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Abstract—This letter analyzes the user-interference and outage
probability for single-cell multi-user massive multi-input-multi-
output (MIMO) systems with matched-filter (MF) precoding.
Existing performance studies on massive MIMO systems have
focused on the sum-rate by deriving the asymptotic determinis-
tic equivalence. In this work, we treat the user-interference as
random, and derive a tight closed-form approximation for the dis-
tribution of the interference power. This enables the analysis of the
outage probability. The derived results are shown to have accurate
match with the simulation.

Index Terms—Interference modeling, massive MIMO, MF
precoding, multi-user MIMO, outage probability.

I. INTRODUCTION

I N RECENT years, massive MIMO systems, where the base
station (BS) is equipped with hundreds antennas, emerge

as one key concept for the next generation wireless systems.
Massive MIMO can achieve all merits of conventional MIMO
systems with a much greater scale [1]. In addition, as the
number of BS antennas increases to infinity, the intra-cell inter-
ference and the noise can be averaged out due to the law of large
numbers [2]. There have been many results on different aspects
of massive MIMO [3]–[6].

As to the performance analysis of massive MIMO, existing
work focused on the sum-rate [7]–[9], where the asymptotic
deterministic equivalence of the signal-to-interference-plus-
noise ratio (SINR) was derived for different massive MIMO
scenarios. However, there are little results on other important
performance measure such as the outage probability. We found
three papers [10]–[12] related to the outage analysis. In [10], the
secrecy outage capacity of a massive MIMO relaying system
was studied, where the SINR at the eavesdropper is approxi-
mated based on channel hardening and an approximate SINR
distribution was derived. In [11], the secrecy outage probabil-
ity of multi-cell massive MIMO systems was analyzed, where
the SINR at the eavesdropper was shown to be equivalent to the
SINR of a multiple-branch minimum-mean-square-error diver-
sity combiner. For a point-to-point massive MIMO channel,
[12] proved that the mutual information approaches Gaussian
as the dimension increases, and the outage probability was
approximated using the Q-function.
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In this work, we analyze the outage probability of the down-
link of a single-cell multi-user massive MIMO system with
matched-filter (MF) precoding. Other than the theoretical sum-
rate, the outage probability is also important in evaluating the
user experience. For massive MIMO, although the sum-rate can
increase with more users, we will show that an excessively
large number of users can result in a low SINR and a large
outage probability, which is undesirable for carriers and cus-
tomers. This motivates the outage probability analysis in this
work. However, existing analysis for massive MIMO relies on
asymptotic deterministic equivalence to derive the sum-rate,
which cannot be used for outage probability. Due to the large
difference in system model, the outage probability analysis in
[10]–[12] do no apply for multi-user massive MIMO down-
link either. In this work, we propose a new analytical method
to study the outage probability. Compared to the deterministic
equivalence analysis, it preserves the randomness in the SINR
to enable the outage probability calculations.

Our novelty and contribution can be summarized as follows.
• For the multi-user massive MIMO downlink with MF pre-

coding, we conduct a refined analysis on the distribution
of the user-interference power, and derive its asymptotic
probability density function (pdf) in closed-form.

• Based on the interference analysis and calculations on the
variances of the signal power and interference power, an
approximation on the outage probability is derived, which
shows the outage probability behaviour with respect to
different network parameters.

• Simulations show that our analytical results are accu-
rate. Besides, for a massive MIMO system with a large
but finite number of antennas, the outage probability
increases rapidly to 1 as the number of users increases.
Also, for given numbers of BS antennas and users, the
outage probability does not decrease to zero as the total
transmit power increases due to user-interference.

The rest of the paper is organized as follows. In Section II,
we elaborate the multi-user massive MIMO system model.
In Section III, the pdf of the user-interference is derived and
its properties are discussed. An analytical outage probability
expression is derived in Section IV. Simulation results are given
in Section V and we draw conclusions in Section VI.

II. MULTI-USER MASSIVE MIMO SYSTEM MODEL

We consider a single-cell multi-user massive MIMO system
which has a BS and K single-antenna users. The BS is equipped
with M antennas where M is very large (M � 1), e.g., a few
hundreds [1], [2]. Rayleigh flat-fading channels are considered.
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Let hk be the 1×M channel vector from the BS antennas to
the kth user. Entries of h1, · · · ,hK are independent and identi-
cally distributed (i.i.d.) each following CN (0, 1), the circularly
symmetric complex Gaussian distribution with zero-mean and
unit-variance. In addition, perfect CSI at the BS is assumed.

Let x1, · · · , xK be the independent data symbols intended
for the K users under the normalization: E(x2

k) = 1, where E

is the expectation operator. MF precoding is considered, where
the symbol of each user is pre-coded by the Hermitian of its
channel vector. MF precoding is a popular scheme for massive
MIMO due to its low computational complexity, robustness,
and high asymptotic performance. With MF precoding, the
transmitted signal vector from the BS to all users is

s =

√
Pt

KM

K∑
k=1

hH
k xk,

where Pt is the average total transmit power of the BS and (·)H
denotes the matrix Hermitian.

The received signal at the kth user is given by

yk =

√
Pt

KM
hkh

H
k xk +

√
Pt

KM

K∑
j=1,j �=k

hkh
H
j xj + nk, (1)

where nk is the additive Gaussian noise with zero-mean and
unit-variance. All noises are assumed to be independent with
unit-power. The SINR of the kth user can be calculated as

SINRk =
Pt

KM |hkh
H
k |2

1 + Pt

KM

∑K
j=1,j �=k |hkhH

j |2
. (2)

To understand the performance of the massive MIMO system,
we analyze the statistical properties of SINRk. Especially, the
statistical properties of the interference term in the denominator
of (2) are crucial.

III. ANALYSIS ON THE INTERFERENCE POWER

In this section, we analyze the user-interference. Instead of
using asymptotic deterministic equivalence to find the average
interference power, we study its random behaviour and derive
a closed-form approximation of its pdf. Discussions on the
properties of the pdf are also provided.

To help the presentation, we use Yk to denote the power of
the interference experienced by User k, i.e.,

Yk � 1

M

K∑
j=1,j �=k

|hkh
H
j |2.

The following proposition is proved.
Proposition 1: Define

η =
K − 1√

M +K − 2
. (3)

When M � 1, the pdf of Yk has the following approximation:

fYk
(y) = (1− η)

∞∑
i=0

ηiφ

(
y;K + i− 1, 1− 1√

M

)
, (4)

where φ(y;α, β) = yα−1e−y/β

βα(α−1)! , y > 0 is the pdf of Gamma
distribution with shape parameter α and scale β.

Proof: See the appendix. �
Next, we discuss the properties of the pdf for the interfer-

ence power. It can be seen from (4) that the interference power
has a mixture distribution of infinite Gamma random variables
with the same scale parameter 1− 1/

√
M but different shape

parameters. Also, the distribution is independent of the user
index k.

From Proposition 1, the asymptotic deterministic equiva-
lences of the SINR, and thus the system sum-rate can be
derived. With (4), by straightforward calculations, we have
E(Yk) = K − 1. Denote

Xk � 1

M
|hkh

H
k |.

Since entries of hk are i.i.d. following CN (0, 1), Xk has the
pdf of Gamma distribution φ(y;M, 1/M). Thus, E(X2

k) =
1 + 1/M . Under the law of large numbers and by approximat-
ing the interference power with its expectation, the asymptotic
deterministic equivalence of the SINR can be obtained as

SINRk,asym =
M

K

Pt(1 +
1
M )

1 + Pt
K−1
K

. (5)

When K,M → ∞ but with fixed ratio, we have

SINRk,asym → M

K

Pt

1 + Pt
, (6)

which is the same as the SINR result derived in [7]. The asymp-
totic sum-rate is given by Rasym = K log(1 + SINRk,asym).
The result in (5) has a tighter match with the simulated average
SINR than (6), especially for small K and finite M . The figure
is not shown due to the space limit.

The interference power pdf in (4) is in an infinite summation
form. In reality, we can only evaluate it with finite terms. An
approximation with the first L terms is as follows:

fYk,L(y) =
1− η

1− ηL

L−1∑
i=0

ηiφ

(
y;K + i− 1, 1− 1√

M

)
. (7)

The coefficient (1− ηL)−1 is to guarantee
∫∞
0

fYk,Ldy = 1.
When L = 1, we get

fYk,1(y) = φ

(
y;K − 1, 1− 1√

M

)
. (8)

This L = 1 approximation can also be obtained by assuming
that the K − 1 terms in Yk are independent to each other.

But notice that with the same scale, Gamma distribution with
a larger shape parameter has a large tail. The approximations in
(7) and (8) ignore large tail terms. They can be loose on the
distribution tail and are inappropriate in the outage probability
derivation. In what follows, we derived an closed-form formula
for the pdf, which enables us to analyze the outage probability
accurately.
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Corollary 1: The pdf of Yk can be rewritten into the follow-
ing closed-form:

fYk
(y) =

√
M√

M +K − 2
η−(K−2)

[
e
−

√
M√

M+K−2
y

−e
−

√
M√

M−1
y
K−3∑
n=0

( √
M√

M − 1
η

)n
yn

n!

]
. (9)

Proof: Notice that

∞∑
i=0

ηiφ

(
y;K + i− 1, 1− 1√

M

)

=

√
M√

M − 1
η−(K−2)e

−
√

M√
M−1

y

( ∞∑
n=0

−
K−3∑
n=0

)

×
( √

M√
M − 1

η

)n
yn

n!
.

By Taylor series for exponential function and straightforward
calculations, we can obtain (9). �

IV. OUTAGE PROBABILITY ANALYSIS

In this section, we derive the outage probability based on the
interference power pdf provided in (9). Let

Pu � Pt/K,

which is the transmit power per user. From (2), the SINR of
User k can be written as SINRk = PuM ·X2

k/(1 + PuYk). We
first study the variances of X2

k and 1 + PuYk respectively. With
straightforward calculations, we have

Var(X2
k) = 4/M +O(1/M2).

For the interference term, by using the pdf in (4), we can show

Var(Yk) = K − 1 + (K − 1)(K − 2)/M.

Thus, the variance of 1 + PuYk is given by

Var(1 + PuYk) = P 2
u

[
K − 1 +

(K − 1)(K − 2)

M

]

>
P 2
t (K − 1)

K2
.

When M → ∞, the variance of the desired signal power
X2

k decreases to 0, meaning that the signal power becomes
deterministic. However, this is not the case for the interfer-
ence power, whose variance is not negligible for reasonable
K and Pt, and is significantly larger than the variance of
the signal power when P 2

t M � K. Thus for tractable anal-
ysis, we treat X2

k as deterministic and approximate it by its
average. This is the same as using asymptotic deterministic
equivalence for M → ∞. But different to existing work, we
keep Yk as a random variable in the outage probability analysis
below.

Fig. 1. PDF of Y1 where M = 100.

Let γth be the SINR threshold. The outage probability of
User k can thus be approximated as follows.

Pout = P

(
PuM

X2
k

1 + PuYk
< γth

)

≈ P

(
PuM

1 + 1
M

1 + PuYk
< γth

)

=

{
1 if γth ≥ MPu

P

(
Yk > M+1

γth
− 1

Pu

)
otherwise

.

When γth ≤ MPu, from (9), we have the outage probability
results as shown in (10), where Γ(s, x) �

∫∞
x

ts−1e−tdt is the
upper incomplete gamma function. The result in (10) can help
the design of massive MIMO systems for the desired outage
level. For example, we can derived how many users can be
served simultaneously by the massive BS for a given γth value.

Pout ≈
√
M√

M +K − 2
η−(K−2)

[∫ ∞

M+1
γth

− 1
Pu

e
−√

M√
M+K−2

y
dy

−
K−3∑
n=0

ηn

( √
M√

M − 1

)n ∫ ∞

M+1
γth

− 1
Pu

yn

n!
e
−

√
M√

M−1
y
dy

]

= η−(K−2)e
−

√
M√

M+K−2

(
M+1
γth

− 1
Pu

)
− (1− η)

×
K−3∑
n=0

1

n!
ηn−K+2Γ

(
n+ 1,

√
M√

M − 1

(
M + 1

γth
− 1

Pu

))
.

(10)

V. SIMULATION RESULTS

In this section, we show simulation results to verify the
derived results on the pdf of Yk and the outage probability.

In Fig. 1, for a system with M = 100 and K = 10, 30, the
simulated pdf (via Monte-Carlo simulation) of the interference
power for User 1 Y1 is shown and compared with the approx-
imate pdf in (7) for L = 10, the approximation in (8), and
the closed-form pdf in (9). This figure shows that (9) matches
tightly with the simulation for all y range and both K values.
The L = 1 approximation in (8) has significant offset to the left,
thus underestimates the distribution tail. The L = 10 approxi-
mation has a better match than (8). But for K = 30, it also has
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Fig. 2. Outage probability vs. K. Pt = 10 dB. γth = 10 dB.

Fig. 3. Outage probability vs. M . K = 10, γth = 10 dB.

Fig. 4. Outage probability vs. Pt. K = 10, γth = 10 dB.

noticeable offset and underestimates the tail of the distribution
as we have discussed in Section III.

Fig. 2 shows the outage probability for different number of
users. Our analytical result in (10) has a tight match. When
M = 100, Pt = 10 dB, γth = 10 dB, the outage probability is
more than 10% when there are 7 users or more. Notice that
on the other hand, the system sum-rate monotonically increases
with K. This shows the importance of outage probability anal-
ysis. As K increases, even though the theoretical sum-rate
increases, more users will be in outage and the actual system
throughput can be very low.

Fig. 3 shows the outage probability for different number
of antennas. It can be seen that the analytical result is accu-
rate even for small M . Fig. 4 shows the outage probability
for different transmit power. we can see that even when Pt

increases, the outage probability does not decrease to zero. This

is due to the user-interference, whose power increases with the
transmit power. Both figures show that increasing the num-
ber of BS antennas can largely improve the outage probability
performance.

VI. CONCLUSIONS

This paper analyzes the interference and outage probabil-
ity of a single-cell multi-user massive MIMO system downlink
with MF precoding. We derive the interference power distribu-
tion, and then obtain an analytical outage probability formula.
Our analysis is different to the asymptotic deterministic equiva-
lence analysis widely used in massive MIMO. The accuracy of
the derived results is validated by simulations.

APPENDIX

PROOF OF PROPOSITION 1

When M → ∞, from the Lindeberg-Lévy central limit the-

orem, we have 1√
M
hkh

H
j

d→CN (0, 1) for k 	= j, where
d→

means convergence in distribution. Then 1
M |hkh

H
j |2 converges

to Gamma distribution φ(y; 1, 1). Next, we calculate the cor-
relation coefficient of 1

M |hkh
H
j |2 and 1

M |hkh
H
l |2 for j 	= l,

which is denoted as ρjl. Since hk’s are mutually independent,
after tedious calculations, we can show that

ρjl =
cov

(
1
M |hkh

H
j |2, 1

M |hkh
H
l |2)√

Var
{

1
M |hkhH

j |2
}
Var

{
1
M |hkhH

l |2} =
1

M
.

So 1
M

∑K
j=1,k �=j |hkh

H
j |2 is a sum of K − 1 correlated

Gamma random variables with the same shape parameter of
1 and the same scale parameter of 1. The correlation coeffi-
cient is 1/M . From Corollary 1 of [13], the pdf of 1

M

∑K
j=1,j �=k

|hkh
H
j |2 is

fYk
(y) =

K−1∏
i=1

(
σ1

σi

) ∞∑
j=0

δjy
K+j−2e−y/σ1

σK+j−1
1 Γ(K + j − 1)

, (11)

where σ1 ≤ σ2 ≤ · · · ≤ σK−1 are the ordered eigenvalues of
the (K − 1)× (K − 1) matrix A, whose diagonal entries are
1 and off-diagonal entries are 1/

√
M , and δj’s are defined

iteratively as

δ0 � 1, δj+1 � 1

j + 1

j+1∑
m=1

[
K−1∑
n=1

(
1− σ1

σn

)m
]
δj+1−m.

(12)

As A is a circulant matrix whose off-diagonal entries are the
same, its eigenvalues can be calculated to be

σ1 = · · · = σK−2 = 1− 1√
M

,σK−1 = 1 +
K − 2√

M
. (13)

Using (12)–(13), after some calculations, we have

δj =

(
1−

√
M − 1√

M +K − 2

)j

. (14)

Substituting (13) and (14) into (11), we conclude the proof.
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