
ARTICLE IN PRESS

Engineering Applications of Artificial Intelligence 22 (2009) 329–342
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

� Corr

E-m

(S. Ram
journal homepage: www.elsevier.com/locate/engappai
Evolutionary multi-criteria trajectory modeling of industrial robots in the
presence of obstacles
R. Saravanan a, S. Ramabalan b,�, C. Balamurugan b

a Department of Mechatronics Engineering, Kumaraguru College of Technology, Coimbatore 641006, Tamilnadu, India
b Faculty of CAD/CAM (P.G. Course), J.J. College of Engineering and Technology, Thiruchirapalli 620009, Tamilnadu, India
a r t i c l e i n f o

Article history:

Received 15 October 2007

Received in revised form

11 April 2008

Accepted 10 June 2008
Available online 28 August 2008

Keywords:

Multi-objective optimal trajectory

modeling

Obstacle avoidance

Elitist non-dominated sorting genetic

algorithm (NSGA-II)

Multi-objective differential evolution

(MODE)
76/$ - see front matter & 2008 Elsevier Ltd. A

016/j.engappai.2008.06.002

esponding author. Tel.: +91431 2695608; fax

ail addresses: saradharani@hotmail.com (R. Sa

abalan).
a b s t r a c t

Optimal trajectory planning for robot manipulators is always a hot spot in research fields of robotics.

This paper presents two new novel general methods for computing optimal motions of an industrial

robot manipulator (STANFORD robot) in presence of obstacles. The problem has a multi-criterion

character in which three objective functions, a maximum of 72 variables and 103 constraints are

considered. The objective functions for optimal trajectory planning are minimum traveling time,

minimum mechanical energy of the actuators and minimum penalty for obstacle avoidance. By far,

there has been no planning algorithm designed to treat the objective functions simultaneously. When

existing optimization algorithms of trajectory planning tackle the complex instances (obstacles

environment), they have some notable drawbacks viz.: (1) they may fail to find the optimal path (or

spend much time and memory storage to find one) and (2) they have limited capabilities when handling

constraints. In order to overcome the above drawbacks, two evolutionary algorithms (Elitist non-

dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE)

algorithm) are used for the optimization. Two methods (normalized weighting objective functions

method and average fitness factor method) are combinedly used to select best optimal solution from

Pareto optimal front. Two multi-objective performance measures (solution spread measure and ratio of

non-dominated individuals) are used to evaluate strength of the Pareto optimal fronts. Two more multi-

objective performance measures namely optimizer overhead and algorithm effort are used to find

computational effort of NSGA-II and MODE algorithms. The Pareto optimal fronts and results obtained

from various techniques are compared and analyzed.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The design of engineering systems involves simultaneous
consideration of multiple criteria or objectives. Some of these
objectives will be in conflict often. Thus, a trade-off exists, which
can be investigated by using multi-objective optimization meth-
ods. In such a problem, no single optimal solution exists; rather
there is a set of equally valid optimal solutions known as the
Pareto optimal set. The solutions in this set show the designer
what is possible and allow him to make a fully informed choice.

The goal of robot systems is to do tasks at a cost as low
as possible. Thus, the minimum-cost trajectory planning in the
two-stage realization of manipulators control (i.e., planning
first and tracking next) is an important effort to accomplish the
goal. A large number of robotic applications involve repetitive
ll rights reserved.

: +91431 2695607.
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processes. This technological characteristic justifies offline trajec-
tory planning.

In order to maximize the speed of operation that affects the
productivity in industrial situations, it is necessary to minimize
the total traveling time of the robot. More research works have
been carried out to get minimum time trajectories (Shiller and
Dubowsky, 1991).

Planning the robot trajectory using energy criteria provides
several advantages. It yields smooth trajectories easier to track
and reduce the stresses of the actuators and of the manipulator
structure. Moreover, saving energy may be desirable in several
applications, such as those with a limited capacity of the energy
source (e.g., robots for spatial or submarine exploration).
Examples of energy optimal trajectory planning are provided in
some literatures. Both optimal traveling time and the minimum
mechanical energy of the actuators are considered together as
objective functions in some literatures (Saramago and Steffen,
1998, 1999, 2001 and Chettibi et al., 2004). Saramago and Steffen
(2001) used sequential unconstrained minimization techniques
(SUMT) to do optimum trajectory planning of an STANFORD
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Nomenclature

J robot joint number
m knot number of the robot joint trajectory
K1 robot joint trajectory in the workspace
K2, K3 and K4 obstacles
z1 traveling time of the robot
z2 mechanical energy of the robot actuators
z3 penalty for obstacle avoidance
_q generalized robot joint velocity
€q generalized robot joint acceleration
Dij inertial system matrix of the robot
Cijk coriolis and centripetal forces matrix
Gi gravity loading vector,
Ji moments of Inertia of robot
r̄i center of mass of robot links
g acceleration due to gravity with respect to the base

coordinate system

T traveling time of robot end effector from initial
configuration to final robot configuration

ui generalized forces
QCj maximum displacement of robot joint j

VCj maximum velocity of robot joint j

WCj maximum acceleration of robot joint j

JCj maximum jerk of robot joint j

UCj maximum force/torque of robot joint j

I set of possibly colliding pairs of parts
heRm design variables (time intervals) for strategy 1
g B-spline coefficients (variables) in strategy 2
t1ot2?otm�1otm an ordered time sequence
hi ¼ ti+1�ti time interval
T ¼

P
hi total time

_q1, _qm and €q1, €qm robot joint velocities and accelerations at the
initial time t1 and terminal time tm

gi
j B-spline coefficients
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manipulator. The objective functions used in optimal trajectory
planning are minimum traveling time, minimum mechanical
energy of the actuators and minimum penalty for obstacle
avoidance. The limitations of their work are: (1) They have
approached the problem as a single objective optimization
problem (all objectives are combined as a single objective
function using weightage objective function method). (2) If the
user does not know the weightage to be given for each objective,
their approach is not applicable. (3) The method used by them
cannot be used for treating multi-objectives simultaneously.
(4) They got only one optimal solution. But for a real world
problem, a Pareto optimal front that offers a good number of
optimal solutions for user’s choice is most desirable and (5) SUMT
is a conventional optimization technique and hence a global
solution may not be possible.

The methods that are used in the literatures such as dynamic
programming (Shiller and Dubowsky, 1991), SUMT (Saramago and
Steffen, 1998, 1999, 2001) and sequential quadratic programming
(Chettibi et al., 2004) to tackle the complex instances (obstacles
environment) have some notable drawbacks viz.: (1) they may fail
to find the optimal path (or spend much time and memory storage
to find one) and (2) they have limited capabilities when handling
constraints. For example, the robot joint acceleration and
deceleration may not be within their maximum limits. To
overcome the above drawbacks, the evolutionary algorithms can
be used. The advantages of evolutionary techniques are: (1) They
are population based search. So a global optimal solution is
possible. (2) They do not require any auxiliary information like
gradients, derivatives, etc. (3) Complex and multimodal problems
can also be solved for global optimality. (4) They are problem
independent techniques, i.e., suitable for all types of problems.

In the last 20 years, evolutionary algorithms such as multi-
objective genetic algorithm (MOGA) (Fonseca and Fleming, 1995),
Elitist non-dominated sorting genetic algorithm (NSGA-II) (Deb
et al., 2002), multi-objective differential evolution (MODE) (Babu
and Anbarasu, 2005), Niched Pareto genetic algorithm (NPGA)
(Horn et al., 1994), among many other variants (Coello and Carlos,
1999) have been applied in a plethora of fields such as control,
system identification, robotics, planning and scheduling, image
processing, pattern recognition and speech recognition (Bäck
et al., 1997). Evolutionary techniques for multi-objective optimi-
zation are currently gaining significant attention from researchers
in various fields due to their effectiveness and robustness in
searching for a set of trade-off solutions. Unlike conventional
methods that aggregate multiple attributes to form a composite
scalar objective function, evolutionary algorithms with modified
reproduction schemes for multi-objective optimization are cap-
able of treating each objective component separately and lead the
search in discovering the global Pareto optimal front.

Intelligent optimization algorithms such as NSGA-II and MODE
are very much needed for trajectory planner of an intelligent real
world robot. Since trajectory planning for a real world robot is a
very complex and tedious task. This is due to the following
reasons:
1.
 The planning algorithm has to consider the dynamic model of
the robot. The dynamic model is depending on traveling time,
payload and robot’s task. It is a time-dependent one.
2.
 In robot’s workspace, all types of obstacles (fixed, moving and
oscillating obstacles) may be present. This calls for the
planning algorithm to consider all types of obstacles for
obstacle avoidance. Further, the information about the ob-
stacles may be partially or fully unknown. Therefore, the
obstacle avoidance checking is a very complex and time-
dependent one.
3.
 The environment around the robot is an ever-changing one.
This calls for the planning algorithm to update the details for
trajectory planning for each time instant.
In this paper, two evolutionary algorithms namely NSGA-II and
MODE are proposed to obtain optimal trajectory planning for an
industrial robot (STANFORD Robot). The result of a multi-objective
optimization is a Pareto optimal front, which is a set of competing
solutions. However, the design implementation for a real-time
problem will require a single solution. Two methods (normalized
weighting objective functions method and average fitness factor
method) are combinedly used to select best optimal solution from
Pareto optimal front. Two multi-objective performance measures
namely solution spread measure (SSM) and ratio of non-
dominated individuals are used to evaluate the strength of Pareto
optimal fronts. Two more multi-objective performance measures
namely optimizer overhead and algorithm effort are used to find
the computational effort of NSGA-II and MODE algorithms. This
research work considers all the important decision criteria for the
optimal trajectory planning of industrial robot manipulators,
including the obstacle avoidance criteria for the obstacles and
also incorporates information vagueness (Fuzziness).
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The trajectory modeling can be divided into two groups:
(i)
q1
To obtain a constrained trajectory considering the condition
that trajectory must pass through a given number of points.
(ii)
 To obtain the constrained trajectory given only the initial and
final points.
This paper deals with optimal trajectory modeling of both
groups as two strategies. The optimal robot manipulator trajectory
is the one that minimizes the objectives without any obstacle
collision in the workspace. Following this introduction, the rest of
the paper is organized as follows: Section 2 presents the problem
statement of this paper. In Section 3, the proposed NSGA-II and
MODE techniques to obtain the optimal trajectory planning for
STANFORD robot are presented. Section 4 deals with two methods
and four performance metrics proposed and used for multi-
objective optimization. In Section 5, two numerical examples are
presented to illustrate the proposed optimization methodologies.
In Section 6, the results obtained from various techniques are
presented and compared. The conclusions are presented in
Section 7.
2. Problem statement

The industrial robot manipulator STANFORD robot with six
degrees of freedom is considered. Let j represents the robot joint
number and m represents the knot number of the trajectories. The
task is to move the robot along the trajectory K1 in the workspace
avoiding the obstacles K2, K3 and K4, while minimizing the
traveling time, the energy consumed in the move and penalty for
obstacle avoidance, subject to physical constraints and actuator
limits as shown in Fig. 1. The obstacles are considered as objects
sharing the same workspace performed by the robot. The obstacle
avoidance is expressed in terms of the distances between
potentially colliding parts and the motion is represented using
translation and rotational matrices. The dynamic model of the
robot is derived using Euler–Lagrange’s equations and Lagrange’s
energy function. The inertia terms of the actuators and friction
forces are included in the equations of motion. The joint trajectory
is formulated using uniform cubic B-spline function.

The traveling time (z1), the mechanical energy of the actuators
(z2) and penalty for obstacle avoidance (z3) are considered as
K2 K4

qm

K1

K3

Fig. 1. Optimal path with obstacles.
objective functions and the optimization problem is defined as
follows (Saramago and Steffen, 2001):

Minimize:

z1 ¼ T, (1a)

z2 ¼

Z T

0
ðuiðtÞÞ

2 dt, (1b)

z3 ¼
XObs

i¼1

1

ðminfdlqgÞ
2

, (1c)

Subject to:

jQjiðtÞjpQCj,

for j ¼ 1;2; . . . ;N and I ¼ 1;2; . . . ;m� 1, (2)

jVjiðtÞjpVCj,

for j ¼ 1;2; . . . ;N and I ¼ 1;2; . . . ;m� 1, (3)

jWjiðtÞjpWCj,

for j ¼ 1;2; . . . ;N and I ¼ 1;2; . . . ;m� 1, (4)

jJjiðtÞjpJCj,

for j ¼ 1;2; . . . ;N and I ¼ 1;2; . . . ;m� 1, (5)

jUjiðtÞjpUCj,

for j ¼ 1;2; . . . ;N and I ¼ 1;2; . . . ;m� 1, (6)

dlqðtÞX0 for ðl; qÞ 2 I, (7)

hðLÞi phiphðUÞi for i ¼ 1;2; . . . ;m� 1, (8a)

gjðLÞ

i pgj
ipgjðUÞ

i for i ¼ 1;2; . . . ;m� 1 and j ¼ 1;2; and 6. (8b)

Eq. (7) gives the obstacle avoidance. Eqs. 8(a) and 8(b) represent
the side constraints for strategies 1 and 2, respectively.

2.1. Kinematic and dynamic models

According to Saramago and Steffen (2001), the generalized
forces ui are calculated as:

ui ¼
Xn

j¼1

Xj

k¼1

Tr½UjkJiðUjiÞ
T
� €qk

þ
Xn

i¼1

Xj

k¼1

Xj

m¼1

Tr½UjkmJiðUjiÞ
T
�_qk _qm �

Xn

j¼1

mjg
TðUjir̄jÞ. (9)

The above equation can be rewritten as:

ui ¼
Xn

j¼1

Dij _qj þ
Xn

j¼1

Xj

k¼1

Cijk _qj _qk þ Gi, (10)

Dij ¼
Xn

p¼maxði;jÞ

Tr½UpjJpðUpjÞ
T
�, (11)

Cijk ¼
Xn

p¼maxði;j;kÞ

Tr½UpjkJpðUpiÞ
T
�, (12)

Gi ¼
Xn

p¼1

�mpgTðUpir̄pÞ. (13)

The generalized forces ui calculated by Eq. (9) will be used in the
optimization problem (1a)–(1c) and in the force/torque constraint
equations given by Eq. (6).
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q1, q1

qm, qm

Fig. 3. Trajectory of gripper (strategy 2).
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2.2. Formulation of trajectories

2.2.1. Strategy 1 (trajectory modeling with several given points)

In this strategy, the aim is to obtain a constrained trajectory
considering the trajectory must pass through a given number of
points (Fig. 2).

A cubic polynomial function Qi(t) is defined on the time
interval. It is assumed that the displacement, velocity and
acceleration are continuous on this time interval. The second
time derivative Wi(t) can be written as:

WiðtÞ ¼
tiþ1 � t

hi
WiðtiÞ þ

t � ti

hi
Wiðtiþ1Þ for i ¼ 1;2; . . . ;m� 1,

(14)

where, hi ¼ ti+1�ti.
Integrating Eq. (14) for the given points Qi(ti) ¼ qi and

Q(ti+1) ¼ qi+1, the following interpolating functions are obtained:

ViðtÞ ¼
�Wi

2hi
ðtiþ1 � tÞ2 þ

Wiþ1

2hi
ðt � tiÞ

2

þ
qiþ1

hi
�

hiWiþ1

6

� �
�

qi

hi
�

hiWi

6

� �
(15)

and

QiðtÞ ¼
WiðtÞ

6hi
ðtiþ1 � tÞ3 þ

Wiðtiþ1Þ

6hi
ðt � tiÞ

3
Þ

þ
qiþ1

hi
�

hiWiðtiþ1Þ

6

� �
ðt � tiÞ

þ
qi

hi
�

hiWiðtiÞ

6

� �
ðtiþ1 � tÞ. (16)

Two extra knots q2 and qm�1 are not fixed and are used to add
two new equations to the system in such a way that it can be
solved. The joint displacements of these two knots are written as:

q2 ¼ q1 þ h1v1 þ
h2

1

3
a1 þ

h2
1

6
W2ðt2Þ, (17)

qm�1 ¼ qm � hm�1vm þ
h2

m�1

3
am þ

h2
m�1

6
Wm�1ðtm�1Þ. (18)

The velocity will further be used in the optimization problem
(Eqs. (1a)–(1c)).

2.2.2. Strategy 2 (trajectory modeling with initial and final points)

Only the initial and final points to construct the joint
trajectories are given (Fig. 3). A uniform cubic B-spline is used
to define the trajectory. A third-degree polynomial function f with
the following properties defines the B-spline trajectory.
q1

q1, q1 q2
q3

q4

qm-1

qm, qm

qm

Fig. 2. Trajectory of gripper (strategy 1).
1.
 The knots are uniformly spaced, i.e., d ¼ tj+1�tj (constant).

2.
 For each interval [tj, tj+1], the function f is equal to the cubic

polynomial.

f jðtÞ ¼ qi
jðtÞ ¼ gi

j�3b�3ðtÞ þ gi
j�2b�2ðtÞ

þ gi
j�1b�1ðtÞ þ gi

j�0b�0ðtÞ, (19)

b�0ðt; tjÞ ¼
m3

j ðtÞ

6
; t 2 Ij ¼ ½tj;tj þ d�; mjðtÞ ¼

t � tj

d
, (20)

b�1ðt; tjþ1Þ ¼
1þ 3mjþ1ðtÞ þ 3m2

jþ1ðtÞ � 3m3
jþ1ðtÞ

6
;

t 2 Ijþ1 ¼ ½tjþ1;tjþ1 þ d�; mjþ1ðtÞ ¼
t � tjþ1

d
, (21)

b�2ðt; tjþ2Þ ¼
4� 6m2

jþ2ðtÞ þ 3m3
jþ2ðtÞ

6
;

t 2 Ijþ2 ¼ ½tjþ2;tjþ2 þ d�; mjþ2ðtÞ ¼
t � tjþ2

d
, (22)

b�3ðt; tjþ3Þ ¼
1� 3mjþ3ðtÞ þ 3m2

jþ2ðtÞ � m
3
jþ2ðtÞ

6
;

t 2 Ijþ3 ¼ ½tjþ3;tjþ3 þ d�; mjþ3ðtÞ ¼
t � tjþ3

d
, (23)

where gi
j are the coefficients of the B-spline approximation for

qi(t) in the interval ‘Ij’.

The derivatives of qi
jðtÞ with respect to t are:

dkqi
jðtÞ

dtk
¼ gi

j�3bðkÞ
�3ðtÞ þ g

i
j�2bðkÞ

�2ðtÞ þ g
i
j�1bðkÞ

�1ðtÞ þ g
i
j�0bðkÞ

�0ðtÞ, (24)

where

bðkÞ
�j ¼

dk
ðb�jÞ

dtk
.

For the problems with free terminal time a new time variable
t ¼ t/T is introduced. This way the interval [0, T] is replaced by the
non-dimensional interval [0,1]. In this case, the trajectories qi(t)
are obtained with knots 0 ¼ t1ot2yotm�1otm ¼ T:

qiðtÞ ¼
Xm�1

j¼0

qi
jðtÞ; 1; . . . ;n, (25)

where qi
jðtÞ is given by Eq. (19).

In the optimization of the trajectories, the decision variables
are the B-spline coefficients gi

j. The dimensions of the design
variable vector is n(m+2).
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F1

F2

F3

Rejected

Crowding
diststance
sorting

Pt+1

Non-dominated
sorting

Fig. 4. An iteration of the NSGA-II procedure.

R. Saravanan et al. / Engineering Applications of Artificial Intelligence 22 (2009) 329–342 333
2.3. Obstacle avoidance constraints

In this paper, the geometry of STANFORD robot has six
rectangular prisms, four cylinders and one cube. Here the
assumption is fifth joint and gripper are circumscribed by
rectangular prism. Also the obstacles are only sphere (K4) and
rectangular prisms (K2 and K3). Hence for finding obstacle
avoidance, we have considered 8 points (corner points) for cube
and rectangular prism, 8 points (4 quadrant points on circle on
each side) for cylinder and 4 quadrant points for sphere. So totally
88 points for STANFORD robot, 4 points for obstacle K4 and 8
points for obstacles K2 and K3. All the points of STANFORD robot
and obstacles are stored in separate arrays of software subroutine
for obstacle avoidance.

The sets dq(t) describe the points of the parts of the robot as
given by Eq. (26). The sets Cl characterize the shape of the rigid
bodies (parts of the robot), while Tl(t) and Rl(t) describe the
translation and rotation of the bodies, respectively, i.e.:

dqðtÞ ¼ TlðtÞRlðtÞCl. (26)

Each point in dq(t) can be calculated as:

xlðtiÞ

ylðtiÞ

zlðtiÞ

1

2
666664

3
777775
¼

1 0 0 pxðtÞ

0 1 0 pyðtÞ

0 0 1 pzðtÞ

0 0 0 1

2
666664

3
777775

�

cosðyðtiÞÞ � sinðyðtiÞÞ 0 0

sinðyðtiÞÞ cosðyðtiÞÞ 0 0

0 0 1 0

0 0 0 1

2
666664

3
777775

xlðt0Þ

ylðt0Þ

zlðt0Þ

1

2
666664

3
777775

(27)

where Px, Py, Pz represent the translation and y(t) represents the
rotation of the points xl; yl; zl.

Let a point on an obstacle as zl and a point belongs to the robot
as zq. Let a set dl(t) defines all points of the obstacles. A set dlq(t)
defines the distances between the points in the sets dl(t) and dq(t).
The distance between the sets dlq(t) must be recalculated for all
points each time t. Here the obstacles are stationary. So changes in
position of points of the robot due to the movement of the robot
are found by Eq. (27). Now the software subroutine for obstacle
avoidance finds the distance between the robot points and
obstacle points. If dlq(t) 40, then the corresponding trajectory
will be accepted by the software subroutine for obstacle
avoidance. Otherwise, it will be rejected. In this work, we have
checked that there is no duplication of set of points of the robot
and obstacles. So, the collision results are reliable.
Z
Zmin Zmax

0

1

Fig. 5. Representation of fitness factor for minimization of an objective function.
3. Proposed methods

In this section, two evolutionary optimization techniques
(NSGA-II and MODE) used for obtaining the optimal trajectory
planning of STANFORD robot with fixed obstacles are described.

3.1. Elitist non-dominated sorting genetic algorithm (NSGA-II)

Deb et al. (2002) proposed the NSGA-II algorithm. Essentially,
NSGA-II differs from non-dominated sorting genetic algorithm
(NSGA) implementation in a number of ways. First, NSGA-II uses
an elite-preserving mechanism, thereby assuring preservation of
previously found good solutions. Second, NSGA-II uses a fast non-
dominated sorting procedure. Third, NSGA-II does not require any
tunable parameter, thereby making the algorithm independent of
the user.
Initially, a random parent population Po created. The popula-
tion is sorted out based on the non-domination. A special book-
keeping procedure is used in order to reduce the computational
complexity down to O(N2). Each solution is assigned a fitness
equal to its non-domination level (1 is the best level). Thus,
minimization of fitness is assumed. Binary tournament selection,
recombination, and mutation operators are used to create a child
population Qo of size N. Thereafter, we use the following algorithm
in every generation. First, a combined population Ri ¼ PiUQi is
formed. This allows parent solutions to be compared with the
child population, thereby ensuring elitism. The population Ri is of
size 2N. Then, the population Ri is sorted according to non-
domination. The new parent population Pi+1 is formed by adding
solutions from the first front and continuing to other fronts
successively till the size exceeds N. Thereafter, the solutions of the
last accepted front are sorted according to a crowded comparison
criterion and the first N points are picked. Since the diversity
among the solutions is important, we use a partial order relation
Xn as follows:

iXnj if irankojrank or irank ¼ jrank and ifitness4jfitness.

That is, between two solutions of differing nondomination
ranks we prefer the point with the lower rank. Otherwise, if both
the points belong to the same front then we prefer the point,
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which is located in a region with lesser number of points (or with
larger crowded distance). This way, solutions from less dense
regions in the search space are given importance in deciding
which solutions to choose from Ri. This constructs the population
Pi+1. This population of size N is now used for selection, crossover
and mutation to create a new population Qi+1 of size N. We use a
binary tournament selection operator but the selection criterion is
now based on the crowded comparison operator Xn. The above
procedure is continued for a specified number of generations.

It is clear from the above description that NSGA-II uses:
(i) a faster non-dominated sorting approach, (ii) an elitist strategy,
and (ii) no niching parameter. Diversity is preserved by the use of
crowded comparison criterion in the tournament selection and in
the phase of population reduction. NSGA-II has been shown to
outperform other current elitist multi-objective evolutionary
z3

z6 (a)

z4

z2

z1

z0

d2

d1

d3

x5
x6

x4

x3

x1 x2

x0

y0

y6

z5

d6

(s)

(n)

Fig. 6. STANFORD robot.

Table 1
Denavit–Hartenberg parameters for an STANFORD robot (Saramago and Steffen,

2001)

Joint no. yi ai ai (m) di (m)

1 y1 �901 0 0

2 y2 901 0 1.2

3 0 0 0 d3

4 y4 �901 0 0

5 y5 901 0 0

6 y6 0 0 0

Table 2
Geometric and inertial parameters of STANFORD robot (Saramago and Steffen, 2001)

Joint no. M (kg) x̄ (m) ȳ (m) z̄ (m)

1 9.29 0 1.75 �11.05

2 5.01 0 �10.54 0.0

3 4.25 0 0.0 �64.47

4 1.08 0 0.92 �0.54

5 0.63 0 0.0 5.66

6 0.51 0 0.0 15.54
algorithms on a number of difficult test problems. Flowchart in
Fig. 4 shows an iteration of the NSGA-II.
3.2. Multi-objective differential evolution (MODE)

MODE can be categorized into a class of floating-point encoded
evolutionary algorithms. The theoretical framework of MODE is
very simple and MODE is computationally inexpensive in terms of
memory requirements and CPU times. Thus, nowadays MODE has
gained much attention and wide application in a variety of fields.
The advantages of MODE are its simple structure, ease of use,
speed and robustness (Babu and Anbarasu, 2005).

In a multi-objective domain, the goal is to identify the Pareto
optimal solution set. In this proposed multi-objective differential
evolution (MODE), a Pareto-based approach is introduced to
implement the selection of the best individuals. Firstly, a
population of size, NP, is generated randomly and the fitness
functions are evaluated. At a given generation of the evolutionary
search, the population is sorted into several ranks based on
dominance concept. Secondly, differential evolution (DE) opera-
tions are carried out over the individuals of the population. The
fitness functions of the trial vectors, thus formed, are evaluated.
One of the major differences between DE and MODE is that the
trial vectors are not compared with the corresponding parent
vectors. Instead, both the parent vectors and the trial vectors
are combined to form a global population of size, 2NP. Then,
the ranking of the global population is carried out followed by the
crowding distance calculation. The best NP individuals are
selected based on its ranking and crowding distance. These act
as the parent vectors for the next generation.

The procedure is carried out up to maximum generation
number. The Pseudo code for MODE algorithm (Babu and
Anbarasu, 2005) is presented later:

The following assumes that we are minimizing all the objective
functions, fq:
(1)
 Generate box, P, of Np parent vectors using a random-number
code to generate the several real variables. These vectors are
given a sequence (position) number as generated.
(2)
 Classify these vectors into fronts based on nondomination as
follows:
a. Create new (empty) box, P0, of size, Np;
b. Transfer ith vector from P to P0, starting with i ¼ 1;
c. Compare vector I with each member, say each member, say

j, already present in P0, one at a time;
d. If i dominates over j (i.e., i is superior to or better than j in

terms of all objective functions), remove the jth vector
from P0 and put it back in its original location in P;

e. If i dominated over by j, remove i from P0 and put it back in
its position in P;

f. If i and j are non-dominating (i.e., there is at least one
objective function associated with i that is superior to/
better than that of j), keep both i and j in P0 (in sequence).
Test for all j present in P0;
Ixx

0.

0.1

2.

0.

0.

0.
(kg m2) Iyy (kg m2) Izz (kg m2) Ia (kg m2)

276 0.255 0.071 0.953

08 0.018 0.100 2.193

510 2.510 0.006 0.782

002 0.001 0.001 0.106

003 0.003 0.0004 0.097

013 0.013 0.0003 0.020
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Table 4
Joints displacement for STANFORD robot (Saramago and Steffen, 2001)

Knot Joint 1 (rad) Joint 2 (rad) Joint 3 (m)

1 0.175 0.175 0.80

2 (Extra knot)

3 �0.056 0.356 1.12

4 �0.164 0.515 1.44

5 �0.138 0.679 1.43

6 �0.256 1.043 1.19

7 �1.013 0.920 0.30

8 �1.199 0.908 1.06

9 �1.329 1.260 0.92

10 �1.474 1.486 0.80

11 (Extra knot)

12 �1.745 1.396 1.2

Table 5
Variables limits for strategy 2

Variable Joint 1 Joint 2

Lower bound Upper bound Lower bound

gi
�2

0.18443503 0.38443503 0.11729967

gi
�1

0.06173106 0.26173106 �0.01246253

gi
0

0.07175214 0.27175214 �0.13759169

gi
1

0.15768338 0.35768338 �0.26014745

gi
2

0.28741420 0.48741420 �0.38162133

gi
3

0.44444368 0.64444368 �0.50452678

gi
4

0.32908217 0.82908217 �0.63907577

gi
5

0.69291174 1.09291174 �0.83742785

gi
6

1.00622795 2.03622795 �1.37344709

gi
7

4.14358694 4.64358694 �3.67697051

gi
8

14.6292457 18.6292457 �14.881515

gi
9

63.6720063 70.6720063 �69.740602

Variable Joint 4 Joint 5

Lower bound Upper bound Lower bound

gi
�2

0.09184290 0.29184290 0.12409651

gi
�1

0.03041082 0.23041082 �0.00495111

gi
0

0.03456371 0.23456371 �0.11639756

gi
1

0.07622646 0.27622646 �0.21784587

gi
2

0.13952944 0.33952944 �0.38388727

gi
3

0.21630670 0.41630670 �0.40845163

gi
4

0.30664648 0.50664648 �0.51068537

gi
5

0.43569399 0.63569399 �0.66224534

gi
6

0.75002699 0.95002699 �1.07886635

gi
7

2.02318380 2.22318380 �2.88520306

gi
8

8.11874463 8.61874463 �11.6913083

gi
9

33.5252846 35.5252846 �48.5373897

Table 3
Limiting parameters used for STANFORD robot (Saramago and Steffen, 2001)

Constraint Joint number

1 2 3 4 5 6

QC (rad) 3.1 3.1 1.5 3.1 3.1 3.1

VC (rad/s) 2.5 2.5 2.5 2.5 2.5 2.5

WC (rad/s2) 9.5 9.5 9.5 9.5 9.5 9.5

JC (rad/s3) 50 50 50 50 50 50

UC (N/m) 50 80 100 10 10 10

Joint 3—QC (m), VC (m/s), WC (m/s2), JC (m/s3), UC (N).
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g. Repeat for next vector (in the sequence, without going
back) in P till all Np are tested. P0 now contains a sub-box
(of size pNp) of nondominated vectors (a subset of P),
referred to as the first front or sub-box. Assign it a rank
number, Irank, of I; and

h. Create subsequent fronts in (lower) sub-boxes of P0,
using Step 2b above (with the vectors remaining in P).
Compare these members only with the members present
in the current sub-box, and not with those in earlier
(better) sub-boxes. Assign these Irank ¼ 2, 3, y. Finally,
we have all Np vectors in P0, boxed into one or more
fronts.
Joint 4 (rad) Joint 5 (rad) Joint 6 (rad)

0.087 0.174 0.105

�0.032 0.243 0.314

�0.151 0.312 0.524

�0.272 0.386 0.733

�1.001 0.333 1.525

�0.511 0.539 1.152

�0.522 0.760 0.990

�0.748 0.691 1.571

�0.867 0.763 1.781

�0.853 1.078 �1.389

Joint 3

Upper bound Lower bound Upper bound

0.31729967 0.64890760 0.84890760

0.21246253 0.06569432 0.26569432

0.33759169 �0.28421954 0.48421954

0.46014745 �0.50092491 0.70092491

0.58162133 �0.64194904 0.84194904

0.70452678 �0.74197351 0.94197351

0.83907577 �0.83039481 1.03039481

1.03742785 �0.97459290 1.17459290

1.57344709 �1.47956861 1.67956861

4.17697051 �3.91004991 4.11004991

16.8815155 �16.057886 18.0578860

62.7406020 �67.158242 69.1502426

Joint 6

Upper bound Lower bound Upper bound

0.32409651 0.11797939 0.31797939

0.20495111 0.04512642 0.24512642

0.31639756 0.06587169 0.26587169

0.41784587 0.14015748 0.34015748

0.51388727 0.24537981 0.44537981

0.60845163 0.37011316 0.57011316

0.71068537 0.50569105 0.71569105

0.86224534 0.62437125 0.92437125

1.27886635 1.03892045 1.43892045

3.08520306 3.33867121 3.83867121

13.6913083 13.4125361 15.4125361

50.5373897 55.4194857 57.4194857
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(3)
 Spreading out: evaluate the crowding distance, Ii,dist, for the
ith vector in any front, j, of P0 using the following procedure:
a. Rearrange all vectors in front j in ascending order of the

values of any one (say, the qth) of their several objective
functions (fitness functions). This provides a sequence,
and, thus, defines the nearest neighbors of any vector in
front j;

b. Find the largest cuboid (rectangle for two fitness functions)
enclosing vector i that just touches its nearest neighbors in
the f-space;

c. Ii,dist ¼ (1/2)� (sum of all sides of this cuboid);
d. Assign large values of Ii, dist to solutions at the boundaries

(the convergence characteristics would be influenced by
this choice).
(4)
 Perform DE operation over the NP target vectors in P0 to
generate NP trial vectors and store it in P00.
a. Create new (empty) box, P00 of size Np;
b. Select a target vector, i in P0, starting with i ¼ 1;
c. Choose two vectors, r1 and r2 at random from the NP

vectors in P0 and find the weighted difference. This is
carried out by the following steps: (1) Generate two
random numbers, (2) decide which two population
members are to be selected, and (3) find the vector
difference between the two vectors. Multiply this differ-
ence with F to obtain the weighted difference;

d. Find the noisy random vector. This is done by (1) generate a
random number, (2) choose a third random vector, r3, from
the NP vectors in P0, and (3) add this vector to the weighted
difference to obtain the noisy random vector;
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Fig. 7. Optimal motions of the robot joints obta
e. Perform crossover between the target vector and noisy
random vector to find the trial vector and put it in box P00.
This is carried out by (1) generate random numbers equal
to the dimension of the problem, (2) for each of the
dimensions: if random no. 4CR; copy the value from the
target vector, else copy the value from the noisy random
vector into the trial vector and put it in box P00;
ined
(5)
 Elitism: copy all the Np parent vectors (P0) and all the Np trial
vectors (P00) into box PT. Box PT has 2Np vectors
a. Reclassify these 2Np vectors into fronts (box PT0) using only

non-domination (as described in Step 2 above);
b. Take the best Np from box PT0 and put into box P000. The follow-

ing procedure is adopted to identify the better of the two
chromosomes. Chromosome i is better than chromosome j if

Ii;rankaIj;rank : Ii;rankoIj;rank,

Ii;rank ¼ Ij;rank : Ii;dist4Ij;dist.

This completes one generation. Stop if appropriate criteria
are met, e.g., the generation number4maximum number
of generations (user specified). Else, Copy P000 into starting box
P. Go to Step 2 above.
4. Performance measures and methods for multi-objective
optimization

In this section, two methods and four performance metrics
are recommended and applied to examine the strengths and
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weaknesses of the proposed multi-objective evolutionary algorithms.
Two methods (normalized weighting objective functions method
and average fitness factor method) are combinedly used to
select best optimal solution from Pareto optimal front. Two
multiobjective performance measures namely SSM and ratio of
non-dominated individuals are used to evaluate the strength of
Pareto optimal fronts. Two more multiobjective performance
measures namely optimizer overhead and algorithm effort are
used to find computational effort of NSGA-II and MODE
algorithms. These methods and metrics are chosen since they
have been widely used for performance comparisons in
multi-objective optimization (Tan et al., 2002).

4.1. Normalized weighting objective functions method

Multiple objectives are combined into scalar objective via
weight vector. Weights may be assigned through: direct assign-
ment, eigenvector method, empty method, minimal information
method and randomly determined or adaptively determined. If
the objective functions are simply weighted and added to produce
a single fitness, the function with largest range would dominate
evolution. A poor input value for the objective with the larger
range makes the overall value much worse than a poor value for
the objective with smaller range. To avoid this, all objective
functions are normalized to have a same range. For our problem,
the combined objective function (fc) is defined as follows:

Minimize f c ¼
a1z1

N1
þ
a2z2

N2
þ
a3z3

N3
(28)
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Fig. 8. Optimal motions of the robot joint
a1 ¼ 0.3, a2 ¼ 0.3 and a3 ¼ 0.4 are weightage values for objective
functions in strategies 1 and 2. N1 ¼10 and N2 ¼ 1000 and
N3 ¼ 1 are normalizing parameters of objective functions in
strategies 1 and 2 (average value of individual objective
functions).
4.2. Average fitness factor (Favg) method

The deterministic models proposed in the literature suffer
from real world optimal trajectory planning limitation due
to the fact that a decision maker does not have sufficient
information related to the different criteria. So he may not know
the weightage to be given to each objective function. In that
situation, he may use the average fitness factor method proposed
in this paper.

The average fitness factor given in Fig. 5 is a graphical
representation of the magnitude of each input. The F value is 1
at Zmin and 0 at Zmax for minimization of an objective function and
it is vice versa for maximizing an objective function.

The proposed fitness factor is as follows:

Fi ¼
Zimax � Zi

Zimax � Zimin
for minimization of objective function;

where Zi is the objective function (i is the objective function
number, i ¼ 1, y, 3 for this problem); Zmax is the maximum
objective function value; and Zmin is the minimum objective
function value.
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The solution that has the highest average fitness factor value
(Favg) is the best optimal solution, which gives a nondominated
solution.

For our problem, the average fitness factor is defined as
follows:

Favg ¼
F1 þ F2 þ F3

3:0
, (29)

where F1 ¼ (z1max�z1)/(z1max�z1min), F2 ¼ (z2max�z2)/(z2max�z2min),
F3 ¼ (z3max�z3)/(z3max�z3min).
4.3. Solution spread measure

While it is desirable to find more Pareto-optimal solutions, it is
also desirable to find the ones scattered uniformly over the Pareto
frontier in order to provide a variety of compromise solutions to
the decision maker. SSM represents the distribution of the
solutions along the Pareto front:

SSM ¼
df þ dl þ

PN¼1
i¼1 jdi ¼ d̄j

df þ dl þ ðN � 1Þd̄
, (30)

where N is the number of solutions along the Pareto front so there
are (N�1) consecutive distances, di is the distance (in objective
space) between each solution, d̄ is the arithmetic mean of all di

and df and dl are the Euclidean distances between the extreme
solutions and the boundary solutions of the obtained non-
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Fig. 9. Optimal motions of the robot joints
dominated set. Thus, a low performance measure characterizes
an algorithm with good distribution capacity.

4.4. Ratio of non-dominated individuals

This performance metric is defined as the ratio of non-
dominated individuals (RNI) for a given population X:

RNIðXÞ ¼
nondom_indiv

P
, (31)

where nondom_indiv is the number of non-dominated individuals
in population X and P is the size of population X. Therefore, the
value RNI ¼ 1 means all the individuals in the population are non-
dominated, and RNI ¼ 0 represents the situation where none of
the individuals in the population are non-dominated. Since a
population size of more than zero is often desired, there is always
at least one non-dominated individual in the population within
the range of 0oRNIo1.

4.5. Optimizer overhead

Total number of evaluations and total CPU time may be used
for testing the algorithm. This would be useful in indicating how
much time an optimization or simulated evolution process would
take in real world and to indicate the amount of program
overhead as a result of the optimization manipulations such as
those by evolutionary algorithm operators. More quantitatively,
JOINT 2

-8
-6
-4
-2
0
2
4

0

TIME (SEC)

Q
V
W

JOINT 4

8

6

4

2

0

2

4

0

TIME (SEC)

Q
V
W

JOINT 6

8
6
4
2
0
2
4
6
8

0

TIME (SEC)

Q
V
W

5 10

2 4 6 8 10

2 4 6 8 10

obtained from NSGA-II for strategy 1.



ARTICLE IN PRESS

R. Saravanan et al. / Engineering Applications of Artificial Intelligence 22 (2009) 329–342 339
the optimizer overhead (OO) may be calculated by

Optimizer overhead ¼
TTotal � TPFP

TPFP
, (32)

where TTotal is the total time taken and TPFP is the time
taken for pure function evaluations. Thus, a value of zero
indicates that an algorithm is efficient and does not have any
overhead. However, this is an ideal case and is not practically
reachable.
4.6. Algorithm effort

The performance in multi-objective optimization is often
evaluated not only in terms of how the final pareto-front is, but
also in terms of the computational effort required in obtaining the
optimal solutions. For this purpose, the algorithm effort is defined
as the ratio of the total number of functions evolutions Neval over a
fixed period of simulation time Trun:

Algorithm effort ¼
Trun

Neval
; ðTrun4T1stgenÞ \ ðTeval / NevalÞ. (33)

As shown in the above equation, for a fixed period of Trun, more
number of function evolutions being performed indirectly
indicates that less computational effort is required by the
optimization algorithm and hence resulting in a smaller algorithm
effort. The condition of Trun4T1stgen, where T1stgen is the
computation time for the first generation, should be hold that
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Fig. 10. Optimal motions of the robot joint
Trun and Neval are 40. This results algorithm effort is bounded in
the range of (0,N).
5. Numerical example

The optimal trajectory planning for STANFORD robot with six
degree of freedom is dealt in this paper (Fig. 6).

The Denavit–Hartemberg parameters of the STANFORD robot
are given in Table 1 (Saramago and Steffen, 2001). The dynamic
characteristics of STANFORD robot are given in Table 2 (Saramago
and Steffen, 2001). The robot is at rest initially, and comes to a full
stop at the end of the trajectory. So, _q1 ¼ _qm ¼ €q1 ¼ €qm ¼ 0 for all
joints. The velocity, acceleration, jerk and force constraints are
given in Table 3 (Saramago and Steffen, 2001).

5.1. Strategy 1

Knots from the Cartesian path of the hand are given in Table 4.
The optimum traveling time for the robot corresponds to the
minimization of a set of time intervals h1, h2, y, hm�1. This
technique leads to the maximization of the operation speed
(Saramago and Steffen, 1998, 1999, 2001). The joints of the robot
must be considered simultaneously.

The variables (time interval) limits used for strategy 1 are as
follows: 0.25ph1p0.45, 0.22ph2p0.68, 0.09ph3p2.10, 0.52p
h4p1.43, 0.16ph5p1.97, 0.51ph6p1.52, 0.88ph7p0.99, 1.01p
h8p2.01, 0.52ph9p2.12, 1.03ph10p2.23, 0.24ph11p2.34.
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5.2. Strategy 2

In this application, the aim is to obtain optimal trajectory (c1) of
the end-effectors considering obstacles. The initial and final trajectory
points of the end-effectors are: q1 ¼ [0.30rd, 0.50rd,�0.20rd,�0.05rd,
0.05rd, 0.10rd] and qm ¼ [0.51rd, �0.42rd, 0.58rd, 0.638rd, 0.835rd,
0.20rd]. B-spline curve has four-knot points. B-spline coefficients
(variables) limits used for the six joints are given in Table 5.

5.3. NSGA-II operators

The values of the parameter that have been used in the NSGA-II
technique are: variable type ¼ real variable, population size ¼ 100,
crossover probability ¼ 0.7, real-parameter mutation probability ¼
0.01, real-parameter SBX parameter ¼ 10, real-parameter mutation
parameter ¼ 100, and total number of generations ¼ 100.

5.4. Multi-objective differential evolution operators

The values of the parameter that have been used in the
proposed MODE technique are strategy ¼MODE/rand/1/bin,
Table 7
Optimum variables for strategy 2 from MODE

Variable Joint 1 Joint 2 Joint 3

gi
�2

0.2035135 0.21722654 0.754126

gi
�1

0.22394264 0.05348743 0.129470

gi
0

0.18118020 0.25570567 �0.120772

gi
1

0.26785997 0.20331466 �0.497660

gi
2

0.46221550 �0.36668976 �0.628109

gi
3

0.50937447 �0.47272424 �0.614954

gi
4

0.41923362 �0.54733788 �0.521063

gi
5

0.58946250 �0.28223616 �0.518538

gi
6

1.05865055 �0.35070459 �1.035900

gi
7

4.18845965 �2.21417693 �3.036878

gi
8

16.9794412 �10.2712284 �13.179675

gi
9

67.2458897 �50.4309285 �56.093692

Table 8
Optimum variables for strategy 2 from NSGA-II

Variable Joint 1 Joint 2 Joint 3

gi
�2

0.244351 0.217021 0.702154

gi
�1

0.111439 0.034740 0.089929

gi
0

0.259408 0.138924 �0.127737

gi
1

0.216808 �0.112566 �0.500438

gi
2

0.396138 �0.2563855 �0.499176

gi
3

0.568161 �0.354225 �0.713586

gi
4

0.677984 �0.631625 �0.829042

gi
5

0.750362 �0.7018930 �0.855355

gi
6

1.421522 �1.091552 �1.468983

gi
7

4.152590 �3.451813 �3.819794

gi
8

15.882278 �12.697895 �16.053774

gi
9

65.752426 �58.779152 �67.155579

Table 6
Optimum variables for strategy 1

h1 h2 h3 h4 h5

MODE 0.41 0.66 1.95 1.35 1.36

NSGA-II 0.36 0.31 0.48 0.73 0.72
crossover constant CR ¼ 0.9, number of population NP ¼ 500,
F ¼ 0.5 and total number of generations ¼ 100.
6. Results and discussion

From the proposed NSGA-II and MODE, the optimal displace-
ment (Q—rad or m), velocity (V—rad/s or m/s) and acceleration
(W—rad/s2 or m/s2) of all the links are shown by Figs. 7 and 8
for the strategy 2 and Figs. 9 and 10 for the strategy 1. From
Figs. 7–10, it is noted that the robot joints displacement, velocity,
acceleration are within their limiting values. So the obtained
trajectories are smooth. The optimum variables of best solution
obtained from various techniques for the strategies 1 and 2 are
given in Tables 6–8.

Optimum value of the objective functions of the best
solution for strategies 1 and 2 obtained from the SUMT
(Saramago and Steffen, 2001), NSGA-II and MODE are given in
Table 9. The Pareto optimal fronts obtained from NSGA-II
and MODE in strategies 1 and 2 are given in Figs. 11 and 12,
respectively.
Joint 4 Joint 5 Joint 6

0 0.19184290 0.22409651 0.2172539

36 0.03043552 0.14339086 0.19090760

96 0.23455965 0.24003441 0.14060400

09 0.27615953 �0.20298155 0.20282928

45 0.33948423 �0.37835822 0.27990106

14 0.41629592 �0.28868613 0.52145026

88 0.30665341 �0.48133283 0.52844817

62 0.63549420 �0.59882802 0.74546375

88 0.83661414 �0.83620383 1.35758182

62 2.04577136 �2.601031 3.63873836

4 8.42475949 �8.75816068 13.6060684

2 34.5286948 �35.9135327 56.9424306

Joint 4 Joint 5 Joint 6

0 0.1118429 0.3140965 0.201279

0.144738 0.105529 0.232784

0.123809 �0.061819 0.091267

0.228547 0.167384 0.334500

0.327311 �0.015280 0.279952

3 0.323714 �0.234120 0.466637

0.330822 �0.174536 0.5065748

0.525591 �0.383671 0.6894307

8 0.905506 �0.822831 1.1352605

76 2.189411 �2.710173 3.825449

8.332870 �8.833946 14.830821

34.225063 �22.285528 56.982727

h6 h7 h8 h9 h10 h11

1.35 0.89 1.52 0.94 1.78 0.30

1.09 0.94 1.31 1.44 1.18 1.59
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Fig. 12. Pareto optimal fronts obtained from NSGA-II and MODE for strategy 2.

Table 10
Average fitness factor from NSGA-II and MODE algorithms

Strategy 1 Strategy 2

Z1max 13.42 12.84

Z1min 8.4 2.52

Z2max 22170 29200

z2min 124.4 274.5

Favg

SUMT 0.320053 0.075581

NSGA-II 0.550415 0.580081

MODE 0.393754 0.630378

Table 11
Algorithm effort obtained from NSGA-II and MODE algorithms

Technique Simulation

time, Trun (s)

No. of function

evolution, Neval

Algorithm

effort

Strategy 1

NSGA-II 2 91 0.02198

MODE 2 131 0.01527

Strategy 2

NSGA-II 2 92 0.02174

MODE 2 138 0.01449

Table 12
SSM, RNI and OO obtained from NSGA-II and MODE algorithms

Strategy no. Technique SSM RNI OO

1 NSGA-II 0.80147 0.25 0.1416

1 MODE 0.98524 0.19 0.0473

2 NSGA-II 0.86238 0.16 0.1354

2 MODE 0.95746 0.15 0.0257

Table 13
Computational time to find Pareto optimal front

Strategy no. Computational time (s)

NSGA-II MODE

1 18 6

2 19 7
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Fig. 11. Pareto optimal fronts obtained from NSGA-II and MODE for strategy 1.

Table 9
Results obtained from SUMT (Saramago et al., 2001), NSGA-II and MODE

algorithms

Technique Time (z1) (s) Energy (z2)

(Nm)

Penalty for

obstacle

avoidance

(z3)

Combined

objective

function (fc)

Strategy 1

SUMT 8.6 22170 0 0.923100

NSGA-II 10.15 127.68 0 0.308330

MODE 12.51 124.7 0 0.379041

Strategy 2

SUMT 10.5 29200 0 1.191000

NSGA-II 5.2 276.42 0 0.164293

MODE 3.64 284.3 0 0.117729
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The algorithm that gives minimum combined objective
function (fc), the highest average fitness factor value (Favg),
minimum SSM, maximum ratio of non-dominated solutions
(RNI), minimum optimizer overhead (OO) and minimum algo-
rithm effort is the best optimization algorithm. The results
from NSGA-II and MODE for strategies 1 and 2 are listed in
Tables 10–12.

From Tables 9–12, it is observed that the NSGA-II gives
maximum ratio of non-dominated solutions (RNI) and minimum
SSM than those of the MODE in both strategies. Also NSGA-II gives
minimum combined objective function (fc) and maximum average
fitness factor value (Favg) than those of MODE and SUMT (Saramago
and Steffen, 2001) in strategy 1. But MODE gives minimum
combined objective function (fc) and maximum average fitness
factor value (Favg) than those of NSGA-II and SUMT (Saramago and
Steffen, 2001) in strategy 2. Also MODE technique is much better
than NSGA-II in terms of minimum optimizer overhead (OO) and
minimum algorithm effort. It is observed that MODE technique
converges quicker than NSGA-II. Also the computational time to
find out Pareto optimal front by using a HP computer (with
configuration of 640MB DDR RAM, 40 GB HDD, Pentium 4
Processor) in MODE is 1/3rd of that of NSGA-II. It is given in
Table 13. So MODE is faster than NSGA-II. From Figs. 11 and 12, it is
observed that NSGA-II gives more number of non-dominated
solutions than MODE. Also Pareto optimal front from NSGA-II is
better than that of MODE according to distance metric. So NSGA-II
technique is best one for this multi-criterion optimization problem,
if the user wants more number of solutions for his choice.

A threshold value is needed for SSM metric to determine if
‘‘uniformity’’ has been reached or not. Considerable research is going
on in fixing threshold value. Ideal value for SSM metric is zero. In our
problem, the value of SSM from NSGA-II and MODE are nearer to
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Table 14
Results of Mann–Whitney U-test

Strategy n1 n2 R1 R2 Case U mu su v

1 19 25 395 458 1 270 237.5 42.20486 0.770054

1 19 25 395 458 2 207 237.5 42.20486 �0.72267

2 15 16 181 231 1 179 120 25.29822 2.33218

2 15 16 181 231 2 129 120 25.29822 0.355756
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zero. So we can say that uniformity is reached among the solutions
of NSGA-II and MODE. In this paper, Mann–Whitney U-test with 95%
confidence level is used to find which algorithm is best according to
solution spreads. The procedure of the test is as follows:
1.
 Null hypothesis: Both NSGA-II and MODE are having better
solution spreads.
Alternate hypothesis. Either NSGA-II or MODE is having better
solution spreads than other. So there are two cases.
Case 1. If the calculated value of standard normal variate (v) is
less than its tabulated value for R1, we accept MODE is having
best solution spreads than NSGA-II.
Case 2. If the calculated value of standard normal variate (v) is
less than its tabulated value for R2, we accept NSGA-II is having
best solution spreads than MODE.
2.
 First the distance between adjacent solutions of Pareto optimal
fronts gave by NSGA-II and MODE are calculated. Then all
solutions are arranged in ascending order.
3.
 Ranks are given to all solutions by taking both NSGA-II and
MODE solutions in combined manner.
4.
 The values of n1, n2, R1, R2, U, mu, su and v are found out.
� n1 ¼ number of optimal solutions in Pareto optimal front

given by NSGA-II,
� n2 ¼ number of optimal solutions in Pareto optimal front

given by MODE,
� R1 ¼ sum of ranks of all optimal solutions in Pareto

optimal front given by NSGA-II,
� R2 ¼ sum of ranks of all optimal solutions in Pareto

optimal front given by MODE,
� U ¼ U statistic ¼ n1n2+n1(n1+1)/2�R, We may use R1 or R2

in place of R. We have considered the two options as two
cases. In case 1, R1 is considered for R and in case 2, R2 is
considered for R.
� mu ¼ mean of the sampling data of U statistic ¼ n1n2/2,
� su ¼ standard error of the U statistic ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2ðn1 þ n2 þ 1Þ=12
p

,
� and v ¼ standard normal variate ¼ (U�mu)/su.
5.
 The obtained results are given in Table 14.

6.
 In strategy 1, for both cases the calculated value of v is less than

its tabulated value (critical values for 95% confidence level
(�1.64,1.64)). We accept the null hypothesis. So both NSGA-II
and MODE are having best solution spreads in strategy 1.
7.
 In strategy 2, for case 2 the calculated value of v is less than its
tabulated value. But for case 1, the calculated value of v is not
less than its tabulated value. We don’t accept the null
hypothesis. We accept alternate hypothesis case 2. So NSGA-II
is having best solution spreads than MODE in strategy 2.

7. Conclusions

Two new general strategies using NSGA-II and MODE for the
off-line tridimensional optimal trajectory planning of the indus-
trial robot manipulator (STANFORD robot) in the presence of fixed
obstacles are presented. When dealing with fixed obstacles, both
the objective functions and the constraint functions have to be up-
dated simultaneously at each time instant. Two methods (normal-
ized weighting objective functions method and average fitness
factor method) are combinedly used to select best optimal
solution from Pareto optimal fronts. Two multi-objective perfor-
mance measures namely SSM and ratio of non-dominated
individuals are used to evaluate the strength of Pareto optimal
fronts. Two more multi-objective performance measures namely
optimizer overhead and algorithm effort are used to find
computational effort of NSGA-II and MODE algorithms. Two
numerical examples demonstrated the efficiency of the proposed
techniques. Both NSGA-II and MODE techniques are better than
SUMT (Saramago and Steffen, 2001). It is observed that MODE
technique converges quickly than NSGA-II. Also the computational
time to find Pareto optimal front in MODE is one-third of that
of the NSGA-II (Table 13). So MODE is faster than NSGA-II. From
Figs. 11 and 12, it is observed that NSGA-II gives more number of
non-dominated solutions than MODE. Also Pareto optimal front
from NSGA-II is better than that of MODE according to distance
metric. So NSGA-II technique is best for this multi-criterion
optimization problem, if the user wants more number of solutions
for his choice. To get more accurate and high flexible trajectory,
NURBS function with more number of control points will be
used to represent the trajectory in future work. This work opens
the door for further investigations on how the evolutionary
optimization techniques can be used to solve complex problems.
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