
Approaches to Multisensor Data Fusion in
Target Tracking: A Survey

Duncan Smith and Sameer Singh, Member, IEEE

Abstract—The tracking of objects using distributed multiple sensors is an important field of work in the application areas of

autonomous robotics, military applications, and mobile systems. In this survey, we review a number of computationally intelligent

methods that are used for developing robust tracking schemes through sensor data fusion. The survey discusses the application of the

various algorithms at different layers of the JDL model and highlights the weaknesses and strengths of the approaches in the context of

different applications.

Index Terms—Distributed sensors, tracking, information fusion, data fusion.
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1 INTRODUCTION

COMBINING the results of multiple sensors can provide
more accurate information than using a single sensor

[1], [2]; this allows either improved accuracy from existing
sensors or the same performance from smaller or cheaper
sensors. This paper has been written to complement the
landmark survey paper on the subject [3], adding some of
the notable breakthroughs of the last decade in fields such
as sensor management and distributed sensing. Multi
Sensor Data Fusion (MSDF) is used in many diverse fields,
although most of the literature addresses the fields of
military target tracking [4] or autonomous robotics [5].

Military distributed data fusion is used to facilitate
Network Centric Warfare (NCW) [6], [12] or Network
Enabled Capability (NEC) [7]. If platforms such as
warships and airplanes are networked together and their
data is shared, then they will be able to compile a more
accurate picture of their environment than with just data
from their own sensors. An NEC system contains three
vital components [8]:

1. a collection of sensors to generate observations,
2. an automatic processing system to convert data into

information and knowledge, and
3. a high-speed communications network to enable the

process.

Sensors may be clustered together such as on a
submarine, which may have several sonar onboard, or
may be carried individually by soldiers [9]. Henceforth, the
word “platform” will be used to describe any object that
carries sensors. At any fusion processing node, data may
therefore come from one of three sources [10] (see Fig. 1):

1. Data type 1: Data from a platform’s own sensors,
known as “organic data.”

2. Data type 2: Network connections to other platforms.
3. Data type 3: A database of data previously received,

and of local track estimates.

Traditionally, military data fusion architectures have
been centralized or hierarchical [1]. There are, however,
many advantages to decentralized schemes, which include
lighter processing load, no requirement for a single
centralized database, lower communication load, reduced
possibility of data flow bottlenecks, and high survivability
as there is no longer a single point of failure [11].

To facilitate decentralized fusion, three main issues need
to be addressed:

1. Architecture—The way in which nodes connect and
share information. For detailed coverage of this
aspect of MSDF, see [12], [13], and [14] for a military
perspective or [15] for autonomous systems.

2. Sensor management—The way in which sensors are
placed to maximize coverage of an area for different
tactical goals [16].

3. Algorithms—The way in which processing should
be performed.

Although this paper focuses on the military applications
of MSDF, it is also readily applicable to robotics. Robots are
required to move around autonomously in unknown
environments. Due to factors such as cost, reliability, and
ease of use, the two most common sensors on this sort of
mobile robot are ultra-sonic sonars and digital video
cameras [17], [18]. MSDF is required to combine and
process the data. This has traditionally been performed by
some form of Kalman [19] or Bayesian filter; however, in
recent years, there has been a trend toward the use of soft
techniques such as fuzzy logic and artificial neural net-
works (ANNs) [20].

Although more than 30 fusion architectures have been
proposed [21], the most widely cited model for data fusion
was created by the American Joint Directors of Laboratories
Data Fusion Subpanel [22]. This divided the data fusion
process into four levels, which make up a hierarchy of
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processing. Although this is by no means the only hierarchy
for data fusion and is primarily focused on military
applications, it does provide a useful structure with which
to classify fusion algorithms. Sections 2, 3, 4, and 5 are
divided into the four levels of the JDL model to enable the
comparison of similar algorithms.

2 JDL LEVEL 1—“OBJECT REFINEMENT”

Object refinement is usually partitioned into data registra-
tion, data association, position attribute estimation, and
identification [23]. These four categories and the algorithms
that fit within them are outlined in Sections 2.1, 2.2, 2.3, and
2.4. Some algorithms do not directly fit into a single category;
for example, [24], [25], [26] all created algorithms which
estimate attributes and identification as two complimentary
processes by fusing the information from two or more
sensors. Association and state estimation has also been
performed in a single step [27] to improve performance.

2.1 Data Registration

Data registration functions align the data into a common
frame of reference. This is often to change coordinate
systems from self-centerd Cartesian coordinates to latitude,
longitude, and height above sea level for example.

2.2 Data Association

The association step compares measurements and attempts
to collect measurements originating from the same real-
world object into a single track. The difficulty is in
distinguishing from which target, if any, each measurement
originates. This is addressed by measurement-to-track
association.

In a distributed system, association can also be the step
where tracks from different processing nodes are compared,
to combine tracks that are estimating the state of the same
real-world object. This is track-to-track association. Sec-
tions 2.2.1, 2.2.2, 2.2.3, 2.2.4, and 2.2.5 describe the various
approaches for data association.

2.2.1 Nearest Neighbor

Nearest neighbor is the simplest form of association
algorithm. In this algorithm, the nearest measurement to
the established track is chosen to update the track. This

algorithm is very simple and capable of finding a viable
solution with very little computational cost. However, in a
dense environment, this may lead to many pairings with a
similar probability, so errors are typically large [28]. “All
neighbor” is another related technique in which all
measurements within a gated region are included in the
track [28].

2.2.2 Joint Probabilistic Data Association (JPDA)

Bar-Shalom et al. have created two related filters. The first is
the Probabilistic Data Association Filter (PDA) [29]. This
works for the single-target case only. All measurements in
the gated region around a track are assumed to be possible
updates for that track. An a posteriori probability of
association is calculated for each of the validated measure-
ments. These probabilities are used as weights to calculate a
weighted average measurement update, which is added to
the track.

The second is JPDA [30], which extends the PDA to the
multiple target case. In this, the measurement-to-target
association probabilities are computed jointly across all of
the targets. For the JPDA to work, every measurement must
be assumed to fall within the validation region to ensure that
the PDF of all of the false measurements are the same [31].

Bloem and Blom [32] found that the JPDA has no explicit
method for track creation, but assumes that the track already
exists. Unless specific logic is provided, when new targets
appear they simply get absorbed into the old tracks, rather
than creating new tracks of their own. Another problem is
that all measurements update all targets, which means that if
a track is initiated by noise, it will be updated and kept alive
by the measurements for other tracks around it, a problem
exacerbated by the fact that there is no built-in method for
handling expired tracks. Both the PDA and JPDA also suffer
from exponential computational complexity.

Due to these problems, [32] developed a novel nearest-
neighbor-based approach, the Exact Nearest Neighbor PDA
(ENNPDA), and found it was both more computationally
efficient and more accurate than the JPDA for scenarios
without clutter.

The JPDA’s ability to handle clutter was combined with
the ENNPDA’s ability to avoid tracks merging, known as
track coalescence, to create the Coupled PDA (CPDA) [33].
At low target velocities, this algorithm far outperforms a
standard JPDA and narrowly outperforms the ENNPDA,
while, at higher velocities, the performance of the three
algorithms converges [34]. The JPDA has also been
extended by [35] to a multisensor JPDA (MSJPDA). This is
shown to have superior performance to both the multi-
sensor version of the nearest-neighbor algorithm and to the
single sensor JPDA.

2.2.3 Lagrangian Relaxation

With multiple sensors tracking multiple targets, the data
association problem can be shown to be NP hard [36]. The
evidence in [37] shows that, in all likelihood, an NP-Hard
algorithm cannot be solved in a computationally efficient
manner, but many approximation algorithms exist to find
near optimal solutions. Lagrangian relaxation is one such
technique.
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Pattipatti et al. [36] were the first to apply this technique
to the data association problem. Their solution guarantees
polynomial time performance and has memory require-
ments of only OðnÞ3. The algorithm consists of two phases:
The costs are first assigned to all feasible associations,
while, in the second phase, the feasible solution that
maximizes the general likelihood ratio is obtained via a
3D assignment algorithm.

2.2.4 Artificial Neural Networks (ANNs)

Track to track data association takes the tracks formed on
multiple sensors and attempts to associate or group the
tracks that correspond to the same target. With more than
two targets, this problem is NP hard and an approximation
technique is required to find a solution. Winter and Favier
[38] proposed a way of using ANNs to solve this problem. It
was shown by [38] that this neural network approach, based
upon Hopfield neural networks, always finds a the optimal
solution 17.4 percent of the time and found a solution that
approximates the true solution the rest of the time.

2.2.5 Fuzzy Logic

The disadvantage of the commonly used PDA and JPDA
approaches is that, as the number of targets increases, the
amount of computation time rises exponentially. Fuzzy
logic algorithms use “common sense” instead of mathe-
matics to find the solution [39].

Hong et al. [40] devised a number of fuzzy rules for data
fusion and converted the data into fuzzy sets with the
values {NL, NS, ZO, PS, PL} ({negative large, negative
small, zero, positive small, and positive large}). The results
[40] showed that using fuzzy inference leads to a lower
average RMS position error than JPDA and the more fuzzy
sets there were, the higher the accuracy. The computational
expense of the fuzzy multitarget tracking system is lower
than that of the JPDA. Although more fuzzy sets mean
higher accuracy, it also increases the computational burden,
and, therefore, the appropriate number of sets should be
chosen for the desired accuracy.

The Fuzzy Data Association (FDA) algorithm [41]
performed data association in a similar way to the JPDA,
though the input and output values were encoded in fuzzy
sets. When performing radar to infrared fusion, this was
found to have a far lower RMS position error than JPDA for
both simulated targets used in the experiment. FDA is
shown to be less compuationally expensive than JPDA.

In [42], Wang et al. looked at the problem of fusing
Electronic Support Measures (ESM) with traditional radar.
Above water, radar is the most important sensor as it can
provide accurate target location information with both
bearing and range from the sensor. ESM is passive,
detecting radar signals emitted by targets, and can therefore
only produce angular measurements. As a target may have
many emitters, it is possible to have multiple ESM tracks
fused with a single radar track. In this study, Wang et al.
calculated a fuzzy synthetic similarity degree, based upon
the residuals between the bearing predicted from the radar
measurements and the bearing actually measured on the
ESM sensor. Two thresholds were calculated to create fuzzy
sets describing the correlation between the ESM and the
radar data. For a pairing, there can be:

1. Firm correlation, ESM signals go with radar track.
2. Tentatively correlated, ESM probably goes with

radar track.
3. Tentatively uncorrelated, ESM probably do not go

with radar track

This enabled the algorithm to determine which ESM tracks
to fuse with which radar tracks.

2.3 Position/Attribute Estimation

Position and attribute estimation is the process of taking the
associated measurements and calculating the target’s state.
An example is Target Motion Analysis (TMA) for passive
sonar. Passive sonar can only measure the bearing of the
target, not the distance. It is necessary to perform TMA to
calculate the range and velocity of the target. In Sec-
tions 2.3.1, 2.3.2, 2.3.3, 2.3.4, and 2.3.5, we review the most
popular methods for position/ attribute estimation.

2.3.1 Kalman Filter (KF)

The Kalman Filter (KF) [43] was first proposed in the 1960s
and it is the most commonly used technique in target
tracking and robot navigation ever since. The basic KF has
been shown to be a form of Bayesian filter [44] that is an
optimal estimator for linear Gaussian systems. Given a
series of noisy measurements, the KF is capable of
estimating the state of the system.

An extension to the KF is the Extended Kalman Filter
(EKF) [45]. This enables data such as bearings-only passive
sonar data to be used in the KF. Due to the linearization
step, the EKF is suboptimal. The EKF is the most popular
tool in the literature for sensor fusion in mobile robot
navigation.

Both the KF and EKF were originally used on the data
from a single sensor. Willner et al. [46] first developed the
idea of combining information from local sensors at a
central fusion node to form a more accurate global estimate.
The drawback of this algorithm was that each local sensor
requires the global estimate, which required two-way
communication and negates some of the advantages of
parallelization.

It has also been proven [47] that, when the KF is used at a
central fusion node to fuse the results of multiple local KFs,
the results may be improved by feeding the global estimate
back to the local filters as their prior state for the next
iteration. As the outputs of the local filters are correlated in
time, the performance of such a system can be further
improved by only outputting every nth measurement to the
global tracker to obtain near optimal performance [48].

An information theoretic view of the KF and EKF has
also been suggested [133]. The Information Filter (IF) or
inverse covariance filter is a KF that estimates the
information state vector, y, defined y � P�1x, where x is
the traditional state vector and P is its covariance. The
covariance of the information state vector is the inverse of
the covariance of the state vector, also known as the Fisher
Information Matrix or Information Matrix. In this way, the
filter estimates the information matrix directly. This form of
filter is especially beneficial when the state vector is larger
than the measurement vector. Additionally, the situation of
having no prior knowledge of the object being tracked can
be represented by initializing the information matrix to zero
[49]. Doing this in a KF/EKF would require setting
elements of the covariance matrix to infinity, which would
be impossible.
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In cases where the measurement model is highly non

linear, even the EKF may diverge. In this situation, the

Sigma Point Kalman Filter family of algorithms can be used

[50]. Rather than circulating only the mean through the

algorithm, SPKFs circulate a collection of precisely selected

points around the mean, called sigma points. In using

several points, the nonlinearity is more accurately modeled.

The use of several points may make this appear similar to a

Particle Filter (see Section 2.3.4); however, SPKFs require an

order of magnitude of fewer points and are therefore far

less computationally expensive. SPKFs include the Un-

scented Kalman Filter (UKF) [51]. Van der Merwe et al. [52]

observed, however, that even UKFs are still limited to

Gaussian distributions.

2.3.2 Multiple Model Algorithms

Static (nonswitching) algorithms have been around since

the 1960s, though practical algorithms have only been

available more recently. If the model used in the filter is

different from the actual system dynamics, then the filter

will diverge. This may also happen if the system has

multiple modes of operation; the filter can only describe one

of them. Target tracking falls into this category as the target

will generally move in a straight line, but may also have

short periods during a maneuver where it changes direction

or speed [53].
Switching with the Markov model is easy and it can be

more realistic for systems that have time-varying para-

meters. Two of the most commonly used schemes are the

generalized pseudo-Bayesian (GPB) [54], [55] and interact-

ing multiple model (IMM) [56]. Both of these techniques use

a bank of filters, though the IMM will require fewer filters.

An advantage of these (shared with other MM filters) is that

of modularity; the filter used may be a KF or an EKF or even

PDA or JPDA [57]. The baseline IMM is the simplest form of

hybrid system. Each filter is a standard KF, where each of

these KFs represents a different model, such as stopped or

moving [58].
IMMs have also been used in state smoothing. Filtering

only uses past measurements, whereas fixed lag smoothing

delays processing by a fixed number N of updates. Due to

the delay, it can use up to N measurements after the time it

is processing. Chen and Tugnait [59] developed an IMM-

based fixed-lag smoother and showed that its accuracy in

terms of mean squared error increased proportionally to the

lag. Any form of lag smoothing introduces an inevitable

delay between receiving a measurement and calculating a

target state estimate. The delay in the measurement is also

proportional to the lag; a zero lag smoother is therefore a

filter.
The IMM is often used in conjunction with an association

technique such as JPDA to form a multiple target tracking

system. The resulting algorithm can be used for tracking

closely maneuvering targets [60], [61] or targets in clutter

[62], [63]. These combine the data association step from the

JPDA with the state estimation abilities of the IMM. Hwang

et al. used a hybrid IMM JPDA algorithm to track aircraft

for air traffic control [64].

2.3.3 Multiple Resolutional Filtering

Data can be viewed at the level of granularity it arrived at or
it can be simplified to a lower level of granularity using the
wavelet transform. Performing data processing using a
combination of different levels of data granularity is called
multiple resolution filtering. This technique has been
successfully applied to image processing to improve
performance. Unfortunately, it is not possible to directly
use the techniques developed for processing images to
target tracking as image processing is performed as a batch
technique, while target tracking and signal processing must
give a new estimate whenever new data arrives.

The authors of [65], [66], [67], [68] overcame these
problems and applied MRF to target tracking and signal
processing by dividing data into blocks. This processed the
data by representing it as a tree structure where the top
level represents the highest accuracy, the original data [69].
This could be described as a low-pass filter; as data
propagates from higher levels of granularity to the lower
levels, the high frequency components of the signal are
removed.

The algorithm used is a form of IMM [70]. In any
multiple model algorithm, it is important to know when the
target is maneuvering so that the algorithm can switch from
one model to another. Any tracking algorithm may be used
at each level nearest neighbor and JPDA have both been
shown to work well [71]. As there is far less data available
at the lowest level, the algorithm will run faster and
computation time is increased. Significant computational
effort may be saved by using different algorithms at
different levels. If a maneuver is found at the coarsest
level, then the next level up is checked to see if the
maneuver can be detected there. If it is found, then the
decision is propagated up to the next level of processing.
The finest level can identify exactly when the maneuver
occurred. This division of labor between processing levels
has been shown to give improved performance over
traditional IMM/KF filters, especially in environments with
high background noise levels [72].

Initially, the resolutions had to be reduced by factors of 2
to the power of an integer, i.e., full rate, half rate, quarter
rate, etc. This was changed in [73] when a new method was
created for decomposing the data to arbitrary resolutions.
Hong et al. [74] showed that the same technique could also
be used to track dim or quiet targets and the technique was
further extended by Fan et al. [75] to both improve accuracy
and operate on multiple targets.

2.3.4 Particle Filter (PF)

Unfortunately, other than in simulated experiments, the
error rarely is either known or Gaussian, so a method for
filtering using arbitrary probability density functions
(PDFs) is required. Earlier attempts at improving upon
the results of the EKF involved using an IMM. By setting the
different models to represent different Gaussian distribu-
tions taking a weighted average of the Gaussian results,
arbitrary distributions could be modeled. However, this
method cannot be applied automatically [76].

A direct approach to modeling the PDF is to divide the
search space into a grid, and using the spaces in the grid to
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represent points in the PDF. Choosing the grid is, however,
a nontrivial task and, especially in multidimensional space,
a large number of grid points may become necessary.

The particle filter, also known as the Bootstrap, Con-
densation, or Monte-Carlo filter, was developed to counter
this very problem. Rather than having a fixed grid to
represent the PDF, these used movable “particles.” Early
versions of the particle filter used a fixed number of
particles, which led to the particles collapsing to a single
point and the filter diverging in the same way that a KF
does with a poorly described Gaussian [77].

Gordon et al. [78] developed the “bootstrap filter” or
Sequential Importance Resampling (SIR) PF. This intro-
duced a resampling step, required to prevent the filter
diverging, which removed the particles with the lowest
weights at each step and created new particles at points
where the weight was the highest. The bootstrap filter was
shown to be more accurate than the EKF for tracking in a
system with nonlinear measurements, such as bearings only
tracking. Since then, several variants of this bootstrap have
been developed, such as versions for multitarget tracking
[79], [80] and for maneuvering targets using an IMM PF
approach [81], [82], [83]. PFs have been shown to be
particularly effective in a distributed sensing environment
[84]. A thorough description of the different types of PF
may be found in [85].

2.3.5 AI Approaches

Sensor fusion with known statistics relies on well-known
techniques such as the Kalman Filter or Bayesian statistics.
Where there is no specific statistical model of the
uncertainty, other techniques, such as rule-based sensor
fusion, fuzzy logic, and neural networks, must be used
instead.

Rule-based. One of the simplest approaches to multi-
sensor data fusion was proposed by Flynn [86] in which he
gave a simple set of heuristic rules that are often used on
autonomous mobile robots to fuse the data from two
ranging sensors, the first an ultrasonic sensor, and the
second a near infrared proximity sensor [87]. Although the
rule-set is simple, it is often very effective, and is used as a
baseline comparison method for many new AI fusion
techniques.

Artificial neural networks (ANNs). Many authors [87],
[88], [89], [90], [91], [92] have successfully used neural
networks in sensor fusion. A back propagation (BP) net-
work has been used to give navigational abilities compar-
able to the state-of-the-art [93]. Multilayer networks require
a notoriously long training time and alternatives are
available to optimize network size. Radial basis function
networks (such as those using localized receptive fields
(LRF) [94]) train much faster than BP nets because only one
layer of weights needs to be modified.

A problem with ANNs is that determining the appro-
priate number of hidden units can be more of an art than
science. Ash [95] proposed a system of dynamic node
creation (DNC) which starts with a small network and
increases the size one node at a time until the network is
large enough to handle the task in hand. DNC was later
applied to data fusion by Ghosh and Holmberg [96], who
found that given a large number of nodes, backpropagation

networks were prone to overtrain very easily, while a
network created using a combination of LRF and DNC did
not suffer from this problem, although output encoding
networks were found to be the most effective network type
overall.

Target state estimation has also been performed using
neural networks. For example, the Neurally Inspired
Contact Estimator (NICE) [97] is a neural network-based
target motion analysis (TMA) algorithm. The NICE algo-
rithm has an equivalent accuracy to the Maximum Like-
lihood Estimator (MLE), but is an order of magnitude faster.

More recently, genetic algorithms (GAs) have been used
to design ANNs for data fusion. Abdel-Aty-Zohdy and
Ewing [98] used such a technique to develop a data fusion
system for an electronic nose.

Fuzzy logic adaptive filter. The KF assumes a priori
knowledge of the process and measurement noise covar-
iances. As these are rarely available in most practical
systems, these are estimated. This can have a detrimental
impact on the performance of the filter and may even
promote divergence. Therefore, having an adaptive filter
would give better performance than a standard KF if it
solved these problems. Escamilla-Ambrosio and Mort [99]
proposed the Fuzzy Logic Adaptive KF (FL-AKF). This
adjusted the values of Q and R using fuzzy logic to better fit
them to the estimated values of covariance. This appears to
work well at sensor fault disgnosis, outlier rejection, and
where the error changes over time.

Sasiadek and Hartana [101] extended the work with
three new techniques: Fuzzy-Logic-based Adaptive C KF
(FL-ACKF), Fuzzy-Logic-based Adaptive D KF (FL-ADKF),
and Fuzzy-Logic-based Adaptive F KF (FL-AFKF). All of
these are based on the FL-AKF. Results show that these
techniques are effective in situations where there are
heterogeneous sensors, measuring the same parameters,
but with different dynamic and noise statistics.

The FL-AKF has been used in autonomous robotics to
fuse the positional information obtained from an odometer
with the data from onboard sonar [101]. The odometer,
which measures how many times the robot’s wheels have
turned, is prone to drift. The sonar measures the distance to
various external objects in the room; this will be accurate,
but only available intermittently. Fusion of the two data
sources is used to correct the drift of the odometer. Often,
this kind of fusion is performed with a KF, but FL-AKF is
shown to give more accurate results [102].

2.4 Identification

The identification step classifies the object that the
measurements originate from. For the purpose of this
paper, it is assumed that the local platform uses the data
from its own sensors to produce its own best estimate of the
target identity, along with a confidence value for that
identity. Once identified locally, it must be fused with
remote estimates to form the global solution.

2.4.1 Bayesian Inference

Bayesian Inference (BI) is a technique that uses probabilities
to represent degrees of belief. Bayes’ theorem can then be
used to make subjective estimates of belief. Hall [23] defined
a list of problems with Bayesian inference including:
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1. difficulty in defining prior likelihoods,
2. complexity when there are many potential hypoth-

eses and many condition dependent events,
3. hypotheses must be mutually exclusive, and
4. the inability to describe uncertainty in decisions.

2.4.2 Dempster-Shafer (D-S) Rule of Combination

There are circumstances in which Bayesian belief no longer
applies. Dempster [103] then, later, Shafer [104] generalized
the traditional Bayesian belief model to allow explicit
representation of uncertainty. This is required to model
the situation in which an classification algorithm cannot
classify a target or cannot exhaustively list all of the classes
to which it could belong.

However, D-S is not without problems. If one classifica-
tion algorithm identifies a target as type a with 99 percent
belief, while another classification algorithm identifies it as
type b with 99 percent belief, but both have a 1 percent
belief that it is type c, then D-S combines these to output a
classification of C with a probability of 100 percent. This is
because it is the only nonconflicting output, but the result is
counterintuitive.

Jiu et al. [105] suggested that the total probability from
conflicting classifications should be averaged across the
classifications that made them, which would lead to a more
intuitive result in the example given in the previous
paragraph, of classifications a and b given just under
50 percent belief each, while c would be given a little over
1 percent. Yu and Yin [106] have also found a solution to
this problem in which they incorporate D-S into the
structure of parallel decision fusion structure given in
[107]. This also overcame the problem described above. D-S
has been used in a variety of fusion contexts including
landmine detection [108], autonomous robotics [109], and
medical systems [110]. For a comprehensive list of D-S and
Bayesian-based algorithms, see [111].

2.4.3 Artificial Neural Networks (ANNs)

A neural network is a massive system of parallel-distrib-
uted processing elements, connected in a graph topogra-
phy. Data is not stored separately from the processing as
they are intrinsically linked. One of the most difficult
problems in ANNs is choosing the most appropriate
network topology for the problem. The choice will depend
upon the problem characteristics, the characteristics of the
likely approach to solving the problem, and the character-
istics of the neural networks to be built. There are also
several types of learning rules. These are biologically
inspired and govern how the network learns.

In one of the earliest examples of using ANNs to fuse
multisensor data for identification, [112] used backpropaga-
tion and Hopfield neural networks to identify targets. In
backpropagation, the data is supplied to the network and
the difference between the input and output is calculated.
Weights are changed to improve the result. Once the errors
have been minimized for all of the data in the training set,
the system is ready to use for test data. Hopfield networks
have feedback from output to input, giving a dynamic
response. They can be unstable, but stability can be ensured
by forcing the weight matrix to be symmetric with zeros
along its main diagonal. A recurrent network forms an

associative memory. Therefore, like human memory, if a
part of the memory is supplied, the network will return the
full memory. The associative nature of ANNs was utilized
to identify targets given a limited amount of information. In
the simple examples given, the networks did not make a
single mistake in identifying the targets, showing that it is
possible to use ANNs to recognize and identify targets.

Neural networks have since been shown [113] to be an
extremely simple, easy to apply method and they outper-
form other fusion techniques at low correlation levels.

2.4.4 Expert Systems

Although neural networks are good general-purpose
problem solvers, they are often too cumbersome for the
process and one of the main difficulty with these is finding
the correct volume of training data. Given too little or too
much training data, the system will make the wrong
decisions. Kittler [114] suggests that expert systems should
be used to make the identification on each platform and a
weighted average is taken of the resultant identification
decisions.

2.4.5 Voting and Summing Approaches

Voting and summing fusion are two popular, yet very
simple distributed classification approaches. In both, a bank
of classification algorithms is used; these may be located
with the sensor or with the fusion algorithm. In sum fusion,
the confidence of each classifier in each hypothesis is
summed and the hypothesis with the highest overall result
is used. In voting fusion, the hypothesis which was deemed
the most likely by the highest number of sensors is chosen.
In situations where the distribution of the errors on the data
being fused is Gaussian, the sum algorithm outperforms
vote, while the opposite is true in systems where the
estimation error has a tail distribution [115]. These have
been used in a wide variety of contexts such as biometric
classification fusion [116], landmine detection [117], and
target tracking [118].

2.4.6 Distributed Classification

It is possible to distribute the classification of targets across
the nodes at which the target is detected. Most solutions to
this problem involve centralized processing of the data to
either classify at the central point or fuse the results of the
local classifications together. Caruso and Withanawasam
[119] created a scheme in which magnetometers could
classify based on the magnetic signature of a vehicle.
However, this resulted in a high computational load on
each of the sensor nodes and required the magnetic
signature of the vehicle to be known for every aspect in
which the vehicle might be observed. This would be
acceptable in the case given in [119] of the vehicles being
driven down a road with the sensor mounted beneath the
lane of traffic, but there are many detection situations in
which this would be too restrictive. Raghavendra et al. [120]
gave a method in which sensors exchanged target feature
vectors that could then be used to classify a target, but this
placed a high load on the networking. Duarte and Hu [121]
relied on each sensor classifying the target and then
classifications were centrally fused, leaving a large compu-
tational effort at the node.
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Arora et al. [122] used “influence fields” to form a
noncentralized distributed classifier based on inexpensive
binary sensors in their incredibly in-depth paper that covers
all details of distributed sensing from the type of sensor to
use (magnetometer and radar), detection processing,
classification, tracking, and time synchronization. Classifi-
cation is performed by measuring the size and shape of the
area covered by the sensors able to detect the target, its
influence field. The classification module passes result to
tracker, which tracks classifications over time, both localiz-
ing and simultaneously reducing false alarms.

A dilemma faced in constructing a distributed classifier
is whether to take the data from all nodes and fuse the data
to classify, known as data fusion, or to classify locally at each
node and fuse the classification results, decision fusion. Data
fusion would usually require more network bandwidth
than the latter. Brooks et al. [123] supposed that data fusion
would be a superior choice if the information represented
by the data was correlated, while decision fusion would be
a better choice if the data was uncorrelated. Additionally,
[124] demonstrated that decision fusion worked well when
the data was fault-free; however, its performance degraded
faster than data fusion when measurement error was
introduced to the system.

3 JDL LEVEL 2—“SITUATION ASSESSMENT”

Situation assessment (SA) fuses the kinematic and temporal
characteristics of the data to create a description of the
situation in terms of indications of warnings, plans of
action, and inferences about the distribution of forces and
information. An SA algorithm will decide whether and in
what way an object is or is likely to act in a hostile manner.
Unfortunately, most research is on the lower levels of fusion
and, therefore, this area is less well understood [125].

Looney and Liang [126] used a series of algorithms for
situation assessmen. First, the uniform k-centralized mean
(UKCM) algorithm clustered the detected targets into
groups. Once these clusters have been formed, it is possible
to assess their intent using a fuzzy belief network. The
simple rule-set of the fuzzy belief network and the simple
experimental scenario show that this kind of technique is
capable of making situational assessments, though a more
complex belief network would be required to tackle any real
problem.

This is also relevant in nonmilitary contexts, such as
context aware processing, in which the task is to develop a
machine that is able to understand and react appropriately
to its environment. Wu et al. [127] looked at multisensor
data fusion from an omnidirectional camera and a micro-
phone to detect the focus of attention of attendees at a
meeting. In this study, Dempster-Shafer logic was used to
combine the processed outputs of the sensors, such as the
location of the meeting and who was talking. This was used
to improve the estimate of each attendee’s focus of attention
compared to the output of the individual sensors.

4 JDL LEVEL 3—“THREAT ASSESSMENT”

The third level of refinement assesses the threat posed by
the enemy being tracked. This may also include an
assessment of the friendly forces ability to engage the

enemy effectively. Fusion levels two and three are often
referred to as “information fusion,” while level one is “data
fusion.” Although this distinction is vague, it is useful as the
higher levels tend to utilize symbolic rather than numerical
reasoning and tend to be more subjective [128]. In human
factors research, this is often referred to as “Situational
Awareness” (SA).

Level three of the JDL model has received far less
attention in the literature than any of the other levels. Initial
papers are starting to appear on the subject, though, at
present, they are as much about understanding the
challenges of the problem as solving it.

Salerno et al. [21] provided the starting point for a
framework for information fusion for SA; it also gives an
example situation in which automated situational aware-
ness would be of benefit. The paper concludes with a
discussion of metrics that could be used to validate SA
techniques.

Jakobson et al. [129] looked at the problem of threat

assessment using cognitive fusion techniques. This breaks

the problem down into three areas:

1. situation awareness, understanding the meaning of
multisensor data, recognizing complex time-depen-
dent patterns, and determining threats and other
activities that reveal intent,

2. decision awareness, reasoning about situations and
understanding the ramifications of suggested actions,
and

3. knowledge awareness, learning and improving skills
for fusion procedures, and utilizing historic data to
create new fusion patterns and situation classes.

The combination of real-time Event Correlation (EC) and
Case-Based Reasoning (CBR) is suggested to produce a
generic framework to perform threat assessment. When EC
recognizes a series of correlated events, CBR can be used to
identify the events as a case, where a case adds further
meaning to the set of events and infers a possible situation.
Jakobson et al. [129] provided a basis for a possible system,
but recommend further work must be done before any such
system could be used in a real problem domain.

5 JDL LEVEL 4—“PROCESS ASSESSMENT”

The process management stage is an ongoing assessment of

the other fusion stages to ensure that the data acquisition and
fusion is being performed in a way that will give optimal

results. This could also improve results by adjusting the

parameters in the fusion process, establishing a target

priority [2], or moving the sensors to give improved coverage
of the search area [16]. The problem of optimal sensor

deployments is closely related to both the alarm placement

problem, which is known to be NP complete and the
Knapsack problem, which is known to be NP complete [130].

Penny [131], [132] found a strategy for locating a
submarine as quickly as possible using passive sonobuoy
sensors, which was shown to reduce the detection times up
to four times. Hernandez et al.. [133] generalized these
results to create a framework for the systematic manage-
ment of multiple sensors in target tracking in the presence
of clutter.
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Niu et al. [134], [135] gave a method for optimally
distributing the sensors in time the results show that if the
target has a high probability of detection and a medium or
high maneuvering index, then time-staggered sensors
(sensors with updates arriving in turn) should be used. In
other circumstances, there is little between staggered and
synchronized (arriving at the same time) sensor updates. If
two sensors have drastically different performances, then
optimal results are obtained by keeping them synchronized.
If they have similar or identical performance, then they
should be staggered uniformly.

MultiSensor Management (MSM) was discussed by
[136], who argued that multisensor management affected
all levels of the JDL model. They described MSM as a top
down approach, which begins at level 4, but continues
down right to level 1 as follows:

. Level 4 (mission planning)

. Which service to perform?

. Which accuracy level?

. What area of the environment to focus on?
. Level 3 (resource deployment)

. What extra sensors are required?

. Where to place the new sensors?
. Level 2 (resource planning)

. Sensor selection for multisensor tracking.

. Sensor cueing, handing tracks from one sensor
to another.

. Level 1 (sensor scheduling)

. Timeline of commands for each individual
sensor.

5.1 Distributed Sensing

Process assessment has also been covered in the distributed
sensing literature; here, it is a matter of dynamically
selecting which sensors to use in order to gain the most
information in the most efficient way. The idea of using
Shannon information theory for this was first proposed by
[137], selecting sensors based on expected information gain
was first suggested by [138]. Wang et al. [139] more recently
showed a technique for dynamically selecting the sensor to
request data from in order to maximize the information
gain. Wang et al. [139] used greedy selection of the next
sensor; of all of the unused sensors, the one predicted to
give the largest information gain is used.

Moore et al. [140] developed a system that made the
most of limited resources on distributed nodes by designing
a mobile code daemon. This daemon allowed a node to
download the classifiers or trackers it required as it found
that it needed them, at the same time clearing out the ones
that were no longer required. This allowed the system to
configure itself dynamically. Friedlander et al. [141] ex-
tended [140] to create a system in which nodes form
themselves into clusters or coalitions. This avoids the “curse
of dimensionality” problem that is troublesome in very
large systems. Without this, each node would be forced to
share information with every other, meaning that the
processing and communications burden increases with
each node added to the network, while, in the proposed
scheme, nodes only share information with those in the
same coalition.

In another coalition forming technique, [142] discussed
how to form dynamic coalitions of autonomous nodes.
Dynamic coalitions are teams that form to perform a task
when a single node would not have sufficient resources to
perform the task. Nodes learn how to form coalitions that
are more productive. Experimental results show that these
cooperative agents can track targets far better than trackers
that simply react individually and are able to share
computational resources, allowing faster and more efficient
processing.

Horling et al. [143] and Yadgar et al. [144] discussed
methods of creating hierarchy in which the nodes are
divided up geographically into coalitions and each coalition
is given a team leader. In [143], each track detected is
allocated a track leader by the team leader and this node
instructs the other nodes in the coalition. The technique is
made to work using a conflict resolution strategy, which is
required when nodes are given two conflicting tasks.
Yadgar et al. [144] investigated how the number of levels
in an architecture may affect performance and found that,
as the number of levels in the hierarchy increases, the
number of targets it is capable of tracking decreases;
however, the amount of time required by an individual
node to complete its mission decreases exponentially.

Ortiz et al. [145] proposed an auction-based technique
called Dynamic Mediation (DM) for forming and allocating
work to cooperating teams of nodes. In DM, the bid is not
simply an individual value bid from a particular node, but a
bid from a team of nodes, which can include information
such as positive or negative interactions with other jobs
allocated to the team. Experimental results from [145]
suggest that DM shows the largest performance improve-
ment over a traditional auction where time is limited.

Liu et al. [84] resolved the curse of dimensionality by
separating the processes of allocating data points to targets
being tracked and position estimation. Targets far away
from each other are tracked separately in the traditional
way, while targets close together are tracked jointly. As
more than one target may be tracked at the same time, the
PDF will not be Gaussian. This led [84] to use a particle
filter as a position estimation algorithm as it can estimate
arbitrary distributions.

Akyildiz et al. have written a comprehensive survey [146]
on the subject from a networking perspective. This gives a
description of the major network topologies and protocols
available and concludes that there remain many unsolved
problems in sensor network research such as fault tolerance,
scalability, node cost, and power consumption. In another
survey paper [147], the same authors outline the major
applications for sensor networks, citing examples such as:

. military applications, such as monitoring friendly
forces and battle damage assessment,

. environmental applications, such as bird migration
monitoring, or flood detection,

. health applications, such as tracking doctors within
a hospital, or remotely monitoring a patient’s
physiological data, and

. home automation.

6 CHALLENGES FOR MULTISENSOR TRACKING

There are two main challenges for distributed multisensor-
based tracking: 1) The order in which data arrives may not
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be suitable for processing and measurements that arrive out
of sequence and 2) the effect of one sensor on another or
data correlation.

6.1 Out of Sequence Measurements (OOSMs)

Each measurement arrives at the fusion algorithm with a
discrete “timestamp.” In a multisensor tracking system,
there will be various propagation times from the different
data sources, it is clearly possible (in most multisensor
systems, probable) that some data will arrive out of
sequence. Typically, fusion systems only retain a history
of the most important statistics, such as the state estimate
and the covariance matrix. Therefore, the problem is to find
a way to update the current estimate using the OOSM.

OOSMs have been shown to be a problem as far back as
the 1980s [148]. The early attempts to solve the problem of
delayed measurements relied upon no newer measure-
ments being received in between the time of the measure-
ment being created and the time at which it is processed
[149], [150]. These worked well, but only solved the
problem of the data being delayed, not the fact that the
data would often be in the wrong order.

An intuitive and perfect solution in terms of accuracy is
to store all input in order of time, then, when an OOSM is
received, reprocess all data. Although this gives the optimal
solution, it is prohibitively intensive in terms of both
computation and memory requirements.

Blackman and Popoli [151] and Hilton et al. [152]
proposed an approximate solution to the problem called
“Algorithm B.” Bar-Shalom [153] later extended this to
create an algorithm with optimal output, “Algorithm A.”
All of these, however, assumed that the lag in the OOSM
was less than one time step. Bar-Shalom [153] also showed
that Algorithm B is nearly optimal.

Since these papers were written, there have been many
attempts to extend the algorithms to work for arbitrary lags
[154], [155], [156]. Bar-Shalom et al. [157], [158] not only
showed that these were more expensive in terms of both
computational load and memory usage, but also proposed a
new way to utilize the OOSM by processing in a single step,
calculations that are very similar to a standard Kalman
Filter KF. Adjustments are made for both the A and
B algorithms. The new arbitrary lag algorithms are called
“Al” and “Bl,” respectively. Although the results from Al
are optimal, the processing time required is very high. Bl is
recommended as it considerably faster, with comparable
results to algorithm A.

Hong et al. have recently extended the multirate IMM
(MRIMM) algorithm [70] to work on the OOSM problem
[159], [160], [161]. The nature of multirate filtering lends
itself well to the incorporation of OOSMs as it provides both
an efficient processing structure for state estimate retro-
diction and an efficient memory structure for storing
historical information. Other algorithms, such as the IMM
[162] and multiple hypothesis tracking [163] have also been
extended to enable tracking in clutter or with maneuvering
targets while processing OOSMs.

As all of these techniques are KF-based, they do not help
when using a particle filter (PF), as to use them would be
impossible due to the necessary computational load. Earlier
attempts at solving the OOSM problem concentrated on
regenerating the PDF at the time of the OOSM [153]. In a PF,

this would require a large amount of computational
resources. To avoid this problem, Orton and Marrs [164]
stored the distribution of particles at each time step to avoid
having to recalculate them. It was later shown in this
technique that, as delays increase, the result only worsens
slightly and is still very close to optimal [165]. Unfortu-
nately, [166] showed that this required an infeasible amount
of storage to keep the state of every data point for every
time update and described an efficient method for retro-
dicting the state in the same way as the KF-based
approaches.

It is worth noting that [166] described the PF-based
algorithm that performs similarly, though slightly worse
than the equivalent EKF-based solution. Mallick and Marrs
wrote a comprehensive comparison of KF and PF-based
OOSM filters [167], which found that, for linear measure-
ment models, the OOSMKF algorithm produced optimal
results. The numerical results suggested that the OOSMPF
algorithm was suboptimal. Experiments with nonlinear
GMTI radar data show that the bias errors in the state
estimates from the OOSMKF and OOSMPF were small and
comparable. The OOSMPF is shown to be comparable to the
OOSMKF for small lags and small values of process noise.

OOSMs are not only a problem for measurement fusion.
Challa et al. [168] showed that they would also affect track-
to-track fusion and developed an algorithm based on an
augmented state KF (AS-KF). This is a KF which processes
not only the current state, but also previous states
simultaneously. When a track estimate arrived, the mea-
surements that went into calculating it were derived and
used to update the algorithm, allowing sequence tracks
(OOSTs) to be processed. Challa et al. [168] demonstrated
that this gave improved performance over ignoring the
OOSTs. To compliment the AS-KF, an augmented state
probabilistic data association (AS-PDA) algorithm was also
created by [169] to process OOSMs in clutter.

6.2 Data Correlation

One problem with the KF is that it requires either that the
measurements are independent or that the cross-covariance
is known. A common simplification is to assume the cross-
covariance to be zero, though, in this situation, the KF
produces nonconservative covariances. This leads to an
artificially high confidence value, which can lead to filter
divergence [170]. The optimal KF-based approach is the
one in which the KF maintains cross covariance informa-
tion between updates [171], [172], [173], [174], [175].
However, this solution scales quadratically with the
number of updates, making it impractical [176]. Taking
into account the correct cross correlation does not
significantly improve the results, even though it does
reduce the false association rate [177].

A common cause of correlation between tracks in a
distributed multisensor environment is data incest or rumor
propagation. Data incest1 is the situation in which raw
measurements are inadvertently used multiple times. This
is caused either by the same information taking several
different paths from the other sensor to the fusion node or
by cyclic paths in which the information recirculates from
output of a fusion node back to the input [178], see Fig. 2.
The examples shown in Fig. 2 are very simple and as the
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number of sensors and the number of measurements
increases, data incest becomes harder to identify and cure.

Data incest may at first appear trivial to avoid, however,
for fusion, the simplest approach to communication is to
send all raw measurements. This requires no processing at
the source and relatively straightforward processing at the
destination. As long as a record was kept of which track
updates had been used, it would be possible to avoid incest.
This solution has unfortunately been shown not to be
practical as it does not scale well [179], and is therefore
unappealing.

Incest is usually studied in terms of the bias caused to the
state estimate in localization algorithms. However, it will
also adversely affect data fusion for identification. Higher
up the JDL model in level 4, incest may have more subtle
implications. For example, if a sensor is deployed in an area
to confirm a report of a target, then the prior probability of
finding such an object must be altered accordingly, or the
confidence in identification when a matching target is
discovered.

Measurement reconstruction [180], [181] is a technique
that can be used in a global fusion node. This compares
remote estimates received with its own version of the global
estimate. It is then possible to recreate the measurement that
caused the estimate to change to the estimate. This way the
remote measurements can be recovered, and used in local
fusion algorithms. This technique has also been extended
[182] to include target tracking in clutter by incorporating
JPDA into the technique, then further to include multiple
sensors [183] and non-Gaussian error distributions with
Gaussian mixture models [184].

McLaughlin et al. [185], [186] developed a data incest
removal strategy for distributed architectures. The algo-
rithm takes the state estimates from other nodes and
resolves the remote measurements from them. It stores
these remote measurements and uses them to update its

own state estimate; this way the incest has been removed
before the data is fused.

As estimating the cross-covariance is computationally
expensive, Julier and Uhlmann proposed the Covariance
Intersection (CI) algorithm [187]. This is based upon a
simple premise that if the covariances of the two estimates
being combined were to be visualized as overlapping
ellipses, then the desired resultant covariance would be
the smallest ellipse that would surround the intersection of
the two ellipses (see Fig. 3). This way the same data may be
presented to the filter several times and the covariance will
not be reduced as fresh information is not being provided.
Julier and Uhlmann [187] also showed that the CI algorithm
can work in the case of a networked group of estimators
where the network forms a ring. This is important as [188]
had shown this to be impossible with a KF.

The use of CI and the KF was also compared by Arambel
et al. [189], who used the two algorithms to keep five
spacecraft orbiting in strict formation to perform inter-
ferometry. Four will reflect light to the fifth, which will turn
the measurements into interferometric detection. To do this,
the formation will need to be accurate within 0.1m and
0.3 milli radian. The spacecrafts estimate each other’s
position and pass that information to the other craft in a
ring network. This leads to cross correlation between the
values being fused. Each craft runs a set of Kalman filters to
estimate the state of the entire network. The data can be
updated either with readings from sensors or with the
estimate of all positions given by the previous spacecraft in
the ring. The solution chosen was to use the Kalman filter
for data that is received from the organic sensors, and the
Covariance Intersection (CI) algorithm for the inorganic
measurements. This prevented cross-correlation of data and
filter divergence.

Hurley [190] gave an information theoretic proof of the
CI technique and pointed out that CI is capable of fusing
any probability density function, not just Gaussian dis-
tributions. It also states that, although CI is excellent for
fusion of densities, if measurement fusion is required, then
more traditional fusion techniques are probably more
suitable.

Covariance intersection works by taking a weighted
average of the two covariances being combined. This
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weighting is a single value !, which is used to combine
covariances PA and PB as follows: P�1

C ¼ !P�1
A þ ð1� !ÞP�1

B .
Chen et al. [191] showed that, when the covariances being
combined are N-dimensional vectors, the weights could be
N-dimensional vectors, while CI only searches a one-
dimensional curve for possible values. It was found,
however, [192] that CI finds the optimal value. This
provided formal proof of the optimality of the covariance
intersection problem at finding the upper bound for the
combined covariance. It also showed that, as CI performs
N-dimensional optimization while only searching one-
dimensional space, it is a very efficient algorithm.

Finding the weighting value ! is the most computation-
ally complex process in CI. To reduce the computational
burden of the algorithm, [193] proposed a suboptimal
noniterative algorithm to find !.

CI works to solve the problem of correlated inputs, but it
is undefined for inconsistent inputs. To solve this, Uhlmann
developed Covariance Union (CU) [194]. Inconsistent
inputs can be detected by calculating the Mahalinobis
Distance (MD) between the inputs. If the MD exceeds the
threshold, then the union, rather than the intersection of the
covariances will be used. Uhlmann [194] also showed that
this technique can also reject outliers.

CI is pessimistic, with the ellipse being larger than it
needs to be; this is the exact opposite of the EKF. The largest
ellipsoid algorithm [195] avoids this by creating the largest
ellipse that will fit within the intersection of the covariances
(Fig. 4). This is always more optimistic than the CI
algorithm.

The Kalman filter is optimal providing the data is from
independent sources. If correlation information is missing
or incomplete, then the result will be an inconsistent
estimate. Covariance intersection avoids this, but its
conservative estimates reduce performance. Largest ellip-
soid leads to tighter estimates since it underestimates the
covariance rather than overestimating it, though this is less
of an underestimate than the KF, so filter divergence is still
avoided.

7 CONCLUSIONS

A brief overview of contemporary techniques in distributed
data fusion was presented in this paper. This discussion is
based around the well-known JDL data fusion framework.
Multisensor data fusion is shown to be an active area of
research, spanning many traditional research areas with
applications for industrial control, autonomous robotics,
and military tracking.

Much work has focused on the problems associated with
the first level of the JDL framework. Level one, “Object
Refinement,” includes data alignment, data association,
position attribute estimation, and identification. The other
three levels are less well covered in the literature, possibly
as the higher levels require the foundation of the first. Now
that this firm theoretical foundation has been laid, work has
begun in this area, but it will take many years to catch up
with the breadth of work on level one.

In addition to outlining current techniques, a selection of
the remaining challenges in data fusion was also discussed.
Most of the level 1 data fusion research carried out over the
last decade has focused on the problems being introduced

by using multiple distributed sensors and, although much

has been written on the subject, many problems are yet to

be fully solved. For example, many solutions exist for the

out-of-sequence measurements (OOSM) problem, but al-

most all concentrate on measurements that are out of

sequence by a few scans at most. A method of accurately

utilizing measurements of an arbitrary age is still elusive.

Covariance intersection has often been described as a

panacea for all cross-correlation problems in data fusion.

However, it has yet to solve the problem in the particle filter

or in target identity fusion and also provides very

pessimistic results for the combined data. We expect that

future research will address some of these challenges and

develop better methods of uncertainty management.
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