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Abstract 

The use of metaheuristics to solve multi-objective optimization problems (MOP) is a very active research topic. Ant Colony 
Optimization (ACO) has received a growing interest in the last years for such problems. Many algorithms have been proposed in 
the literature to solve di erent MOP. This paper presents an indicator-based ant colony optimization algorithm called IBACO for 
the multi-objective knapsack problem (MOKP). The IBACO algorithm proposes a new idea that uses binary quality indicators to 
guide the search of artificial ants. These indicators were initially used by Zitzler and Künzli in the selection process of their 
evolutionary algorithm IBEA. In this paper, we use the indicator optimization principle to reinforce the best solutions by 
rewarding pheromone trails. We carry out a set of experiments on MOKP benchmark instances by applying the two binary 
indicators: epsilon indicator and hypervolume indicator. The comparison of the proposed algorithm with IBEA, ACO and other 
state-of-the-art evolutionary algorithms shows that IBACO is significantly better on most instances. 
 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of KES International. 
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1. Introduction 

In real world applications, many problems involve optimizing multiple objectives and that are usually conflicting. 
Thus, there is not, usually, a single best solution but a set of solutions that are superior to others when considering all 
objectives. This set is called the Pareto set or non-dominated solutions.  
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These problems appear in many areas such as computer science, engineering, ecology, physics and chemistry. 
One of the widely studied problems in the literature is the multi-objective knapsack problem; the main goal of this 
problem consists in selecting a subset of items in order to maximize a multi-objective function while satisfying a set 
of knapsack constraints. 

Several approaches have been proposed in the literature to solve MOP. Evolutionary algorithms (EAs) were 
intensively studied26. The Pareto-based approaches were very successful and presented an alternative to aggregation-
based methods, which represent a simple way to transform a multi-objective problem into a single objective one. 
Recently, most successful EAs use indicator-based approaches and in particular the hypervolume indicator5,28,29. In28 
Zitzler and Künzli have demonstrated that indicator-specific search can yield results which are superior to well-
known EAs such as SPEA230 and NSGA-II10 with respect to the indicator under consideration. 

The success of indicator based optimizers in the selection process of EAs motivates us to investigate the 
capability of this approach when used by artificial ants to find the best solutions in their optimization search. The 
main advantage of the indicator principle is that it could be easily adapted to other types of approaches as the 
proposed algorithms: indicator based multi-objective local search7, the indicator-based search proposed in16, and 
optimization with uncertainty8. 

In this paper, we propose an ACO algorithm that employs binary indicators that were used in the evolutionary 
algorithm IBEA28. The idea is to use these indicators to guide artificial ants to find the best solutions by laying 
pheromone relatively to the indicator values. This approach is different from the classical approaches in the 
literature, where the indicator optimizers are used to eliminate the worst solutions. In the proposed algorithm 
IBACO, these indicators are used to reinforce the best ones to guide the search of ants. 

ACO is a metaheuristic inspired by the behaviour of real ants. This metaheuristic, described in14,15, is a 
generalization of the first ant based algorithms: Ant System. This algorithm was proposed by Dorigo in13 for the 
Traveling Salesman Problem. The basic idea is to use artificial ants to find the minimum cost path in a graph. ACO 
is inspired from the behavior of real ants; they use a chemical substance called pheromone to communicate their 
experience with the rest of the colony. An ant starts with empty solution and then adds iteratively solution 
components with respect to probabilities that depend on pheromone trails, previously accumulated by the colony, 
and a heuristic information that depends on the problem to solve. After the solutions construction, a pheromone 
update is launched to decide which ants modify the pheromone trails and how. To prevent unlimited accumulation, 
the pheromone trails progressively decrease by evaporation. This pheromone information gives idea about the 
quality of the path in order to attract ants towards the corresponding areas of the search space in the following 
iterations. 

The ACO metheuristic has been successfully applied to different combinational optimization problems such as 
quadratic assignment problems25, vehicle routing problems9,17 and multidimensional knapsack problem1. Due to the 
good results found by ACO for mono-objective problems, many papers investigated the capabilities of ACO to solve 
multi-objective problems. In the literature, many taxonomies of multi-objective ACO algorithms (MOACO) was 
proposed18,4,21. These taxonomies categorize the MOACO algorithms relatively to different features. In18, the 
proposed taxonomy categorizes MOACO algorithms by the number of pheromone matrices and the number of 
heuristic matrices. In2, a generic ACO algorithm called m-ACO, is proposed and instantiated with four variants. This 
algorithm is parameterized by the number of ant colonies and the number of considered pheromone structures. For 
the four variants, pheromone trails are updated relatively to the objective functions values or relatively to constant 
values. 

To apply ACO for multi-objective problems, there are many points to define. However, we consider that the key 
point is how to define the pheromone trails and how to use this pheromone information in the probability transition. 

The quantity of pheromone laying on a component represents the past experience of the colony with respect to 
choosing this component. When there is only one objective function, this past experience is defined with respect to 
this objective. However, when there are several different objectives, one may consider two different strategies. A 
first strategy is to associate a single pheromone trail to each component, as proposed in22,19,23,6,3. In this case, the 
quantity of pheromone laid by ants is defined with respect to an aggregation of the different objectives. To avoid this 
function aggregation, a second strategy is to associate several pheromone trails to each component, as proposed 
in20,11,17,9,12. In this case, one usually associates a different colony of ants with each different objective, each colony 
having its own pheromone information. However, most of these approaches are obliged to aggregate these 
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pheromone structures to define the pheromone factor used in the probability transition. This probability is used when 
constructing solutions, at each step, to choose a candidate. It depends on two factors: the pheromone factor and a 
heuristic factor that is problem specific. 

In this paper, the proposed algorithm IBACO uses a single pheromone structure employing a new idea. The 
pheromone information is defined relatively to the quality indicators values. These indicators, as defined in28, assign 
each Pareto set approximation a real value reflecting its quality. They are considered as a natural extension of the 
Pareto dominance relation. Therefore, in IBACO ants use directly these values to deposit pheromone trails on the 
solutions they constructed relatively to their quality. 

The paper is organized as follows. We recall in the next section definitions and notations of the multi-objcetive 
optimization problems. In section 3 we will present the indicator-based optimization principle, and we define 
dominance ranking techniques in terms of binary indicators. Then in section 4, we describe the IBACO algorithm. In 
section5, we present the experimental results, obtained by the application of IBACO to the multi-objective knapsack 
problem and compared to state-of-the-art EAs algorithms. Finally, conclusion and perspectives are discussed in 
section 6. 

2. Multi-Objective Optimization Problems 

A MOP is defined by a tuple F,C,Z,X such that X  is a vector of n decision variables, i.e., nx,...,xX 1 ; Z is a 
vector of n value sets defining the domains of the decision variables, i.e., nz,...,zZ 1 , such that iz  is the set of 
values that may be assigned to ix ; C is a set of constraints on X , i.e., a set of relations restricting the values that 
may be simultaneously assigned to the decision variables; and F  is a vector of 2m  objective functions 

Xf,...,XfXF m1 ; without loss of generality, we assume that these di erent objective functions have to be 
minimized. 

The space of candidate solutions, noted C,Z,XE , is the set of all value vectors Zz satisfying all the constraints 
of C . We define a partial order relation on this set as follows: a solution C,Z,XEz  dominates a solution C,Z,XEz
, noted zz , i  z  is at least as good as z  for each of the m criteria to optimize, and strictly better than z for at 
least one of these criteria, i.e., i  zfzf,m,...,i ii1 and zfzf,m,...,i ii1 . 

We note that for each pair of solutions z  and z one and only one of these cases can occur: 
 z dominates z , i.e., zz , 
 z  is dominated by z , i.e., zz , 
 z and z  are equivalent in sense of dominance, i.e., zzzz . 

Solutions equivalent in sense of dominance are called Pareto-optimal, non-dominated solutions. The goal of a 
MOP is to find the Pareto set of all non-dominated solutions, i.e., zz,C,D,XEzC,Z,XEz . 

When using a metahuristic approach, the goal is to find Pareto set approximation that we note A . The set of all 
approximation sets is noted . 

3. Indicator Based Optimization 

In this section we introduce the binary indicator optimization principle as defined and used in28,32 : 
Definition 1: Binary quality indicator I: 

The function :I , which assigns a real value to any pair of approximation sets ( 21 A,A ) , is called 
binary quality indicator. 

A binary quality indicator is a natural extension of the concept of Pareto-dominance on sets of objective vectors 
and can be directly used to calculate fitness. It can be used to compare two solutions or a single solution against a 
whole population. As defined in28, the quality indicator I is compliant with the Pareto dominance relation: 

Definition 2: A binary indicator I is denoted as dominance preserving if for all Xx,x,x 321   
a) 122121 x,xIx,xIxx   and  
b) 231321 x,xIx,xIxx  

 
In their study, Zitzler and Küenzli proposed the Indicator-Based Evolutionary Algorithm (IBEA), which use the 

principle of indicator to establish the selection process. The individual with the worst fitness value, in terms of the 
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quality indicator used, is deleted from the population and the fitness of the remaining individual is updated. In 
IBEA, two indicators are tested: the epsilon indicator I (equation1) and the hypervolume indicator HDI (equation 2). 

2121 xfxfminx,xI ii  for m,...,i 1                                                                                      (1) 

)x,x(I 21 , Xx,x 21 , is the minimum value by which 1x must be moved to weakly dominate 2x .  

elsexHxxH
xxifxHxHx,xI HD 121
121221                                                                                      (2) 

1xH  gives the hypervolume of the objective space dominated by 1x and 21 x,xIHD is the volume of the space that 
is dominated by 2x  but not by 1x . 

To evaluate the quality a solution 1x according to the whole population, different fitness assignment scheme are 
proposed in the literature. One of them is to sum up the indicator values with the respect to the rest of the population 
(equation 3). 

         
12

121
x\ Px

x,xI=xFit                                                                                                                          (3) 

In order to emphasize the influence of dominating solution over dominated ones an alternative approach can be 
used (see equation 4). In our experiments, we will use this formulation for the I and HDI indicators. 

12

121
x\ Px

/x,xIe=xFit                                                                                                                    (4) 

is a scaling factor, when it’s equal to 0, the same order relation between solution is obtained. Then, values near 
to 0 are preferred. 

As shown previously in the paper, binary quality indicators are considered as a natural extension of the Pareto 
dominance relation, as defined in28 the fitness scheme is also Pareto dominance compliant. 

Theorem 1: let I be a binary quality indicator. If I is dominance preserving, then it holds that : 
2121 xFitxFitxx . 

4. Indicator Based Ant Colony Optimization 

This section presents the main contribution of the paper. Before defining our proposed algorithm IBACO, let us 
describe the problem to solve:  the multi-objective knapsack problem (MOKP). 

4.1. Problem Description 

The MOKP consists in selecting a subset of items in order to maximize several utilities while satisfying a set of 
knapsack constraints. More formally, the problem is defined as follows: 

 
                Maximize   

n
j j

k
j xp1                 m,...,k 1     

                Subject to   n
j ij

i
j bxw1      q,...,i 1    

                                    10 ,x j         n,...,j 1   

m denotes the number of objectives functions, n denotes the number of items, xj the decision variable for the item 
oj, q is the number of resource constraints, wi

j the quantity of the resource i consumed by the item oj, bi the total 
quantity available for the resource i, k

jp  is the profit of the item oj relatively to the objective k. 
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4.2. Algorithm Description 

The basic idea of IBACO is to apply the indicator-based approach as a search guide for the artificial ants to find 
the Pareto set approximation. Ants build solutions within a construction graph E,VG , a complete graph where V is 
the set of items of the MOKP to solve. The pheromone trails are associated with vertices of this graph. IBACO 
follow an elitist version of Ant System scheme13 in which only solutions of the Pareto set are authorized to lay 
pheromone. Pheromone trails are initialized to an initial amount. At each cycle of the algorithm, every ant constructs 
a solution. Once the construction phase is completed, the fitness assignment is carried out and the Pareto set is 
updated using the binary indicator. Then, the pheromone trails are updated according to the fitness values. The 
algorithm stops iterating when a maximum number of cycles is reached. The IBACO algorithm is outlined in Fig 1. 

4.3. Solution Construction 

In order to construct its solution, at each construction step, each ant ant choose an item oj to add to the solution 
Sant among the set of candidate items Cand with the probability Ps(oj) defined in equation 5. Then Cand is updated 
by removing the items that violate constraints. The solution construction algorithm is described in Fig 2. 

Cando
jSjS

jSjS
j

ant
S

j

o.o

o.o
op                                                                                                              (5) 

where  and  are two parameters which determine the relative importance of the pheromone factor jS o  and  
the heuristic factor jS o . The pheromone factor is the pheromone trails laid on the candidate item. The heuristic 
factor is a specific problem heuristic information. We define this heuristic factor for the MOKP as an aggregation of 
the heuristic factor defined in 1 for the uniobjective multidimensional knapsack problem. Thus, the heuristic factor 

jS o used in the transition probability of the choice of a candidate item jo  is defined as follows: let Sg igiS rbid
be the remaining quality of the source i when the ant has constructed the solution S ; we define the ratio: 

q

i S

i
j

jS id
w

oh
1

                                                                                                                                               (6) 

Algorithm IBACO: 
Initialize the pheromone trails to init  

do 

      for each ant ant =1 to NbAnts 

           construct a solution antS  

        end for; 

  Calculate fitness values of solutions antS :  

        
antS\ AtanS

/antS,'antSI
ant e=SFit  

  Update Pareto set P with new non dominated 
solutions  

  Update the pheromone trails  

  while maximum number of cycles reached 

Algorithm construct a solution: 
choose a first item randomly n..o 11  

1oSant  

Cand {objects jo  without violating any constraint} 

  While 0Cand do 

           Choose an item Cando j  with probability j
ant

s oP  

         jantant oSS  

    Remove from Cand items that violates resource constraints 

 End while 
 
 

                     Fig. 2. Solution Construction                                                Fig. 1. Baseline of the IBACO algorithm. 
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    0     otherwise             
Fit (Sant)      if  oj  Sant      

Which measures the tightness of the item j  on all the constraints q..i 1 relatively to the constructed solution S . 
Thus, the lower this ratio is, the more the item is profitable. We integrate in this ratio the profit k

jp of the item jo  
relatively to the objective k to obtain a pseudo-utility factor corresponding to the heuristic information of the 
objective k . 

jS

k
j

j
k
S oh

p
o                                                                                                                                                  (7) 

We can now define the heuristic factor formula as an aggregation of heuristic information of all objectives, 

m

k
j

k
SjS oo

1
                                                                                                                                             (8) 

4.4. Pareto Update 

The Pareto set is updated by using binary indicator values. As shown earlier in the paper, the binary quality 
indicator is a natural extension of the Pareto dominance relation. Iɛ and IHD verify the dominance preserving relation; 
for instance, the Iɛ values become negative as soon as Sant

  dominates Sant’32. 

4.5. Fitness Assignment 

The fitness assignment ranks the solutions according to their quality, in terms of the quality indicator used. In 
other words, the best solution is the solution with the biggest fitness value. In IBACO algorithm, the fitness 
assignment is only carried out for the members of the Pareto set with respect to the rest of solutions. Fitness 
assignment formulation is defined in equation 4. 

4.6. Pheromone Trails Update 

This function updates the amount of pheromone laying on each item oj of solution Sant belonging to the Pareto set. 
First the pheromone trails are decreased, in order to simulate some kind of evaporation, and then the amount of 
pheromone is added on each item oj of non-dominated solutions. Thus, the pheromone trails are updated according 
to equation 9 and 10: 

jjj ooo 1                                                                                                                  (9) 

Where   is the evaporation factor, such that 0<  <1 and 
 

 

 
If a solution Sant dominates another solution Sant’, the indicator value is negative and it contributes much more 

than the positive ones to the overall fitness. The fitness value is greater when a negative indicator value is assigned. 
Thereby, we have large fitness values for the dominating solutions and smaller values for dominated ones. In order 
to further attract ants towards the most promising search areas, in the IBACO algorithm, only the solutions of the 
Pareto set will be rewarded by the pheromone. During the pheromone update, the components of the best solutions, 
in terms of fitness value, receive the highest amount of pheromone according to their quality, following which they 
will be selected more often in the future cycles of the algorithm. 

jo                           (10) 
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5. Experimental Results  

In this section, we present the results of our experiments realized on multi-dimensional multi-objective knapsack 
problem (MOKP). The benchmark instances used for these experiments defined in27. The experiments are based on 
nine instances with 2, 3 and 4 objectives, in combination with 250, 500 and 750 items. 

In our experimentation, a comparative study has been carried out on the two binary indicators I and HDI . We 
have chosen to compare our results with the indicator based algorithms IBEAɛ, IBEAHD

28, the best variant of the 
generic ACO algorithm m-ACO4 proposed in 2, HypE5 and also the popular SPEA230. HypE is a hypervolume-based 
search algorithm using Monte Carlo simulation. In the following, we discuss about the parameters setting and 
performance analysis protocol before detailing results. 

5.1. Parameters Setting 

We have done experimentations on some MOKP instances to choose the parameters values. We have set , the 
weight of pheromone factor, to 1, and , the weight of heuristic factor, to 5. The evaporation ratio set to 0.01, the 
number of cycles to 100, NbAnts, the number of ants, to 20 and init to 1. For the I  and HDI  indicators, has been 
set to 0.05. Moreover, HDI  needs a reference point, which has been set to [2,2], as suggested in28.  

IBEA, m-ACO, HypE and SPEA2 were configured as described in28,2,5,30 respectively. In order to get fair 
comparison all algorithms have been implemented in C, run and tested on the same machine. 

5.2. Performance Metrics 

The performance assessment of multi-objective optimizers should consider at least three aspects: minimal 
distance to the Pareto-optimal front, adequate (good) distribution and maximum spread. 

Various performance metrics to measure these three aspects have been introduced in the literature. We choose 
two measures: the size of the dominated space and coverage of two Pareto fronts31. Zitzler has shown that the two 
metrics are sufficient to measure the difference in performance between algorithms31. 

 The size of the dominated space (S) indicates how good the Pareto-front set is approximated by the non-
dominated solutions of a given algorithm. The greater the size of the space dominated by the non-dominated 
solutions is, the more the solutions are close to Pareto-front set.  

 The Coverage of two Pareto fronts compares two Pareto optimal sets A and B to each other. The coverage C 
(A,B) of the two Pareto fronts maps the ordered pair (A,B) to the interval [0, 1]: 

B

ba:AaBb
B,AC                                                                                                                           (11) 

Therefore, C(A,B) gives the fraction of B dominated by A. When C(A, B) = 1, all points in B are dominated by 
or equal to points in A, whereas when C(A, B) = 0, none of the points in B are covered by the set A. Note that 
C(A,B) is not necessarily equal to 1- C(B,A). 

5.3. Comparative Results 

In this section, we show the results of the C and S metrics calculated over 30 runs for all the compared algorithms 
on the benchmark instances. The results of both metrics are analysed through the non-parametric Wilcoxon rank-
signed test24 (W-test) in order to verify if the difference between the tested algorithms is statistically significant. 

Table 1 and 2 compare, respectively, IBACOHD and IBACOɛ, with IBEAɛ, IBEAHD, SPEA2, m-ACO and HypE 
algorithms relatively to the C average values calculated over 30 runs. These tables show that the solutions returned 
by IBACOHD/ɛ dominate always the ones returned by IBEAɛ, IBEAHD, m-ACO, SPEA2 and HypE. Moreover, there 
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are no solutions returned by these compared algorithms that dominate any one returned by IBACOHD and IBACOɛ 
since the values of the C measure are, for all these algorithms and for all the instances, equal to 0. The W-test shows 
that the results of IBACOHD are significantly larger than the tested algorithms. When comparing IBACOɛ with 
IBACOHD relatively to the C measure, we have found very close results and no significant difference. 

             Table 1. The C measure statistics returned by IBACOHD compared to IBEA, SPEA2, m-ACO and HypE over 30 runs: Average values 
(W-Test). For W-Test, the level of significance considered is 0.05, (+) and (-) denote that IBACOHD C value is, respectively, significantly or not 
significantly larger than that of the compared algorithm. 

 2.250 2.500 2.750 3.250 3.500 3.750 4.250 4.500 4.750 

C(IBACOHD , IBEAɛ) 
C(IBEAɛ , IBACOHD) 

0.954 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.832 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.575 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOHD , IBEAHD) 
C(IBEAHD , IBACOHD) 

0.976 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.992 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.548 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOHD , SPEA2) 
C(SPEA2 , IBACOHD) 

0.997 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.950 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.896 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOHD , m-ACO) 
C(m-ACO, IBACOHD) 

0.362 (+) 
0 

0.285 (+) 
0 

0.678 (+) 
0 

0.098 (+) 
0 

0.499 (+) 
0 

0.924 (+) 
0 

0.003 (+) 
0 

0.337 (+) 
0 

0.926 (+) 
0 

C(IBACOHD , HypE) 
C(HypE , IBACOHD) 

0.838 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.717 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.790 (+) 
0 

1 (+) 
0 

1 (+) 
0 

 
Table 3 shows the results found by IBACOHD/ɛ, and the other tested algorithms for the S average values and the 

statistical results of the W-test. Due to space limitations, only the IBACOHD is compared with the other algorithms. 
From the table, we observe, first, that SPEA2 gives the worst results of S average values comparing to the 

indicator-based algorithms for all the instances. Therefore, one could conclude that indicator-based algorithms 
perform better than the classical Pareto based approach. When comparing IBACOHD and IBACOɛ with the S 
measure, we remark that for most of instances there is no significant difference.  

The comparison of our algorithm with IBEA for the two indicators shows that IBACOHD/ɛ outperforms widely 
and significantly IBEAHD/ɛ. When comparing IBACOHD/ɛ with m-ACO and HypE relatively the S average value, we 
note that these latters slightly outperform our new algorithm for some small instances. However, IBACO clearly 
outperforms m-ACO and HypE for all the largest and hardest instances, and statistically, IBACO is always 
significantly larger. 

The table 4 shows the processing times of all the tested algorithms with the parameters values recommended 
in28,2,5,30. We note that for both, IBACOHD/ɛ, the execution times are clearly shorter than the other algorithms. 

To summarize, the two indicators applied to IBACO obtain nearly the same results. IBACO significantly 
outperforms the other compared algorithms regardless of the indicator chosen. Moreover, IBACO needs much less 
processing time to find these results. 

             Table 2. The C measure statistics returned by IBACOɛ compared to IBEA, SPEA2, m-ACO and HypE over 30 runs: Average values (W-
Test). For W-Test, the level of significance considered is 0.05, (+) and (-) denote that IBACOɛ C value is, respectively, significantly or not 
significantly larger than that of the compared algorithm. 

 2.250 2.500 2.750 3.250 3.500 3.750 4.250 4.500 4.750 

C(IBACOε , IBEAɛ) 
C(IBEAɛ , IBACOε) 

0.986 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.838 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.524 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOε , IBEAHD) 
C(IBEAHD , IBACOε) 

0.972 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.774 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.500 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOε , SPEA2) 
C(SPEA2 , IBACOε) 

0.999 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.952 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.843 (+) 
0 

1 (+) 
0 

1 (+) 
0 

C(IBACOε , mACO) 
C(mACO, IBACOε) 

0.239 (+) 
0 

0.489 (+) 
0 

0.647 (+) 
0 

0.114 (+) 
0 

0.483 (+) 
0 

0.879 (+) 
0 

0.187 (+) 
0 

0.401 (+) 
0 

0.650 (+) 
0 

C(IBACOε , HypE) 
C(HypE , IBACOε) 

0.841 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.734 (+) 
0 

1 (+) 
0 

1 (+) 
0 

0.492 (+) 
0 

0.999 (+) 
0 

1 (+) 
0 
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Table 3. The S measure statistics returned by IBACOHD/ɛ, IBEA, SPEA2, m-ACO and HypE over 30 runs: Average values (W-Test). For W-Test, 
the level of significance considered is 0.05, (+) and (-) denote that IBACOHD S value is, respectively, significantly or not significantly larger than 
that of the compared algorithm.  

Instance IBACOHD IBACOε IBEAHD IBEAε SPEA2    m-ACO HypE          

2.250 8.84e+7 8.86e+7 (-) 8.78e+7 (+) 8.65e+7 (+) 8.28e+7 (+) 8.83e+7 (+) 9.18e+7 (+)       

2.500 3.67e+8 3.68e+8 (-) 3.15e+8 (+) 3.11e+8 (+) 2.98e+8 (+) 3.67e+8 (+) 3.20e+8 (+) 

2.750 7.90e+8 7.95e+8 (-) 6.61e+8 (+) 6.60e+8 (+) 6.30e+8 (+) 7.79e+8 (+) 6.94e+8 (+) 

3.250 7.36e+11 7.32e+11 (-) 7.23e+11 (+) 7.30e+11 (+) 6.65e+11 (+) 7.43e+11 (+) 7.71e+11 (+) 

3.500 6.01e+12 6.01e+12 (+) 5.06e+12 (+) 4.97e+12 (+) 4.58e+12 (+) 5.88e+12 (+) 5.08e+12 (+) 

3.750 2.13e+13 2.12e+13 (-) 1.54e+13 (+) 1.53e+13 (+) 1.44e+13 (+) 2.05e+13 (+) 1.56e+13 (+) 

4.250 5.67e+15 5.68e+15 (-) 5.70e+15 (+) 5.61e+15 (+) 5.17e+15 (+) 5.69e+15 (+) 5.95e+15 (+) 

4.500 9.35e+17 9.20e+17 (-) 7.57e+17 (+) 7.76e+17 (+) 6.85e+17 (+) 8.90e+17 (+) 7.93e+17 (+) 

4.750 4.86e+17 4.85e+17 (-) 3.50e+17 (+) 3.49e+17 (+) 3.21e+17 (+) 4.62e+17 (+) 3.49e+17 (+) 

6.  Conclusion 

In this paper, we have proposed a new indicator-based ACO algorithm for the multi-objective knapsack problem. 
This algorithm, called IBACO, uses the principle of binary indicator optimization proposed in IBEA algorithm28. 

The indicators are employed in order to guide the search of ants by laying pheromone trails relatively to a fitness 
assignment function. The experimental results on MOKP instances show that IBACO significantly outperforms the 
compared algorithms. In fact, the solutions returned by IBACO dominate always the ones returned by the other 
algorithms, and there are no solutions returned by these compared algorithms that dominate any one returned by 
IBACO. 

The binary indicator search principle used in this paper by IBACO is different from that used in28 since it is used 
to reinforce the best solutions and not to delete the worst ones as done in the selection phase of IBEA. The proposed 
algorithm shows its effectiveness compared to the tested algorithms for the MOKP. The efficiency of IBACO could 
vary according to the problem to solve and the choice of the parameter values. In fact, it would be interesting to 
apply IBACO on other multi-objective problems to test its effectiveness and scalability.      

       Table 4. Processing time for all algorithms over all instances (average values ‘Avg’ in seconds and standard deviation ‘SD’). 

Instances IBACOHD IBACOε IBEAHD IBEAε SPEA2    m-ACO        HypE          

 Avg      SD Avg    SD Avg       SD Avg      SD Avg      SD Avg          SD   Avg  SD 

 250 3      0.10 4     0.23 119     6.15 218    8.26 211    3.58  408      26.47   219      1.78      

2 500 12    0.17 13   0.69 222     12.42 212    7.81 212    4.60  1450    146.41   218      1.86 

 750 28    0.12 29   0.85 225     12.49 215    7.83 210    2.70  3114    232.32   218      1.65 

 250 4      0.05 4     0.05 210     3.78 215    9.99 212    5.93  441      13.49   224      1.39 

3 500 16    0.26 16   0.31 215     8.77 214    8.45 213    5.04  1511    40.77   223      2.56 

 750 36    0.47 36   0.73 214     6.76 212    6.34 211    3.01  3695    483.65   222      1.53 

 250 5      0.15 5     0.18 209     2.74 216    10.35 212    1.69  1300    604.4   226      1.55 

4 500 20    0.24 20   0.44 210     3.60 213    7.82 218  12.07  1941    252.64   227      1.85 

 750 47    1.18 49   3.71 211     3.70 215    11.31 212    1.94  4389    439.03   226      1.44 
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