
A Fast Encryption Mode for Block Cipher with
Integrity Authentication

Like Chen, Runtong Zhang
Institute of Information Science and Technology

Dalian Maritime University
Dalian, China

chenlike8888@sina.com

Abstract-Most important things of secure communications are
integrity and confidentiality. However, seldom cipher mode could
achieve these two goals simultaneously. So, in this paper, a novel
cipher mode is proposed to solve this scheme. The newly
proposed mode is based on a previous work PCBC, which has the
vulnerability that it permits the modification of swapping two
ciphertext, which could pass the integrity authentication. In our
algorithm, by adding another XOR operation with a counter to
the mode, we successfully solve the vulnerability of PCBC, so we
named it C-PCBC. In addition, our algorithm could be more
efficient than another modification M-PCBC, thus it will be very
useful in the case where confidentiality and integrity are both
needed.

Keywords-Integrity authentication; low cost cipher modes

I. INTRODUCTION

Accompany with the development of wireless
communication and internet technology, more and more M
commerce services become part ofpeople's lives. However, for
every commerce service, secure problem is always a key point,
which has two basic schemes, integrity and confidentiality.
Since more and richer data are involved in the commerce
information, communication protocol environment which
preserve data confidentiality and provide integrity with modest
computational costs is urgently required, especially in wireless
environment which have limitation in computational capability.

In the designing process of Kerberos Version4[1], a cipher
mode, named PCBC(Plaintext Cipher Block Chaining), was
created. It was based on the CBC mode, but it added a new
XOR operation to combine the previous plaintext block with
the current plaintext block and also with the previous cipher
text block obtained. So the alteration of the ciphertext would be
propagated to the last cipher block. In this way, by adding to
the end of the message a fixed last plaintext block, the
destination of the communication can verify the integrity of the
message simply by decrypting the last block and checking that
the fixed plaintext has not changed.

Regrettably, the PCBC mode has not been formally
published as standard because there is a vulnerability
discovered by Kohl in 1990[2]. This vulnerability permits that if
two ciphertext blocks are swapped, then the result of the
decryption of the last block still yields the correct fixed
plaintext. Though the practical consequences of this flaw are

This work was partially supported by the National Science Fund ofChina
under grant number 60773033.

978-1-4244-2013-1/08/$25.00 ©2008 IEEE

Runtong Zhang
School ofEconomics and Management

Beijing Jiaotong University
Beijing, China

rtzhang@bjtu.edu.cn

not obvious, PCBC was replaced by CBC-MD5 mode in
Kerberos Version5.

In [3], a modified mode based on PCBC, called M-PCBC
(Memory-Plaintext Cipher Block Chaining) is designed. This
mode use an extra memory of one-block size to store the
information of the past cipher blocks. With this modification it
is possible to propagate any error to the last block of the
message. Nevertheless, there is an increment in the
computational cost of the modified mode. In average, M-PCBC
add one XOR operation to each block.

In this paper, a novel mode which is also based on PCBC is
proposed. In order to solve the flaw in PCBC, a counter is
introduced into the new mode to mark each block output, so it
is named C-PCBC (Counter - Plaintext Cipher Block
Chaining). With this modification, we can not only remove the
vulnerability in PCBC, but lower the extra computational cost
in M-PCBC. This modification also makes the mode more
suitable for parallelization.

This paper is organized as follows: Section 2 briefly
reviews some operational modes of block ciphers. Section 3
analyzes the PCBC mode and M-PCBC mode. Section 4
describes the newly proposed cipher mode C-PCBC, and
proves its security against the vulnerability in PCBC. The
computational cost of C-PCBC with M-PCBC is also
compared in this section. We conclude in Section 5.

II. CIPHER MODES

It is well known that, block cipher is the base of security
systems, and the confidentiality of the communication is
usually implemented through block cipher algorithms. A block
cipher algorithm is a type of encryption algorithm where the
plaintext is divided into blocks of the same length, which are
ciphered independently with the same ciphering key and
algorithm. Examples of block ciphers are: the widely known as
Data Encryption Standard (DESi4J, which has been the
standard encryption algorithm for the United States during
more than 30 years, and also its successor Advance Encryption
Standard (AESi5J •

Block ciphers usually implement ciphering modes, which
combine the blocks with certain basic operations and
feedbacks. Operations used must be computational fast and
efficient and must increase the security of the ciphertext,

573

making its cryptanalysis more difficult. In any case,
confidentially of the ciphertext is only based on the robustness
of the cipher algorithm but never in the ciphering mode.

The simplest cipher mode is the Electronic Code Book
(ECB) that only consist on ciphering each plaintext block
independently. Although this mode is very simple, its
simplicity allows the parallelization of the ciphering process,
which is very useful in terms of computational cost associated
to the encryption. Obviously the ECB does not supply any
integrity validation, and hence does not supply any integrity
validation, and hence modifications, intentional or not, of the
ciphertext.

Although the ECB mode is the simplest cipher mode, it is
not frequently used in practice. The most widely used cipher
mode is the Cipher Block Chaining (CBC). In this mode, each
plaintext block is operated, by the XOR function, with the
ciphertext produced in the previous block. The result of this
operation is ciphered as the result of this block (the process is
shown in fig. 1-2). By only adding one additional XOR
operation to each block, two identical plaintext blocks produce
different ciphertext blocks, and this fact makes the
cryptanalysis harder. To decrypt a ciphered message, the
process must be inverted.

CBC mode has many virtues and is used as default in many
communication protocols, but from Fig.1, we see that one bit
alteration in certain ciphertext block will only produce errors in
two plaintext blocks, when the message is decrypted. So, CBC
mode can not supply any mechanism for the integrity
verification either.

Our problem is not only to find out a mechanism for the
verification of the integrity of the message, but to find an
efficient mechanism that does not delay the encryption process.
With this in view the Massachusetts Institute of Technology
designed a new cipher mode, which is based on CBC mode, to
solve this problem. The new cipher mode is called Plaintext
Cipher Block Chaining (PCBC). This mode makes possible to
detect integrity alterations in ciphertext. In the next section, we
will cover the PCBC mode and its modification in [3].

Ci

Figure 2. CBC Decryption.

III. PCBCANDM-PCBC

The PCBC mode was created for the Kerberos Version 4[1].

It was based on the CBC mode, but added a new XOR
operation. In fact, the PCBC combine the previous plaintext
block with the current plaintext block and also with the
previous ciphertext block obtained. Fig.3 shows the process for
encryption and decryption ofPCBC mode.

From fig.3, it can be seen that PCBC can propagate any
alteration of the ciphertext to the last block. In this way, by
adding to the end of the message a fixed plaintext block, the
destination can verify the integrity of the message, simply by
decrypting the last block and checking that the fixed plaintext
has not changed.

Regrettably, the PCBC mode has not been formally
published as standard because there is a vulnerability
discovered by Kohl in 1990 [2]. This vulnerability permits that
if two ciphertext blocks are swapped, the result of the
decryption of the last block still yields the correct fixed
plaintext. PCBC was replaced by CBC-MD5 mode in Kerberos
Version 5.

i-I Ci

Figure 1. CBC Encryption.

Figure 3. Encryption and decryption of PCBC mode.

574

(1)

(6)

The following algebraic expressions describe the operation
process of the PCBC mode. Let us consider Pi the ith plaintext
block, Ci the ith ciphertext block, EK and DK the block
encryption and decryption algorithm, which use the key K,
respectively.

Ci- l =Ek (~-l EB ~-2 E9 Ci- 2)

Ci =Ek(~ E9~_1 EBCi_l)

CHI = Ek (~+l EB ~ EB Ci)

~-l = Dk(C;_I)EB 11-2 EB C;_2

~ =Dk(Ci)EB 11-1 EB Ci - l

P;+l = Dk(Ci+I) EB P; EB Ci
From (1), it is easy to obtain:

~+1 = Dk (CHI) EB Dk (Ci) EB P;-l EB Ci- l E9 Ci

~+l = Dk(CH1) E9 Dk(Ci)EB Dk(Ci_I)EB P;-2 EB Ci-2 E9 Ci- l EB Ci
(2)

If we swap the ciphertext block Ci-1 and Ci, then the
plaintext is:

~-l'= Dk (Ci)E9 ~-2 EB Ci - 2

~'= Dk(Ci_I)EB P;-l EB Ci (3)

~+l'= Dk(Ci+I) E9 ~ EB Ci - l

Operating with the above expressions, it is possible to
obtain:

~+l'= Dk(Ci+l) E9 Dk(Ci_ I)E9 ~-l EB C; E9 Ci - l (4)

~+l'= Dk(Ci+l) E9 Dk(C;_I)E9 Dk(CJE9 ~-2 E9 C;_2 E9 Ci EB Ci - l

It is clear that expressions (2) and (4) are identical. This
proves that when swapping two ciphered blocks, the following
ones will not suffer any modification.

Though the PCBC has this weakness, the idea of this mode
is still meaningful. So, Jose et al modified PCBC in [3]. As
shown in fig.4, the new mode is based on adding a memory to
the original PCBC that stores information of the past ciphertext
blocks.

I~ • _-+---...

\
\
\

\...
~ ~

Figure 4. Encryption and decryption ofM-PCBC mode.

Here, the length of the memory M, is equal to the length of
the cipher block size n. Then, M is divided into two variables
ML and MR, represent the left and right part of the memory
respectively, both of length n/2. The M will be initialized with
the IV2, and every block M will be mixed according to the
fo llowing expressions:

MLi =MLi_1E9 MR;-l' MR; =CL;_1 EB CR;_1 (5)

The M-PCBC is defined as the following algebraic
expressions.

Ci - l = Ek(P;-l EB 11-2 EB Mi- 2)

C; =Ek(p; EB ~-l EB M;_l)

Ci+l =Ek(P;+1 E9 11 E9 Mi)

P;-l = Dk(C;_I) EB P;-2 Et> Mi-2
~ =Dk(Ci)Et>~_1 EBMi _ 1

P;+l = Dk(Ci+I) EB P; EB Mi
From (1), it is easy to obtain:

~+l = P;-2 E9 Dk(C;_I) EB Dk(C;) EB Dk(Ci+I) EB

LML;_2 E9 MR;-2 EB CRi_2 EB CL;_2 E9 CL;_1 EB CR;-l II CRi EB CL; J
(7)

Then, if we swap the ciphertext block Ci-1 and Ci in the
modified mode, then the plaintext is:

~+l'= ~-2 E9 Dk(Ci_l) EB Dk(C;) E9 Dk(Ci+I) E9

LMLi_2E9 MR;-2 E9 CR;-2 E9 CL;_2 E9 CLi EB CR; " CR;-l E9 CLi_1J
(8)

Obviously, expression (7) and (8) are not equal because
both parts of the memory contents are different. Though the
modification solved the vulnerability of PCBC, averagely, it
adds one XOR operation to each data word, the word size
depending on different processors. And it is our belief that the
efficiency of M-PCBC could still be improved. So, we did a
new modification of PCBC, which saves part of computational
cost in comparison with M-PCBC.

IV. C-PCBC MODE

In this paper, we also present a new modification of the
PCBC algorithm, which solved the commented flaw and
supplies efficient integrity validation. Our new algorithm is
based on adding a counter to differentiate the output of the
block cipher and so we name the new mode C-PCBC. With
this information it is possible to propagate the error to the last
block of the message, using less computational cost than the
M-PCBC.

Fig 5-6 show the encryption and decryption stage of C
PCBC respectively. From the figures, it can be seen that C
PCBC is very similar with PCBC. The only difference between
PCBC and C-PCBC is that a counter is XORed with the output
of block encryption in the encryption stage, and the result is the
C-PCBC ciphertext. In the decryption stage, the ciphertext
should be first XORed with the counter, and then inputed into
the decryption function of the block cipher. The counter could
be initialized by a random vector, determined by different
applications. The C-PCBC is defined by the following
algebraic expressions.

575

V. CONCLUSION

This paper proposed a novel cipher mode. The new mode is
based on the PCBC mode, which is a candidate proposal for
Kerberos Version4, for simultaneously providing
confidentiality and integrity authentication by adding another
XOR operation with the previous plaintext block to the CBC
mode. However, PCBC has a flaw that the swap of the
ciphertext will not alarm the integrity test. In this paper, we
modified the PCBC mode and introduce another XOR
operation with a counter into the algorithm to differentiate the
output of the block cipher, and we name the new mode C
PCBC. Through the analysis, we proved that not only did our
algorithm successfully solve the vulnerability of PCBC, but
offered more efficiency in software implementation than
another modification mode M-PCBC. Thus, C-PCBC is very
attractive in practical use.

REFERENCES

[1] J.G. Steiner, B. Clifford Neuman, J. L. Schiller, "Kerberos: an
authentication service for open network systems," Proceedings of 1988
USENIX Conference, 1998, pp. 191-200.

[2] J. T. Kohl, "The use of encryption in Kerberos for network
authentication," Advances in Cryptology-Crypto'89, Springer-Verlag,
1990, pp. 35-43.

[3] J. M. Sierra, J. C. Hernandez, N. Jayaram, A. Ribagorda, "Low
computational cost integrity for block ciphers," Future Generation
Computer Systems, vol. 20 , 2004, pp. 857-863.

[4] Data Encryption Standard (DES), FIPS-46, National Institute of
Standard and Technology, 1979.

[5] Advanced Encryption Standard, FIPS-197, National Institute of
Standards and Technology, 2001.

~+l '= ~-2 E9 Ct- 2 E9 Ci ffi Ci - l ffi Dk(Ci+l E9 Counter(i + 1)) (12)

E9 Dk(Ci - l E9 Counter(i)) ffi Dk(Ci E9 Counter(i -1))

Since Dk(Ci ffi Counter (i)) *Dk(Ci_1E9 Counter (i))

Dk(Ci - l E9 Counter(i -1))* Dk(Ci E9 Counter(i -1)), it is easy

to obtain that the probability that (10) equals (12) is about2-n
•

Here, n is the cipher block size. Since n is large enough
(generally 64-bit or 128-bit), we believe that ~+l * ~+l' , i.e. C-

PCBC could resist the attack proposed in [2].

Different from M-PCBC, our algorithm use a counter to
differentiate the ciphertext, and the algorithm need not to use a
counter of the full block size of the cipher. For example, if we
use 128-bit block cipher in the 32-bit processor PC
environment, only one 32-bit word XOR operation (only 1
cycle) is needed. 3/4 of the extra computational cost of the M
PCBC is saved. In addition, in contrast to M-PCBC, our work
can decrease the data dependence in consecutive instructions,
so it is more suitable for modem processors, and would be
more efficient in software implementation. Hence, C-PCBC is
more efficient than M-PCBC.

(9)

(11)

Figure 5. Encryption of C-PCBC

Figure 6. Decryption ofC-PCBC

Ci - l =Ek(~-l E9 ~-2 E9 Ci- 2) E9 Counter(i -1)

Ci = Ek(~ E9 ~-l E9 Ci - l) E9 Counter(i)

Ci+l =Ek(~+l E9 ~ E9 Ci) E9 Counter(i + 1)
~-l =Dk(Ci- 1E9 Counter(i -I))E9 ~-2 E9 Ci- 2

~ =Dk(Ci E9 Counter(i))E9 ~-l E9 Ci - l

~+l = Dk(Ci+1 E9 Counter(i +1)) E9 ~ E9 Ci

From (9), we obtain

~+l = ~-2 E9 Ci- 2 E9 C i - l E9 Ci E9 Dk(Ci+1 E9 Counter(i +1)) (10)

E9 Dk(Ci E9 Counter(i))E9 Dk(Ci- 1E9 Counter(i -1))
Then, if we swap the ciphertext block Ci - l and Ci in C-

PCBC mode, the decrypted plaintext is:

~-l'= Dk(Ci E9 Counter(i -I))E9 ~-2 E9 Ci- 2

P;'= Dk(Ct- 1 EB Counter(i))EB P;_I'EBCt

P;+l '= Dk(Ci+1 E9 Counter(i +1)) E9 P;'E9Ct_1

Operating with (11), it is possible to obtain:

576

