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Abstract 

I n  this paper an error-correcting parsing algorithm 
and its application to a postprocessing task in the con- 
text of automatic check processing is described. The 
proposed method has shown very good results in terms 
of recognition accuracy and execution speed on both 
real and synthetic data. 

1 Introduction 

The recognition of machine printed characters has 
been intensively studied during the past years and sig- 
nificant progress has been made [l]. For example, 
there exist commercial OCR systems that achieve a 
correct recognition rate of over 99% today [a]. But 
depending on the particular application, such a high 
recognition rate may be still insufficient. In order to 
further improve recognition accuracy, contextual post- 
processing is often very useful. Different contextual 
postprocessing methods have been proposed in the lit- 
erature. A recent survey has been given in [3] .  For 
earlier overviews see [4, 51. 

In the present paper we propose the application of 
finite state automata and error-correcting parsing to 
solve a particular postprocessing problem occurring in 
the context of automatic check reading. The proposed 
method is not only an aid to recover from OCR errors 
but also to classify a document, i.e. a check, based 
on its contents in the presence of OCR errors. The 
present paper is a shortened version of [6]. 

2 Theoretical Foundations 

In this section we give a brief review of error- 
correcting parsing, which serves as theoretical founda- 
tion of the method described in Section 3. The algo- 
rithm presented in this section is a restricted version 
of the parser introduced in [7]. A similar algorithm 
have been described in [8]. 
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We consider a finite alphabet X = (21, . . . , xn} of 
symbols. The set of all words over X ,  including the 
empty word E ,  is denoted by X * .  A (deterministic) 
finite state automaton (fsa) over X is a 5-tuple A = 
(Q, X, S,QO, F )  where Q is the finite set of states, QO E 
Q is the initial state, F c Q is the set of final states, 
and 6 : Q x X -+ Q is the transition function. The 
transition function can be extended to S : Q x X *  -+ Q 
be defining S(q, E )  = q for any q E F ,  and 6(q, xu) = 
S(S(q ,  x), a )  for any x E X *  and a E X .  The language 
L(A)  accepted by a fsa A is defined by L(A)  = {xlx E 
X *  A S(q0,x) E F } .  This means that L(A) consists of 
all words x over X for which there exists a sequence 
of state transitions, defined by 6, from QO to a final 
state. It is well known that the class of languages 
accepted by fsa’s is identical to the class of languages 
of Chomsky-type 3.  These languages are also called 
regular. 

The errors produced by OCR devices can be clas- 
sified into three types, namely deletion, insertion, and 
substitution of a symbol. These three types of er- 
rors are also called edit operations. In order to model 
the fact that certain errors are more likely to occur 
than others, each edit operation s gets assigned a cost 
c(s), which is a non-negative integer. Given a sequence 
S = SI, sa,. . . , s, of n edit operations, its cost is de- 
fined as c(S) = c(sz) .  Now for any two words z 
and y over an alphabet X, the string distance d(x ,  y)  is 
defined as the minimum cost taken over all sequences 
of edit operations that transform x into y. Formally, 
d(x,y) = min{c(S) lS  is a sequence of edit operations 
transforming x into y}. An algorithm for the compu- 
tation of d(z ,y)  have been described in [9]. 

The task of a parser is to decide, for a given word x 
and language L, if x E L. The fsa A of any language 
L = L(A)  can be used as a parser in a straightforward 
way by starting with the initial state and traversing 
the states of A according to S and the actual input 
word x .  After reading x we are in some state S(q0,  x ) .  



algorithm error-correcting parser 

input: a fsa A = (Q,X,S,qo,F)  and input x = 
x1 . . . xn 
output: d = min{d(x ,  z) Iz  E L(A)}  
method: 
/*initialization*/ 

for i = 1 to n do L(i)  = 8; 
/*main loop*/ 
for i = 1 to w do { 

repeat { 

L(0) := {b70,0)); 

for all (q,c) E L( i )  do { 
add[(q, c + ins),  L(i + l)]; /*insertion*/ 
for all q’ E next(q)  do { 

add[(q’, c + del), L( i )];  /*deletion*/ 
if 6(q, xi+l)  = q‘ then add[(q’, e ) ,  L(i + l)] 
/*match*/ 
else add[(q’, c + sub), L(i + l)]}}} 
/*substitution*/ 

until no more elements can be added to L( i ) }  
d := minc{(q,c)I(q,c) E L(n) ,  Q E F }  
end error-correcting parser 

Figure 1: The error-correcting parsing algorithm 

Now if S(q0,x) E F then we conclude 2 E L(A) ,  oth- 
erwise x @ L(A).  In error-correcting parsing, we are 
given a fsa A and a string x that does not necessarily 
belong to L(A).  If x E L(A) then the error correct- 
ing parser is supposed to report this fact. Otherwise, 
if x $! L(A),  the error-correcting parser has to find 
string y such that d ( x , y )  = min{d(x , z ) l z  E L(A)}  
and outputs d ( x ,  y). In other words, it has to find that 
element of L(A) that has the smallest edit distance to 
the input x .  

The pseudo code of an error-correcting parsing al- 
gorithm for Chomsky-type 3 languages is given in Fig. 
1. This algorithm constructs a list L( i )  for each input 
symbol 2,. Additionally, there is an initial list L(0). 
Each list contains a number of elements of the form 
( q , c )  where q E Q and c is the cost of a sequence of 
edit operations. More precisely, if ( q , c )  E L(i)  then 
there exists a string y such that d ( q  . . . x 2 , y )  = c 
and S(q0,y)  = q .  In other words, if L( i )  contains 
(q ,  e)  then we know that after reading X I .  . . x ,  state q 
can be reached if we apply a sequence of edit opera- 
tions with cost c to x l . .  . x,. Furthermore, we know 
that there is no other such sequence of edit operations 
with a smaller cost. This property implies that after 
L(n)  has been constructed, the cost c of the element 
(q,c) = mincl{(q’,c’)lq’ E F }  is our desired output. 

In the formulation of the algorithm given in Fig. 1, 
we assume constant cost ins, del and subst for any in- 
sertion, deletion, and substitution, respectively. These 
costs are global variables to the algorithm. However, 
the algorithm can be easily extended to the case where 
each insertion, deletion, and substitution may have its 
individual cost. 

The algorithm uses two functions. The function 
next(q)  returns the set of successor states of q E 
Q under any symbol. More precisely, nez t (q)  = 
{q’JS(q, a )  = q’, a E X } .  Let L(i)  be a list and (q ,  c) a 
list element. Then add((q, c), L( i ) )  constructs a new 
list L‘(i) as specified below 

L( i )  U ( 4 ,  c) 
( L ( i )  - (4, c’)) U (q ,  c) 

if case 1 
if case 2 L’(i) = I L(i)  otherwise 

Case 1 means that L(i)  contains no list element (4, e’) 
for any c’; case 2 means that L(i)  contains a list el- 
ement (q ,  e’) with c < e’. Obviously, add((q, e) ,  L( i ) )  
keeps track of the minimum cost necessary to reach a 
certain state after reading x1 . . .x,.  It can be easily 
concluded that the time and space complexity of the 
error-correcting parsing algorithm are O(n .m), where 
n is the length of the input word and m denotes the 
number of states of the fsa. 

It is easy to augment the algorithm shown in Fig. 1 
by pointers that allow to extract the word y in the 
language that has the minimum edit distance to the 
input, i.e. the word y with d(x ,  y) = min{d(x ,  z ) ( z  E 
L(A)}.  The pointers just indicate for each list element 
(q,c) from which other element it has been generated 
by means of which edit operation. 

3 Problem Description and Proposed 
Solution 

The application area considered in this paper is 
the automatic reading of checks. Over thirty differ- 
ent types of checks, each having an individual lay- 
out format, are commonly used for money transfer 
in Switzerland. An example is shown in Fig. 2. Al- 
though a large number of such checks are submitted 
daily, their processing at  banks and post offices is only 
partly automated. That is, only the so-called coding 
line on a check is read by machine. The coding line 
is in the lower right part of a check. Its location is 
predefined and is the same for all different types, i.e. 
layout formats, of checks. For a graphical illustration 
see Fig. 2. 

The coding line of each check follows a predefined 
format. This format, however, depends on the partic- 
ular type of check. The definition of the format of the 
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position 
1-2 

3-12 
13 
14 

15-40 
41 

42-43 
44-51 

52 
53 

in Fig. 1. 

parity check for position 1-12 

parity check for positions 15-40 

meaning possible value 
check subcategorie One out of {01,03,11> 
amount any sequence of digits 
parity digit 1 
delimiter > 
reference number any sequence 
parity digit 2 
delimiter + space 
customer identification 
parity digit 3 
delimiter > 

187.50 Fr. 
reference number 20011282367002209310248139 

Table 3: Result of automatic processing of Fig. 1. any sequence of digits 
parity check for positions 44-51 

25-30 

32-33 
34-41 

42 
43 

meaning 
check subcategorie 
parity digit 1 
delimiter 
reference number 
deadline 
parity digit 2 
deliiiiiter 
customer identificatioii 
parity digit 3 
delimiter 

possible value 
nile out of f46.47.56.571 
parity check for positoin 1-2 
> 
any sequence of digits 
date in forinat YYMMDD 
parity check for positions 5-30 
+ space 
any sequence of digits 
parity check for positions 34-41 
> 

Table 2: Format definition of coding line of another 
type of check. 

coding line of the check in Fig. 2 is given in Table 1. 
The format definition of another type of check is given 
in Table 2. The ultimate goal of automatically reading 
the coding line on a check is not only to correctly rec- 
ognize the sequence of characters on the coding line, 
but also to infer the meaning of each character. That 
is, one wants to assign an interpretation to each char- 
acter in the sense of the definition shown in Table 1 or 
2. For example, when processing the check in Fig. 2, 
we intend to derive a result similar to Table 3.  

Apparently, if the type of a check were known, the 
inference of the meaning of each character on the cod- 
ing line would be more or less trivial because the for- 
mat of the coding line for a given type of check is 
precisely defined. In reality, however, the type of a 
check is not known as only the coding line on a check 
- and nothing else - is captured by the scanning de- 
vice. Therefore, in order to infer the meaning of each 
character on the coding line, we first have to determine 
the type of the actual check using only the sequence of 
characters on the coding line. Solving this task is not 
trivial as at least two subproblems are encountered. 
First, the formats of the coding lines of different types 
of checks may be similar to each other, and secondly, 
there may be OCR errors resulting in the insertion, 
deletion, or substitution of characters on the coding 
line. 

In our system, we have a module that digitizes the 
coding line on a check, extracts the individual char- 
acters, and feeds them into an OCR program. The 

initions of the coding lines and determines the type 
of check that fits best. This process yields the mean- 
ing of each character on the coding line (as shown in 
Table 3 )  as a by-product. Our actual comparison pro- 
cedure is an error-correcting parser that is controlled 
by a regular grammar, which describes the coding line 
formats of all different types of checks. In the present 
paper, we concentrate on the postprocessing module. 

The legal symbols occurring on the coding line are 
from the alphabet X = {0,1, .  . . , 9 ,  <,>,+,space}. 
The coding line of each type of check consists of a 
sequence of logical units, where a logical unit is one of 
the following (see also Table 1 and 2):(1) a sequence of 
fixed length I 2 1 of arbitrary symbols from a subset of 
X; (2) one out of a finite number of constant sequences 
of symbols; ( 3 )  a range of integer values; (4) a date; 
(5) a parity digit. Obviously each of these logical units 
can be represented by a fsa in a straightforward way. 
Consequently, any coding line can be represented by 
concatenation a number of fsa’s, each defining one of 
the types (1) to (5) from the list above. 

The fsa’s that represent the coding lines of the dif- 
ferent types of checks in our system have been gener- 
ated from their definitions. Given these fsa’s and the 
sequence of symbols output by the OCR-module, the 
error-correcting parser described in Section 2 can be 
applied. It determines the most similar type of check 
for a given input coding line based on the minimum 
edit distance. Thus the actual check can be classi- 
fied into one of the types defined a priori. Evaluating 
the pointers set by the algorithm, the meaning of the 
characters on the actual coding line can be determined 
(see Table 3 ) .  

4 Experimental Results 

The error-correcting parser described in Section 2 
has been implemented in C under MS-DOS and UNIX 
and runs on both personal computers and worksta- 
tions. As the printing quality of the characters on the 
coding lines of the checks under consideration is gen- 
erally quite good, the error rate of the OCR-module 
can be expected fairly low. Consequently, we have 
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1 1 T=O I T=l I T=2 I 

L 100.00 100.00 100.00 

Table 4: Result of the first experiment ( R  = rejection 
rate, E = error rate, L = reliability) 

defined an error threshold T for our error-correcting 
parser. As soon as the cost c of a pair (q , c )  in any 
of the lists L(i)  exceeds this threshold, i.e. c > T ,  
the item ( 4 ,  c) is not included in L(i) .  Practically, this 
prevents any item which will not contribute to the fi- 
nal solution from being considered, and thus speeds 
up the algorithm. Theoretically, it reduces the time 
complexity of the parser from O(n.m) to O(n.T)  (see 
Section 2). The concrete value of T has been varied 
in our experiments as will be described below. 

A number of experiments were done aiming at  the 
classification of a check into its type based on the out- 
put of the OCR-module. The 14 most frequent check 
types, i.e. 14 different fsa’s, were used in these ex- 
periments. As OCR-module, a commercial product 
was used. Particularly, we were interested in error 
rate and reliability depending on the error threshold 
T .  Let N = N I  + N2 + N3 where N denotes the to- 
tal number of checks, and N I ,  N z ,  N3 are the number 
of rejected, correctly, and incorrectly classified checks, 
respectively. From these numbers, we define the re- 
jection rate R = NI/N, the correct recognition rate 
C = N2/N, the substitution error rate E = N3/N, 
and the reliability rate L = N2/(N - NI). We will 
say that the word x has the distance i 2 1 to the lan- 
guage L(A) ,  d(z ,L(A))  = i ,  where A is a fsa, if (1) 
x # L(A) ,  (2) there exists y E L(A) with d(z,y)  = i ,  
and (3) there is no z E L(A) with d(z, z )  < d(z, 9). If 
z E L(A)  then x has distance zero to L(A). 

In our first experiment, we used 2’455 coding lines 
that came from real checks. The result of this ex- 
periment is shown in Table 4. There were 99,27% 
of all checks correctly classified with T = 0. This 
means that one or more OCR error occurred in 0,73% 
of all checks such that a word 3; E L(A)  was trans- 
formed into another word 5’ $! L(A) .  As E = 0, no 
word x E L(A)  was transformed into another word 
x’ E L(A’), A’ # A. With T = 1, all distorted words 
x with distance 1 to L(A) have been correctly classi- 
fied. The remaining words x’ were rejected because 
d(z’,L(A)) > 1 for any fsa A. Finally, setting T = 2, 
all words were correctly classified. For T = 2, the ex- 
ecution speed is over 100 documents per second on a 

PC. 
It can be concluded from the first experiment that 

the error-correcting parser proposed in this paper is a 
very suitable tool for the classification of checks in a 
real world scenario. In order to reveal the limitations 
of the method, we did another experiment with more 
difficult data, that were artificially generated. The 
results of this experiment are reported in [6]. 

5 Discussion and Conclusions 

A postprocessing module for automatic check pro- 
cessing was proposed in this paper. It is based on 
an error correcting parser fo regular languages. The 
method has been tested on a large number of real 
and syntesized data, and has shown very good perfor- 
mance, in terms of classification and error-correcting 
accurracy, and computational efficiency. In an exper- 
iment with over 2’000 real checks, a correct classifica- 
tion rate of 100% has been achieved with an appropri- 
ate error threshold T = 2. 

One additional strength of the method is that it can 
be easily adapted to new types of coding lines. Ear- 
lier (commercial) postprocessing modules were mainly 
”handcrafted” , i.e. heuristically designed1. A serious 
drawback of this approach is that the whole postpro- 
cessing module has to be redesigned from scratch if a 
new type of check is to be taken into account, or an 
old one is redefined. By contrast, in the present sys- 
tem, all format definitions can be kept in a database 
and automatically converted into their corresponding 
fsa2. Thus, any updates or modifications of the coding 
line format definitions can be handled by our system 
at almost zero cost. 

A theoretical alternative to the method proposed in 
this paper is not to represent a coding line by means of 
a fsa, but by the finite set of all its possible instances, 
i.e. words, and to use an algorithm for string edit dis- 
tance computation [9] instead of the error-correcting 
parser. As the number of different coding lines is fi- 
nite for any type of check, this method is equivalent 
to the one proposed in this paper from the theoretical 
point of view. In practice, however, it can be expected 
much slower because of the large number of different 
prototype strings that are to be tested. 

Finally, we would like to mention that the parser 
described in Section 2 is not restricted to  the appli- 
cation described in Section 3. It is rather a general 
tool that may have applications in many other OCR 
contextual postprocessing tasks. 

I According to various personal communications. 
2This feature is included in our present implementation. 
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