered in (21).

In general, we think that the method introduced in this paper provides the following advantages in
respect to others:

e We use a fuzzy relation to compare fuzzy numbers, while most of the methods in the literature use com-
parison relations that simply report that a fuzzy number is bigger than others, which does not give any
information about the risk of violation of constraints.

e Although we use a fuzzy relation to compare fuzzy numbers, our method allows us to work easily with
nonlinear fuzzy numbers, while other methods widely cited in the literature, i.e. Tanaka and Asai (1984),
only work with symmetrical triangular fuzzy numbers.

¢ In some methods, the DM is requested to initially give his aspiration level without providing any infor-
mation about it, which, as Cadenas and Verdegay (1995, 1997) say, is unrealistic. However, through the
information provided by optimal solutions that are feasible in different degrees, we provide the DM with
the determination of the goal and its tolerance threshold.

e Lastly, in the sense recommended by Rommelfanger (1996), our method allows the DM to consider, in
an interactive way, two important factors when making a decision: the degree of achievement of his aspi-
ration level and the risk of violation of the constraints.
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In short our approach possesses the following features: it allows the DM to have information about the
risk of violation of constraints in all the steps of the solution process; the model allows us to work with
nonlinear membership functions; it allows the DM to determine his/her aspiration levels and finally, it pro-
vides a balanced solution between the degree of achievement of the aspiration levels and the risk of viola-
tion of the constraints.

6. Conclusions

In this paper we have proposed a resolution method, for a linear programming problem with fuzzy
parameters, which allows us to take a decision interactively with the DM. Through the idea of feasible opti-
mal solution in degree o, the DM has enough information to fix an aspiration level. The DM can also
choose the degrees of feasibility that he/she is willing to admit depending on the context. It is important
to highlight that the acceptable optimal solutions in degree o are not fuzzy quantities, which makes it easier
to take a decision in a simple way by solving a crisp parametric linear program. The DM also has additional
information about the risk of violation of the constraints, and about the compatibility of the cost of the
solution with his wishes for the values of the objective function. The DM can intervene in all the steps
of the decision process which makes our approach very useful to be applied in a lot of real-world problems
where the information is uncertain or incomplete, like environmental management, project investment,
marketing, etc.
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