Android Executable Modeling: Beyond Android
Programming

Olivier Le Goaer, Franck Barbier, Eric Cariou, and Samson Pierre
Université de Pau / LIUPPA, PauWare Research Group, BP 1155,
F-64013 PAU CEDEX, France
Email: {firstname.name} @univ-pau.fr

Abstract—This paper demonstrates through an example how
a modeling effort can substitute to a programming effort so that a
main part of the code of apps for smart devices can be replaced by
a model. We focus on the behavioral model of an application and
then instrument its direct execution on an Android device thanks
to the PauWare API. The proposed installation of PauWare on
Android OS sets up the foundation for a whole range of mobApps,
provided they are modeled with the statechart formalism.

I. INTRODUCTION

As early highlighted by Parnas [13], abstraction has always
been a key factor to successful software engineering. Among
the manifold forms taken by abstraction, modeling has proved
its efficiency for handling complexity of software development,
contrasting with the classical programming all focused on
source code. Indeed, models abstract away details to concen-
trate on particular, high-level, viewpoints on the system to be
built. As such, they offer unparalleled reasoning supports to
designers. Models are so powerful that they have earned their
place in the software engineering through a dedicated sub
field called Model-Driven Engineering (MDE). After having
been intensively used as contemplative assets till the mid 2000
(a recurring analogy was blueprints in architecture), models
have been turned into productive assets, relying on automated
transformation chains ending predominately to source code.
It is worthwhile mentioning that this evolution owes much
to the OMG’s MDA initiative [7]. A more recent trend is to
see a model as an end in itself by directly executing it [10],
[5]. The analogy could be now those of an “animated” or
“actioned” blueprint which may serve as way of simulation
of course but also as a full-fledged executable system so that
the implementation stage is totally skipped. This vision shift
from static (albeit productive) model to dynamic model tends
to abolish the boundaries between modeling and programming,
and its slogan might be “What you model is what you get”
(WYMIWYG).

The entirely model-centered and hence fast development al-
lowed by executable — or more precisely, interpretable — model
approach is particularly interesting when focusing on tiny
devices or on embedded software like for Smart-* (Phones,
Watches, Glasses, TVs, ...). Indeed, these applications are
characterized by a high time-to-market pressure, a rapid fluc-
tuation of user’s requirements, while they run on top of fast-
paced platforms. This situation is going to explode with the
future Internet of Things, and the arrival of a multitude of
connected objects. Because a growing number of these systems
are running with Android, we choose the successful operating
system from Google to propose our work.

The rest of this paper is organized as follows. Section
IT sketches a homemade mobApp built utterly with a state
machine model. Consequently, the section III explains how to
reuse the PauWare API, a toolkit dedicated to the execution of
statechart models, on the Android platform. Section IV gives
technical details about how all this stuff works on an Android
device, as a proof of concept. Related work is exposed in
Section V before we conclude in Section VI.

II. A WORKING EXAMPLE

A prominent example of modeling is the finite state ma-
chine viewpoint to represent the behavior of a running system.
When looking at the lines of code you will never see any
“state”, “transitions”, “guards” or something like that, but
rather a bunch of statements, controls, function calls, data
passing, etc. Hence, abstracting away all of that with the
statechart formalism is a pure mental effort, which is the
essence of modeling. Moreover, even if the system behavior
has been modelized through a state machine, this model is
usually used in a static way by the developer for helping him
in writing the code, through code generation or not. In this
paper, we show that this model can contrariwise directly be
used as a running part of the system. The model is turned into a
dynamic item, suppressing the necessity of its implementation
within the application code.

A. Energy-aware mobApp

We can simply imagine an Android mobile application
embodying an assistant or companion for energy-saving/aware
that reacts to power-related events and give some (not too
serious) advices to the end-user as feedbacks. This kind of
application is arguably one of the most amenable to be entirely
modeled with a state machine. The result is presented in Fig. 1.

The statechart is composed of four states, including a
composite state, and seven transitions. All the focus is put on
the model, so that no Android programming skills are required
here. The states are enough expressive and even the labels set
on transitions, namely the couple event/action (no guards here),
just call for a superficial knowledge of Android OS. Indeed, it
is quite intuitive and it works very similarly in further mobile
OS. Description of this Android-related vocabulary is provided
below.



NEW_OUTGOING_CALL
/alert("Be brief in your talk")

e

BATTERY_LOW
/alert("Be careful now!")

Nominal Energy Level

BATTERY_OKAY
/alert("Enjoy again”)

Critical Energy Level

H Display energy leak

SCREEN_ON
/alert("Bad idea...")

Display energy—saving

SCREEN_OFF

L]

POWER_CONNECTED
/alert("Thanks. It's going better")

I

POWER_DISCONNECTED
/alert("Are you kidding?")

Fig. 1. Specification of the behavior of the mobApp by means of an UML
2 State Machine Diagram

B. Android-related Events and Action

Among the list of native events supported by Android (120
available for API 17 for example'), we kept seven distinct
ones. The selected events are first relevant from a power
viewpoint, but also self-described: their name is enough and
do not require handling additional data conveyed in the event
and called “extras” in the Android jargon®.

The BATTERY_LOW and BATTERY_OKAY events refer to
a variation of the threshold value of the status of charge of
the battery. SCREEN_ON and SCREEN_OFF occur when the
display surface (OLED basically) is activated or deactivated
by the user or by a timer, as well. POWER_CONNECTED and
POWER_DISCONNECTED means that the owner intentionally
decided to plug or unplug his device to an external energy
source. Incoming calls are ignored by the assistant insofar they
do not result from a desire of the user, but every outgoing call
is caught by a new NEW_OUTGOING_CALL event.

The unique kind of action triggered when crossing tran-
sitions is to alert the end-user with a comment that aims
to provide friendly guidance for the energy management of
her/his smart device.

III. BUILDING A MOBAPP WITH THE PAUWARE API

Building a mobApp through a real executable model ap-
proach requires a set of three elements: an engine responsible
for model execution, the model of your application of course,
and a connector to glue the engine’s inputs/outputs with the
underlying platform features, here Android.

A. PauWare Engine

PauWare engine is a lightweight execution engine for state
machines which implements the full UML 2 semantics that
deals with sophisticated features: concurrency, deep history,
nested state, etc. It is coded in Java and hence runs itself
on top of a JVM (and ultimately on a Dalvik VM). It is
released for several platforms, depending on whether reflection
capabilities are available like for J2SE APIs and Android APIs
(java.lang.reflect) or missing like for J2ME. It can be

I'The list can easily be found at android-sdks\platforms\android
-17\data\broadcast_actions.txt

2It is a little bit confusing but what Android calls “actions” refer to our
event’s names in the statechart, where actions are hence calls to operations.

imported in any Java-based project as a library (Jar file). No
additional dependencies are required.

From a performance point of view, the apk file solely
increases of 101 Kilo Bytes required for the library, and the
memory footprint is small even in case of complex statema-
chine. PauWare engine worked fine for older devices running
with J2ME and hence the additional layer introduced by the
engine is now negligible when considering modern devices
running with Android OS.

B. PauWare Model

The regular way to describe an UML state machine in
PauWare consists simply to write raw Java code for instan-
tiating states (Statechart PauWare Java class) and to build
the structure of the state machine by combining the states
and adding between them transitions. Another way consists
in inflating the code from serialized formats: either defined
with your favorite UML modeler (through a XMI file) or in
SCXML (State Chart XML?3) which is a W3C standard for
defining state machines. As a consequence, either by writing or
generating its code, a UML state machine is present within the
application code (through the instances of PauWare dedicated
classes representing states and their relationships). This state
machine is semantically equivalent to a UML state machine
modelized through any modeler but has here simply a Java
representation.

A preview of raw Java code corresponding to the model
depicted in Fig. 1 is given bellow:

//States definition

AbstractStatechart nominal, critical;

nominal = new Statechart ("Nominal Energy Level");

critical = new Statechart ("Critical Energy Level");

//Sets the initial state

nominal.inputState () ;

//Combination (mutually exclusive) of the

//states for building the state machine

Statechart_monitor machine = new
Statechart_monitor (nominal.xor (critical),
"Energy Assistant Behavior");

//Transitions definition

//Setup of a reflective call to alert () method

machine.fires (Intent .ACTION_BATTERY_LOW, nominal,
critical, true, this, "alert", new Object[]
{"Be careful now"});

Operations (i.e. method calls) can be attached to transitions
or states. These operations are typically implementing the
business logic or data management of the application. The
implementation of these operations is at the developer respon-
sibility but there is no more need for her/him to implement the
behavioral part of the system as it is already specified through
the state machine model. This way to build an application
offers important gains in terms of development. First, there is
no more need to implement the code dedicated to the behavior
of the system as it is directly defined with the state machine
model. Second, there is a good separation of concerns between
the behavior and the business logic implementation making
them easier to define and to maintain.

3http://www.w3.org/TR/scxml/



Once loaded in memory, the engine will perform “run-to-
completion” cycles onto the model and in the strict respect
of the UML 2 semantics. Such a cycle processes an event
occurrence by triggering the right transitions and calling the
required operations.

C. Android Connector

As the PauWare engine is a core library that works in
an agnostic manner, it is not an out-of-the-box product. It is
required to define a “connector” whose purpose is to ensure
that the model’s elements are tied to the context in which they
are immersed. Notably, it is important to bind abstract events
and actions described at the model-level with their platform-
specific counterparts. Thus, the Android connector will sniff
out the system events that occur and will bring them up to the
engine for their processing. In the opposite way, the Android
connector will ensure that concrete actions are enacted onto
the device from the statechart under execution.

IV. ANATOMY OF THE ANDROID CONNECTOR

The realization of the Android connector is a projection
onto the application component framework provided by An-
droid and must adhere to the conventions thereof. Below are
the key technical choices that have been made.

A. Message Notification

We simply focus here on the alert ("message") action
that will be mapped with the notification mechanism, which
is an important part of Android UI. For recall, notifications
are messages displayed to the user in the notification area that
appears in the top bar on the device’s screen. Other notification
modes are supported like sound, LED pulse or vibration, but
it goes without saying that these will be counterproductive
in the case of a mobApp that aims to save energy. Each
new notification replaces the former one in the notification
area; they are not stacked. The code will be located in a
private method called by reflection from the engine service
(see Section IV-C).

private static final int uniquelId = 514054615;

private void alert (String msg) {
NotificationCompat.Builder mBuilder =
new NotificationCompat.Builder (this)
.setSmalllIcon (R.drawable.notification_icon)
.setContentTitle (msqg);
NotificationManager mNotif =
(NotificationManager)
getSystemService (Context .NOTIFICATION_SERVICE) ;
mNotif.notify (uniqueId, mBuilder.build());
}

B. Event Sniffer

The straightforward way to implement this part of the con-
nector is to create a Broadcast Receiver component registered
to listen to the seven native events mentioned in Sect. II-B
and whose purpose is just to delegate them to the engine.
Every seven event registration is done programmatically (see
the next section) because some of them do not work when
manually declared in the manifest. And further, this fosters
the possibility to dynamically configure the receiver from an

arbitrary statechart. This solution will only require a quick
analysis phase when the model is loaded, to elicit the set of
events actually used, and to register (or unregister) the receiver
accordingly.

class EventSniffer extends BroadcastReceiver ({

@Override

public void onReceive (Context argOQ,
Intent engine;
engine = new Intent (arg0, WrappedEngine.class);
engine.setAction (argl.getAction());
arg0.startService (engine);

Intent argl) {

C. Engine Execution Task

At glance, the mobApp looks like a background task and
henceforth does not require a plain Ul (i.e. screens). That
means that the PauWare engine has to be wrapped into a
Service, which is an application component that performs
longer-running operations. The corresponding code is sketched
below.

public class WrappedEngine extends Service {
private AbstractStatechart_monitor machine;

private void installBroadcast () {
EventSniffer s = new EventSniffer();
registerReceiver (s, new
IntentFilter (Intent .ACTION_SCREEN_ON)) ;
registerReceiver (s, new
IntentFilter (Intent .ACTION_POWER_CONNECTED)) ;
//The same for the 5 other events

}

//Here goes the raw code of the model
//Refer to Section III.B
private void loadModelFromRawCode () { ... }

//Here is the method invoked by reflection
//Refer to Section IV.A

private void alert (String msg) { ... }
@Override
public void onCreate() {

installBroadcast () ;
loadModelFromRawCode () ;
}

@Override
public int onStartCommand (Intent intent, int
flags, int startId) {
machine.run_to_completion (intent.getAction());
return Service.START_NOT_STICKY;
}

The service is used here in unbounded mode (versus
bounded mode) where the startCommand () method is
responsible for launching a run-to-completion step. Indeed,
it will be invoked every time a new event is caught by the
receiver in the purpose to evolve the current active state of the
state machine. Notice that the absence of a final state in Fig. 1
means that the model’s execution never ends (until the end-
user closes the app of course), which is the expected behavior
for this kind of mobApp.



V. RELATED WORK

There is a large body of work in the literature dealing
with the productive usage of models (MDA-compliant or not)
in order to develop software for mobile platforms [6], [1],
[2], [12], [11], [8], [14]. Most of them are based on UML
2 models, notably Class Diagrams and Activity Diagrams.
This is an unsurprising situation because the static model
approach is not related to any technological frame and works
as well for building desktop applications, mobile applications,
Web applications and so on. Instead, the newest approach of
dynamic model implies to be closer to the target platforms
because the model ought to be directly executed on the latter.
To our knowledge, there were no feedbacks for smart devices
so far.

The most closely related works to ours can be found on the
side of cross-platform mobile development techniques. Indeed,
to deal with the technology independence, some of them like
Cordova (formerly PhoneGap) or Rhodes, require an execution
engine running on the target platform (e.g. Android) [9],
whether embodied by the Web browser for the former or by a
specific Ruby VM for the latter. But anyway, the engineer is
expected to stay at the program-level, and does not rise at the
model-level as in the approach presented in this paper.

VI. CONCLUSION

In this paper, we showed that development of mobile
applications is not only mandatory programming but can also
be about modeling, and thereby this is a radical paradigm
shift. The proposed development approach is currently hybrid:
some parts of the application will be programmed in a classical
manner while others parts will rely on executed models. For
instance, we have defined the behavior of an application
with a state machine model whereas the associated business
operations have to be programmed. Nevertheless, the Holy
Grail consisting in suppressing all the programming parts is
not so unrealistic. Indeed, the OMG proposes fUML* that
enables to define, at the UML diagrams level, the equivalent of
“code” for fully specifying for instance the methods of classes
in class diagrams. Then, through our state machine example, it
is easy to foresee that if the operations associated with states
and transitions are defined at the UML level, we will get a
complete application directly through models.

Behind the scene, executable statecharts pursue a more
ambitious goal: ease software maintenance and adaptation, as
well [3], [4]. Indeed, as reified as a model, the behavior of
the application is not hard-coded into the installed apk. It is
willing to see it just as an input (meta)data of the engine,
communicable and exchangeable over the network in the
SCXML format for example so that it is possible to download
a new model on-demand. Doing so, one may have a completely
new application without impelling any disruption to the end-
user (typically uninstall/reinstall apk on her/his device).

APPENDIX
ABOUT THE MATERIAL USED IN THIS PAPER

The PauWare API and documentation thereof are down-
loadable at http://www.pauware.com. The complete

4Semantics of a Foundational Subset for Executable UML Models (fUML):
http://www.omg.org/spec/FUML/1.1/

sources of the Energy Assistant mobApp presented in the paper
are downloadable through the “Quick Start” menu. Further
more complex case studies are also available.

REFERENCES

[1] F Balagtas-Fernandez, M. Tafelmayer, and H. Hussmann. Mobia
modeler: easing the creation process of mobile applications for non-
technical users. In Proceedings of the 15th international conference on
Intelligent user interfaces, IUI °10, pages 269-272. ACM, 2010.

[2] P. Braun and R. Eckhaus. Experiences on Model-Driven Software
Development for Mobile Applications. In 15th Annual IEEE Inter-
national Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2008), pages 490-493. IEEE, 2008.

[3] E. Cariou, O. Le Goaer, and F. Barbier. Model Execution Adaptation?
In 7th International Workshop on Models@run.time (MRT 2012) at
MoDELS 2012. ACM Digital Library, 2012.

[4] E. Cariou, O. Le Goaer, F. Barbier, and S. Pierre. Characterization of
Adaptable Interpreted-DSML. In European Conference on Modelling
Foundations and Applications (ECMFA 2013), volume 7949 of LNCS,
pages 37-53. Springer, 2013.

[5] B. Combemale, X. Crégut, and M. Pantel. A Design Pattern to Build
Executable DSMLs and associated V&V tools. In The 19th Asia-Pacific
Software Engineering Conference (APSEC 2012). 1IEEE, 2012.

[6] J. Dunkel and R. Bruns. Model-driven architecture for mobile applica-
tions. In W. Abramowicz, editor, Business Information Systems, volume
4439 of Lecture Notes in Computer Science, pages 464—477. Springer
Berlin Heidelberg, 2007.

[71 A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

[8] F. A.Kraemer. Engineering android applications based on uml activities.
In the 14th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2011), pages 183—-197. Springer,
2011.

[9] O. Le Goaer and S. Waltham. Yet Another DSL for Cross-platforms
Mobile Development. In Proceedings of the First Workshop on the
Globalization of Domain Specific Languages, GlobalDSL *13, pages
28-33. ACM, 2013.

[10] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak. Meta-
Modeling Runtime Models. In Models @ run.time Workshop at MoDELS
2010, volume 6627 of LNCS. Springer, 2010.

[11] B.-K. Min, M. Ko, Y. Seo, S. Kuk, and H.-S. Kim. A uml metamodel for
smart device application modeling based on windows phone 7 platform.
In TENCON 2011 - 2011 IEEE Region 10 Conference, pages 201-205,
Nov 2011.

[12] A. Parada and L. de Brisolara. A model driven approach for android
applications development. In the 2012 Brazilian Symposium on Com-
puting Systems Engineering (SBESC 2012), pages 192-197, Nov 2012.

[13] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053-1058, 1972.

[14] Z. Wang. The study of smart phone development based on uml. In
the 2011 International Conference on Computer Science and Service
System (CSSS 2011), pages 2791-2794, June 2011.



