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Abstract

Spalart-Allmaras (SA) is a turbulence model for modeling different type of turbulent flows, specifically

aerodynamic flows. Different terms of the governing equation of this model (e.g. production, diffusion

and destruction), just like the other turbulence models, were modified after 1992, when it was published

by Spalart & Allmaras. In this literature review, we will first go through the details of the governing

equation of this model and after understanding the role of each term and reasoning behind it, we will

discuss the different proposed modifications for this model and concentrate on the one that we have used

in my research and discuss how the modification effects the SA model by comparing the results from SA

with other turbulence models.

1 Introduction

Computational Fluid Dynamics (CFD) is becoming more and more popular every day, since on one hand the

advanced technology is providing desktop computers with huge memory capacity and powerful processors for

unbelievably cheap prices, which are capable of solving large two and three dimensional problem numerically

just in few days. On the other hand CFD commercial packages, like FLUENT, make performing numerical

simulation easier than any other time.

However this easy access to the required tools for doing different type of CFD works, does not mean

that anybody can produce correct and physically meaningful results for any problem. The important point

for being able to have a successful and meaningful numerical simulation is to have sufficient core knowledge

about the numerical model that is being used and being aware of choosing the right parameters and options

for the numerical model. It is possible that one can run a simulation successfully, but the results does not

make any physical sense or even be totally wrong!

In this paper we will review one of the common turbulence models, called Spalart-Allmaras model, which

was basically developed to model aerodynamic flows. At first we will go through the details of each term of

the its governing equation and then we will explain different proposed modification for that. In the end we

are going to concentrate on one of those modifications, go through details of it and present some results to

compare the modified model with other available turbulence models.
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2 Spalart-Allmaras Governing Equation

2.1 The Basic Equations

Spalart-Allmaras is a one-equation turbulence model, that has been developed mainly for aerodynamic flows.

This model is basically a transport equation for the eddy viscosity. The key idea that Spalart & Allmaras

used to develop this equation is very similar to the model of Nee & Kovasznay.

In order to develop a closed system of governing equations for the mean motion of the flow, one should

determine the distribution of the Reynolds stress. The various terms in the equation for the Reynolds stress

can be identified as convection, diffusion, production and destruction. Both Nee-Kovasznay (NK) [1] and

Spalart-Allmaras (SA) [2] made a simple “educated guess” concerning the various terms such as diffusion,

production and destruction based on the physics of the turbulent flow. The dependent variable in both of

these models is the eddy viscosity, which is related directly to Reynolds stress as follow:

νt =
u′v′

du/dy
(1)

The eddy viscosity is considered to be governed by a rate equation and therefore it is dependent on the

past history through convection and on nearby values through diffusion. Generally any transportable scalar

quantity, like eddy viscosity, subject to the conversion laws is transported according to the following equation,

which is the basic equation for both NK and SA model:

DF

Dt
=
∂F

∂t
+ (u · ∇)F = Diffusion + Production−Destruction (2)

To construct the full model for a turbulent flow, each of the diffusion, production and destruction terms

should be defined carefully. Defining these terms and make them non-dimensional will results to some

additional constants and non-dimensional functions in each term. Those constants and functions will be

defined based on the available experimental and numerical results. Nee & Kovasznay did a better job on

describing how they defined each of these terms in compare to Spalart & Allmaras, therefore we will present

both method for defining understanding the reasoning and philosophy behind the above terms and then we

will concentrate on SA model and continue with their notation through the rest of this literature review.

2.2 Diffusion

NK consider the general definition for the diffusion of a scalar F by the following equation:

Diffusion = ∇ · ϕF (3)

where ϕF is the flux of quantity F due to diffusion and is given by ϕF = DF∇F , where DF is the coefficient

of diffusion. They also consider the total viscosity n = ε + ν as the transportable quantity, where ε is the
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eddy viscosity and ν is the molecular viscosity. They assume that since the turbulent motion diffuses by

itself, it is reasonable to assume the coefficient of diffusion as Dn = n, therefore as a result in any case the

turbulent Prandtl number and Schmidt number are approximately equal to one Dn/n ≈ 1. Considering all

of the above assumptions the diffusion term based on NK representation will be given as follow:

Diffusion = ∇ · (n∇n) (4)

SA representation for the diffusion term is a little different in compare to the one by NK. They consider the

classical diffusion operator as ∇ · ([νt/σ]∇νt), where νt is the eddy viscosity and σ is a turbulent Prandtl

number. Up to this point the two representations are exactly the same, considering that the turbulent

Prandtl number is approximately equal to one and the molecular viscosity does not play a major role, since

in such turbulent flows (e.g. aerodynamic flows) the energy and information cascades flow only from the

larger scales to the small scales.

The difference comes from the point where SA argue that there is no reason why the integral of νt

should be conserved. They point out the manipulations of two equation models often brings out diffusion

terms that are not conservative, for example cross terms between ∇k and ∇ε. Therefore analogues to this

explanation they allow a non-conservative diffusion term, involving first derivative of νt in their diffusion

term and in the end their representation of diffusion term will be given as follow:

Diffusion =
1
σ

[∇ · (νt∇νt) + cb2(∇νt)2] (5)

Note that the first term on the right hand side of the above equation is the same as the diffusion represen-

tation by NK and the difference is due to the second term only.

2.3 Production

In NK model it has been stated that ”The eddy viscosity can be regarded as the ability of a turbulent

flow to transport momentum. The ability must be directly related to the general ”level of activity“ and

therefore, to the turbulent energy”. Based on this argument, they define the production term analogues to

the production of turbulent energy, assuming that production term must increase monotonically with the

magnitude of the mean vorticity |∂U∂y | and also with the increasing of the total viscosity. Therefore the most

straight forward form for the production term can be represent as follow:

production = A(n− ν)|∂U
∂y
| (6)

where A is a universal constant, n is the total viscosity and |∂U∂y | is the mean vorticity. Note that if we

substitute the definition of n in the above equation, the production term will be linearly dependent on the

eddy viscosity and mean vorticity, which is a very similar to the form of production term in SA model.

The main difference between NK and SA model for defining the production term is consideration the

appropriate form of mean vorticity. Since NK model the turbulent shear flow, then the form of |∂U∂y | was
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the best choice for their model, but SA flow of interest is mainly the aerodynamic flows in which turbulence

is found only where vorticity is. As a result they used the magnitude of the vorticity ω ≡
√

2ΩijΩij where

Ωij ≡ ∂Ui/∂xj − ∂Uj/∂xi, as the appropriate form of mean vorticity. Have this in mind that other forms of

mean vorticity are also available and can be used in formulating the production term. SA has mentioned few

of them in their original paper, but they said that they have not yet tasted the model with those proposed

terms. The interesting point is that, one of the modifications that was considered for SA model was based

on the choice of the mean vorticity in production term, which we will discuss in the later section of this

literature review. In the end the production term defined by SA was as following, where cb1 is a constant:

production = cb1Sνt (7)

S ≡
√

2ΩijΩij Ωij =
1
2

(
∂Ui
∂xj
− ∂Uj
∂xi

) (8)

2.4 Destruction

NK again used the same assumption that the eddy viscosity can be considered as the ability of a turbulent

flow to transport momentum and the ability must be directly related to the general ”level of activity“,

therefore to the turbulent energy to construct the destruction term. They argue that the rate of decay of

the energy of high-intensity homogeneous turbulence is, to a very rough approximation inversely proportional

to the square of the energy as follow:
du2

dt
= −β(u2)2 (9)

Separating the terms of the above equation and integrating both sides, will lead to a decay law as follow:

u2 ∼= 1/βt (10)

Since the rate equation (2), considering the quantity ”F” to be the total viscosity ”n”, in the absence of the

production and diffusion term will reduce to the following form:

∂n

∂t
= −Destruction (11)

based on NK assumption of similar behavior of total viscosity and turbulent energy, it can be considered

that Destruction ∼= βn2. In the end based on the above assumptions and dimensional considerations the

final form of destruction term will be as follow:

Destruction =
B

L2
n(n− ν) (12)

where B is a universal constant and the characteristic length L has been introduced in order to make B a

non-dimensional universal constant. Generally L is a function of y, but in the region of the outer edge of a

turbulent flow L can be considered to be equal δ, where δ is the boundary layer thickness. However closer to

the wall L = y turn out to be a good approximation. The dependence of the destruction term on distance
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from the wall turns out to be quite necessary to account for the high rate of dissipation in the proximity of

solid boundaries, where the maximum dimension of the dissipating eddies in the direction perpendicular to

the flow must be the same as the distance from the wall.

Representation of SA for the destruction term is close to the way that NK present their destruction term.

The only difference is that SA defined a non-dimensional function beside the constant in that term. SA

argue that in a boundary layer the blocking effect of a wall is felt at a distance through the pressure term,

which acts as the main destruction term for Reynolds shear stress, therefore based on this assumption and

dimensional analysis, the first form of destruction term would be −cw1(νt/d)2, where d is the distance to

the wall and cw1 is a constant. Tests show that the model, on one hand when equipped with the destruction

term, can produce an accurate log layer. On the other hand it produces too low a skin friction coefficient in a

flat plate boundary layer. This shows that the destruction term as formulated, decays too slowly in the outer

region of the boundary layer. To overcome this problem SA multiplied the first form of the destruction term

by a non-dimensional function fw which equals to 1 in log layer. In the end the final form of the destruction

term will be as follow:

Destruction = −cw1fw(
νt
d

)2 (13)

From now on we will only discuss the SA model and stick to the corresponding notations that we introduced

so far. In the next section we will talk about the calibration that SA did to find the best values for the

defined constants and also the way that they defined their non-dimensionalized functions.

3 Calibration of Spalart-Allmaras Model

As it has been seen in the previous sections, each term in the main equation of SA model includes constants

and non-dimensional functions. The procedure for evaluating and defining the appropriate form for these

constants and non-dimensional functions respectively is called calibration. In the process of calibration,

constants and functions will be defined with help of experimental and numerical results of the type of a flow

that should be modeled. The basic assumptions that we talked about in previous sections are also helpful

to recognize the range of constants.

SA calibrate the free shear flow version of the model by requiring correct levels of shear stress in two

dimensional mixing layers and wakes. Appropriate values for the peak shear stress were considered to

be 0.01(∆U)2 and 0.06(∆U)2 for the mixing layer and wake respectively, where ∆U is the peak velocity

difference. This gave SA two conditions for three free constants cb1, σ, and cb2, and leaves a one dimensional

family of solutions which is shown in Fig. 1 parametrized by the Prandtl number σ.

Based on the above results and observations in the numerical simulation results, SA suggested the
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Figure 1: Calibrated model constants.

following values for constants:

σ = 2/3 cb1 = 0.1355 cb2 = 0.6220 (1 + cb2)/σ ≈ 2.4 (14)

Now the only remained constant and non-dimensional function to be defined is the one in the definition

of destruction term. SA argued that in a classical log layer, where with friction velocity uτ and turbulent

kinetic energy k, the strain rate tensor and eddy viscosity are defined as S = uτ/(kd) and vt = uτkd

respectively, consideration of equilibrium between the production, diffusion and the destruction term is

possible, provided that the constant cw1 in the destruction term is defined as function of other constants as

follow:

cw1 = cb1/k
2 + (1 + cb2)/σ (15)

SA defined the non-dimensional function fw inspired by algebraic models, in which the mixing length plays

a major role near the walls. This length scale is defined by l ≡
√
νt/S and square of l/kd was used to make

the following non-dimensionalization:

r ≡ νt
Sk2d2

(16)

Note that both r and fw equal to one in the log layer and decrease in the outer region. In the end a

satisfactory form for the non-dimensional function fw for SA has been defined as follow:

fw(r) = g

[
1 + c6w3

g6 + c6w3

]1/6

, g = r + cw2(r6 − r) (17)

The above function is shown in Fig. 2. The results are most sensitive to the slope of fw at r = 1, which

is controlled by cw3. The step from g to fw works as a limiter that prevents large value of fw, which could

6



be problematic for the numerical simulations and give an undeserved importance to the fact that S may

vanish. The region r > 1 is exercised only in adverse pressure gradients, and then rarely beyond r = 1.1.

Having fw(0) = 0 is not essential, since in free shear flows the destruction term vanishes on account of the

d2 in its denominator. According to calibration reasonable values for cw3 and cw2 is 2 and 0.3 respectively.

Figure 2: fw function involved in the destruction term.

4 Final Form of Spalart-Allmaras Model

For the buffer layer and viscous sublayer, SA introduced two new variables ṽ, which is equal to vt except

in the viscous range and X ≡ ṽ/ν. They followed Baldwin and Barth[3] in choosing a transported quantity

ṽ, which behaves linearly near the wall. This is beneficial numerical solutions, since ṽ is easier to resolve

than U itself, in contrast with other variables like dissipation rate ε or turbulent kinetic energy k. Therefore

SA model doesn’t require a finer grid in compare to k − ω or k − ε models. In order to arrive at this SA,

considered the classical log layer and devise near-wall ”damping functions” that are compatible with know

results. These functions are different than fw which was a near wall inviscid destruction term.

As it was mentioned before the reason for introducing new variable ṽ, was that the eddy viscosity vt equals

kyuτ in the log layer but not in the buffer layer, therefore ṽ was defined so that it equals to kyuτ all the

way to the wall. This result to the following equation:

vt = ṽ ∗ fv1, fv1 =
X3

X3 + c3v1
(18)
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SA state that fv1 function has been borrowed from Mellor and Herring and the appropriate value for cv1

was chosen to be equal to 7.1.

Considering ṽ as a new variable, affects the definition of production term by changing the way that

scalar norm of the strain rate tensor S was defined. The new definition for S will be denoted by S̃ and is

defined as follow:

S̃ ≡ S +
ṽ

k2d2
fv2, fv2 = 1− X

1 +Xfv2
(19)

where fv2 has been constructed, just like fv1, so that S̃ would maintain its linear behavior in log layer all

the way to the wall. S̃ is singular at the wall, but as long as ṽ would be be zero there (at d = 0), therefore

the production term is well behaved. The other quantities involved in the ”inviscid“ model will be defined

in terms of ṽ instead of vt, for example r ≡ ṽ/(S̃k2d2). In the end SA insert the molecular viscosity in a

convenient place in order pay little attention to a factor of σ and the final form of the transport equation

and basically governing equation of Spalart-Allmaras will be as follow:

Dṽ

Dt
= cb1S̃ṽ +

1
σ

[
∇ · ((ν + ṽ)∇ṽ) + cb2(∇ṽ)2

]
− cw1fw

[
ṽ

d

]2

(20)

5 Modifications for Spalart-Allmaras Model

In the very last section of the original paper by Spalart and Allmaras[2], they talked about the potential

modifications and alternative options that can be considered for each of the terms in the one equation

that governs their model. For example, they stated that there is a modification for the non-dimensional

function fw in the region r > 1 or there is the choice of S, between the vorticity, the strain rate, or another

scalar norm of deformation. These comments state that, the values of constants or definition of the non-

dimensional functions are not universal and can be modified in future. Sometimes it might turn out that

the evaluated constant or defined non-dimensional function is under- or overproducing a specific term in the

turbulent flow. This can be regarded as the nature of turbulent modeling and what makes this field of study

interesting and attractive for scientists to learn more about different aspects of this field of study and try to

model this chaotic flows as close to the real world and possible. In the next two sections we will first briefly

explain proposed modifications and second concentrate and discuss the works that has been done recently

to look at the modification of variable S in the production term, which turn out to be a problem specially

when SA model is being used for modeling highly vortical flows (e.g. wake of a wind or tidal turbine).

In one of our recent presentations at American Physical Society conference[4], we received a comment

on the turbulent model that we were using for modeling the turbulent wake of the NREL phase VI wind

turbine. The comment basically was that Spalart-Allmaras, the chosen turbulence model in our work, is not

capable of modeling highly vortical flows accurately. Although at that time we had validated our numerical

simulations against the famous report by NREL, which was about experimental results of testing the NREL
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Phase VI turbine in a NASA Ames wind tunnel, we found that comment very interesting and start doing

research about it to find out whether this comment is valid or not? During our research we found a paper

by Potsdam & Pulliam[5], which was presented at the AHL Specialist’s Conference on Aeromechanics that

was addressing the problem that non-modified SA model has with highly vortical flows. They stated in

their paper that the typical dependence of the eddy viscosity production term on vorticity is problematic for

highly vortical flows. They claim that the eddy viscosity can be drastically over-produced in the vortex core

with non-modified SA model or any other model in which the production term depends on vorticity solely.

In order to ameliorate this and other difficulties resulted from this over-predication, Potsdam & Pulliam

proposed five different modifications for this type of turbulent flows and ran different type of simulations

for different cases of highly vortical flows to study the effect of each modification. Going through the details

of each of these modifications and modelings is beyond the scope of this literature review, therefore we will

just briefly explain each of them in the following section and then concentrate on the one, that we used for

our simulations and work, in the section after that and in the end show how that particular modification

modified SA model in compare to other turbulence models.

5.1 Proposed Modifications by Potsdam & Pulliam

Following is a brief explanation of existing turbulence models and modifications from Potsdam & Pulliam

paper to include the effect of rotation in highly vortical flows and account for this non-physical dependence:

1- Turbulence models which explicitly include rotation and curvature terms do not suffer from the over-

production of eddy viscosity. This includes the full Reynolds Stress turbulence models (RSM). They are

however, still quite expensive, and yet to fully show improved accuracy.

2- Rotation and curvature have been developed for application to a range of turbulence models. Spalart

proposes an empirical alteration to account for rotation and curvature by introducing additional Galilean

invariant, higher derivative terms[6].

3- A simpler correction has been proposed by Dacles-Mariani and was originally implemented for the

production term, P , of the Baldwin-Barth model as follow:

P = c1vRtS (21)

where c1 is a constant, v is the laminar viscosity, Rt is the turbulent Reynolds number and S is a scalar

measure of the deformation tensor. This modification is very similar to the one that we used and validated

in our research against experimental data form NREL and other turbulence models. We will go to details

of this modification in the next section.
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4- A simple alternative is to turn off the production terms in the off-body grid wake region. This is

typically only possible in multi-block or overset mesh systems. Based on this assumption the turbulence that

is generated elsewhere can still convect, dissipate, and diffuse, but it can not be produced. This modification

has some physical basis, as experimental studies on wing tip vortices have found reduced turbulence levels

and analytical studies indicate laminar diffusion mechanisms due to the solid body rotation in the vortex

core.

5- An even simpler ad hoc modification includes completely turning off the turbulence model in the wake

such that the eddy viscosity remains at its freestream value. The freestream value of eddy viscosity sets the

boundary condition to any near-body grid blocks where the turbulence model is activated.

From my personal point of view the first proposed modification is the most expensive one and it is

expected to work very well, but since computational time and expenses are two major factor in CFD works,

it will not be the first choice to go with. The fourth and fifth modifications will not be a good choice

for modeling turbulent flows at all, since these modification partly or completely ignore the nature of the

flow, which is being turbulent. Therefore a good choice would be either the second or third one, since they

will consider modifications to the model that we are using, instead solving the flow directly, which is very

expensive or simplify it the flow significantly by ignoring the nature of the flow. In the following section we

go through the details of the third modification proposed here.

5.2 Modification of Production Term in Spalart-Allmaras Turbulence Model

As it has been mentioned before the idea for the modification that we used in our work is the same as the

third modification discussed by Potsdam & Pulliam. The key point is to define the scalar measure of the

deformation tensor, S, in the production term in a way that it will not only depends on vorticity. As a

recall the defined production term for SA model was as follow:

Production = cb1S̃ṽ, where S̃ ≡ S +
ṽ

k2d2
fv2, fv2 = 1− X

1 + xfv2
(22)

In this modification scalar measure of the deformation tensor, S, will be defined as function of both vorticity

and strain rate as follow:

S ≡ |Ωij |+ Cprod min(0, |Sij | − |Ωij |) (23)

Cprod = 2.0, |Ωij | ≡
√

2ΩijΩij , |Sij | ≡
√

2SijSij (24)

Ωij =
1
2

(
∂ui
∂xj
− ∂uj
∂xi

) Sij =
1
2

(
∂uj
∂xi

+
∂ui
∂xj

) (25)

Form equation (24) it can be seen that in regions where the vorticity is the dominant term and it exceeds

strain, such as tip vortices, the production term will be reduced. In the regions where strain and vorticity

are of similar magnitude, such as boundary and sheer layers, there is no effect as the correction term goes

to zero.
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5.3 Results and Conclusions

Figures three and four on the next page show results of numerical modeling of NREL phase VI turbine using

modified version of Spalart-Allmaras and k − ω turbulence model. All the boundary conditions, domain

grid size and etc. are the same for both cases and the only difference is the turbulence model that has

been used. These colorful plots are showing the axial velocity of the flow, normalized by the inlet velocity

equal to 6.8( msec) on a X-cut plane along the wind tunnel. Turbine blade is at position Y
R = 0 and velocity

profiles are shown on Y-cuts planes along the wind tunnel. Fig. 3 shows the case of SA turbulence model,

whereas Fig. 4 shows the case of k − ω model with velocity profiles from SA superimposed in blue on it.

As it can be seen, both cases models near wake (up to 5 radius downstream of the blade) very similar to

each other. Velocity profiles at each section are in a very good agreement with each other except near the

hub of the turbine and the edge of the turbine wake. Note that we are not modeling the hub at all. We

are considering an empty volume starting from inlet and go through the wind tunnel to the outlet and the

boundary condition there is free sheer wall. The main conclusion is that the modified SA model is doing a

very good job, especially at the near wake where the vorticity is dominating strain rate, which means that

the modification is taking a good care of overproduction of the eddy viscosity. One more difference between

the two results is the obvious change of both background velocity contour as well as velocity profiles at the

far wake (after 5 radius downstream). This can be linked to the decay term of the SA model. As it can be

seen the flow modeled by k−ω is decaying much faster in compare to the one modeled with SA. By looking

at Fig. 4, one can say that velocity profiles from k − ω model are recovering to the shape of the velocity

profile at the inlet in a much faster rate in compare to the one from SA model. Unfortunately based on

limited data that we have, we can not say which model is doing a better job in modeling the far wake. For

sure one model is doing a better job in compare to the other one, but the only conclusion that we can come

up with, is that the dissipation rate in k − ω model is much faster in compare to SA model.
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6 Criticisms

The main focus of this literature review was on the original paper by Spalart & Allmaras[2] and paper by

Potsdam & Pulliam [5]. The main problem with SA paper was in giving a clear explanation for the different

terms of the governing equation. Therefore, based on professor Riley’s advise, we start working with the

paper by Nee & Kovasznay[1] who did an excellent job in explaining those terms from fundamental equations

with reasoning behind constructing each term of the equation.

There were two problems with Potsdam & Pulliam paper. First one was changing the notations and also

form of the SA governing equation, although they referred readers to the original paper by SA[2]. The other

problem was a wrong citation for the third proposed modification. They cited the paper by Dacles-Mariani

and claimed that those were the people who originally implemented that modification of the production

term in SA transport equation, but after referring to that paper, I found out that they are just using the

results from a private communication between Spalart and Boeing company! However, except these minor

points, both of the papers did a very good job in explaining the philosophy of the work and guiding reader

toward the right way for understanding the key idea of the paper.

7 Future Work

During this literature review there were two points that I could not find an exact answer for them because

of lack of time. Therefore I think that they can be a good choice for future work to make this literature

review more complete.

The first point was the definition of the second term in the the diffusion term, 1
σ

[
cb2(∇ṽ)2

]
, in the main

equation. The hint for understanding this term is the following statement in SA paper ”However there is no

reason why the integral of vt should be conserved. Manipulations of two-equation models often bring out

diffusion terms that are not conservative, for instance cross terms between ∇k and ∇epsilon”. Referring

to Baldwin & Barth paper[3] will give the readers an idea of the manipulations of two-equation models and

spending some time on doing the basic manipulations will help the reader to come up with this term and

find out about the details and meaning of it.

The other point was the obvious difference in both colorful velocity contours and velocity profiles in

results from NREL phase VI turbine simulations at the far wake of the turbine. Finding out about the

reason behind this differences and that which model is modeling the flow closer to the real case would be a

great idea, which needs the detail knowledge about they way that k − ω model works.

13



References

[1] Nee V. W. and Kovasznay L. S. G. Simple phenomenological theory of turbulent shear flow. Physics of

Fluids, 12:473–484, 1969.

[2] Spalart P. R. and Allmaras S. R. A one equation turbulence model for aerodynamic flows. In AIAA

92-0439, AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 1992.

[3] Baldwin B. S. and Barth T. J. A one equation turbulence transport model for high reynolds number

wall bounded flows. AIAA-91-0610.

[4] Javaherchi T., Aliseda A, Antheaume S., Seydel J., and Pologye B. Study of the turbulent wake behinde

a tidal turbine through different numerical models. In 62nd Annual Meeting of the APS Division of

Fluid Dynamics, volume 54, 2009.

[5] Potsdam M. and Pullian T. Turbulence modeling treatment for rotorcraft wakes. In AHS Specialist’s

Conference on Aeromechanics, Jan. 23-25 2008.

[6] Spalart P., R. and Shur M. On the sensitization of turbulence models to rotation and curveture. Aerospace

Sciences and Technology, 1(5):297–302, July 1997.

[7] http://www.fluentusers.com/fluent/doc/ori/v121/fluent/fluent12.1/help/html/th/node52.htm.

14


