
Classification and Postprocessing of Documents Using an
Error-correcting Parser

H. Bunke, R. Liviero
Institut fur Informatik und angewandte Mathematik, University of Bern

Neubruckstrasse 10, CH-3012 Bern, Switzerland
bunke@iam.unibe.ch

Abstract

I n this paper an error-correcting parsing algorithm
and its application to a postprocessing task in the con-
text of automatic check processing is described. The
proposed method has shown very good results in terms
of recognition accuracy and execution speed on both
real and synthetic data.

1 Introduction

The recognition of machine printed characters has
been intensively studied during the past years and sig-
nificant progress has been made [l]. For example,
there exist commercial OCR systems that achieve a
correct recognition rate of over 99% today [a]. But
depending on the particular application, such a high
recognition rate may be still insufficient. In order to
further improve recognition accuracy, contextual post-
processing is often very useful. Different contextual
postprocessing methods have been proposed in the lit-
erature. A recent survey has been given in [3] . For
earlier overviews see [4, 51.

In the present paper we propose the application of
finite state automata and error-correcting parsing to
solve a particular postprocessing problem occurring in
the context of automatic check reading. The proposed
method is not only an aid to recover from OCR errors
but also to classify a document, i.e. a check, based
on its contents in the presence of OCR errors. The
present paper is a shortened version of [6].

2 Theoretical Foundations

In this section we give a brief review of error-
correcting parsing, which serves as theoretical founda-
tion of the method described in Section 3. The algo-
rithm presented in this section is a restricted version
of the parser introduced in [7]. A similar algorithm
have been described in [8].

0-8186-7128-9/95 $4.00 0 1995 IEEE
222

We consider a finite alphabet X = (21, . . . , xn} of
symbols. The set of all words over X , including the
empty word E , is denoted by X * . A (deterministic)
finite state automaton (fsa) over X is a 5-tuple A =
(Q, X, S,QO, F) where Q is the finite set of states, QO E
Q is the initial state, F c Q is the set of final states,
and 6 : Q x X -+ Q is the transition function. The
transition function can be extended to S : Q x X * -+ Q
be defining S(q, E) = q for any q E F , and 6(q, xu) =
S(S(q , x), a) for any x E X * and a E X . The language
L(A) accepted by a fsa A is defined by L(A) = {xlx E
X * A S(q0,x) E F } . This means that L(A) consists of
all words x over X for which there exists a sequence
of state transitions, defined by 6, from QO to a final
state. It is well known that the class of languages
accepted by fsa’s is identical to the class of languages
of Chomsky-type 3. These languages are also called
regular.

The errors produced by OCR devices can be clas-
sified into three types, namely deletion, insertion, and
substitution of a symbol. These three types of er-
rors are also called edit operations. In order to model
the fact that certain errors are more likely to occur
than others, each edit operation s gets assigned a cost
c(s), which is a non-negative integer. Given a sequence
S = SI, sa,. . . , s, of n edit operations, its cost is de-
fined as c(S) = c(sz) . Now for any two words z
and y over an alphabet X, the string distance d(x , y) is
defined as the minimum cost taken over all sequences
of edit operations that transform x into y. Formally,
d(x,y) = min{c(S) lS is a sequence of edit operations
transforming x into y}. An algorithm for the compu-
tation of d(z ,y) have been described in [9].

The task of a parser is to decide, for a given word x
and language L, if x E L. The fsa A of any language
L = L(A) can be used as a parser in a straightforward
way by starting with the initial state and traversing
the states of A according to S and the actual input
word x . After reading x we are in some state S(q0, x) .

algorithm error-correcting parser

input: a fsa A = (Q,X,S,qo,F) and input x =
x1 . . . xn
output: d = min{d(x , z) Iz E L(A)}
method:
/*initialization*/

for i = 1 to n do L(i) = 8;
/*main loop*/
for i = 1 to w do {

repeat {

L(0) := {b70,0));

for all (q,c) E L(i) do {
add[(q, c + ins), L(i + l)]; /*insertion*/
for all q’ E next(q) do {

add[(q’, c + del), L(i)]; /*deletion*/
if 6(q, xi+l) = q‘ then add[(q’, e) , L(i + l)]
/*match*/
else add[(q’, c + sub), L(i + l)]}}}
/*substitution*/

until no more elements can be added to L(i) }
d := minc{(q,c)I(q,c) E L(n) , Q E F }
end error-correcting parser

Figure 1: The error-correcting parsing algorithm

Now if S(q0,x) E F then we conclude 2 E L(A) , oth-
erwise x @ L(A). In error-correcting parsing, we are
given a fsa A and a string x that does not necessarily
belong to L(A). If x E L(A) then the error correct-
ing parser is supposed to report this fact. Otherwise,
if x $! L(A), the error-correcting parser has to find
string y such that d (x , y) = min{d(x , z) l z E L(A)}
and outputs d (x , y). In other words, it has to find that
element of L(A) that has the smallest edit distance to
the input x .

The pseudo code of an error-correcting parsing al-
gorithm for Chomsky-type 3 languages is given in Fig.
1. This algorithm constructs a list L(i) for each input
symbol 2,. Additionally, there is an initial list L(0).
Each list contains a number of elements of the form
(q , c) where q E Q and c is the cost of a sequence of
edit operations. More precisely, if (q , c) E L(i) then
there exists a string y such that d (q . . . x 2 , y) = c
and S(q0,y) = q . In other words, if L(i) contains
(q , e) then we know that after reading X I . . . x , state q
can be reached if we apply a sequence of edit opera-
tions with cost c to x l . . . x,. Furthermore, we know
that there is no other such sequence of edit operations
with a smaller cost. This property implies that after
L(n) has been constructed, the cost c of the element
(q,c) = mincl{(q’,c’)lq’ E F } is our desired output.

In the formulation of the algorithm given in Fig. 1,
we assume constant cost ins, del and subst for any in-
sertion, deletion, and substitution, respectively. These
costs are global variables to the algorithm. However,
the algorithm can be easily extended to the case where
each insertion, deletion, and substitution may have its
individual cost.

The algorithm uses two functions. The function
next(q) returns the set of successor states of q E
Q under any symbol. More precisely, nez t (q) =
{q’JS(q, a) = q’, a E X } . Let L(i) be a list and (q , c) a
list element. Then add((q, c), L(i)) constructs a new
list L‘(i) as specified below

L(i) U (4 , c)
(L (i) - (4, c’)) U (q , c)

if case 1
if case 2 L’(i) = I L(i) otherwise

Case 1 means that L(i) contains no list element (4, e’)
for any c’; case 2 means that L(i) contains a list el-
ement (q , e’) with c < e’. Obviously, add((q, e) , L(i))
keeps track of the minimum cost necessary to reach a
certain state after reading x1 . . .x,. It can be easily
concluded that the time and space complexity of the
error-correcting parsing algorithm are O(n .m), where
n is the length of the input word and m denotes the
number of states of the fsa.

It is easy to augment the algorithm shown in Fig. 1
by pointers that allow to extract the word y in the
language that has the minimum edit distance to the
input, i.e. the word y with d(x , y) = min{d(x , z) (z E
L(A)}. The pointers just indicate for each list element
(q,c) from which other element it has been generated
by means of which edit operation.

3 Problem Description and Proposed
Solution

The application area considered in this paper is
the automatic reading of checks. Over thirty differ-
ent types of checks, each having an individual lay-
out format, are commonly used for money transfer
in Switzerland. An example is shown in Fig. 2. Al-
though a large number of such checks are submitted
daily, their processing at banks and post offices is only
partly automated. That is, only the so-called coding
line on a check is read by machine. The coding line
is in the lower right part of a check. Its location is
predefined and is the same for all different types, i.e.
layout formats, of checks. For a graphical illustration
see Fig. 2.

The coding line of each check follows a predefined
format. This format, however, depends on the partic-
ular type of check. The definition of the format of the

223

position
1-2

3-12
13
14

15-40
41

42-43
44-51

52
53

in Fig. 1.

parity check for position 1-12

parity check for positions 15-40

meaning possible value
check subcategorie One out of {01,03,11>
amount any sequence of digits
parity digit 1
delimiter >
reference number any sequence
parity digit 2
delimiter + space
customer identification
parity digit 3
delimiter >

187.50 Fr.
reference number 20011282367002209310248139

Table 3: Result of automatic processing of Fig. 1. any sequence of digits
parity check for positions 44-51

25-30

32-33
34-41

42
43

meaning
check subcategorie
parity digit 1
delimiter
reference number
deadline
parity digit 2
deliiiiiter
customer identificatioii
parity digit 3
delimiter

possible value
nile out of f46.47.56.571
parity check for positoin 1-2
>
any sequence of digits
date in forinat YYMMDD
parity check for positions 5-30
+ space
any sequence of digits
parity check for positions 34-41
>

Table 2: Format definition of coding line of another
type of check.

coding line of the check in Fig. 2 is given in Table 1.
The format definition of another type of check is given
in Table 2. The ultimate goal of automatically reading
the coding line on a check is not only to correctly rec-
ognize the sequence of characters on the coding line,
but also to infer the meaning of each character. That
is, one wants to assign an interpretation to each char-
acter in the sense of the definition shown in Table 1 or
2. For example, when processing the check in Fig. 2,
we intend to derive a result similar to Table 3.

Apparently, if the type of a check were known, the
inference of the meaning of each character on the cod-
ing line would be more or less trivial because the for-
mat of the coding line for a given type of check is
precisely defined. In reality, however, the type of a
check is not known as only the coding line on a check
- and nothing else - is captured by the scanning de-
vice. Therefore, in order to infer the meaning of each
character on the coding line, we first have to determine
the type of the actual check using only the sequence of
characters on the coding line. Solving this task is not
trivial as at least two subproblems are encountered.
First, the formats of the coding lines of different types
of checks may be similar to each other, and secondly,
there may be OCR errors resulting in the insertion,
deletion, or substitution of characters on the coding
line.

In our system, we have a module that digitizes the
coding line on a check, extracts the individual char-
acters, and feeds them into an OCR program. The

initions of the coding lines and determines the type
of check that fits best. This process yields the mean-
ing of each character on the coding line (as shown in
Table 3) as a by-product. Our actual comparison pro-
cedure is an error-correcting parser that is controlled
by a regular grammar, which describes the coding line
formats of all different types of checks. In the present
paper, we concentrate on the postprocessing module.

The legal symbols occurring on the coding line are
from the alphabet X = {0,1, . . . , 9 , <,>,+,space}.
The coding line of each type of check consists of a
sequence of logical units, where a logical unit is one of
the following (see also Table 1 and 2):(1) a sequence of
fixed length I 2 1 of arbitrary symbols from a subset of
X; (2) one out of a finite number of constant sequences
of symbols; (3) a range of integer values; (4) a date;
(5) a parity digit. Obviously each of these logical units
can be represented by a fsa in a straightforward way.
Consequently, any coding line can be represented by
concatenation a number of fsa’s, each defining one of
the types (1) to (5) from the list above.

The fsa’s that represent the coding lines of the dif-
ferent types of checks in our system have been gener-
ated from their definitions. Given these fsa’s and the
sequence of symbols output by the OCR-module, the
error-correcting parser described in Section 2 can be
applied. It determines the most similar type of check
for a given input coding line based on the minimum
edit distance. Thus the actual check can be classi-
fied into one of the types defined a priori. Evaluating
the pointers set by the algorithm, the meaning of the
characters on the actual coding line can be determined
(see Table 3) .

4 Experimental Results

The error-correcting parser described in Section 2
has been implemented in C under MS-DOS and UNIX
and runs on both personal computers and worksta-
tions. As the printing quality of the characters on the
coding lines of the checks under consideration is gen-
erally quite good, the error rate of the OCR-module
can be expected fairly low. Consequently, we have

224

1 1 T=O I T=l I T=2 I

L 100.00 100.00 100.00

Table 4: Result of the first experiment (R = rejection
rate, E = error rate, L = reliability)

defined an error threshold T for our error-correcting
parser. As soon as the cost c of a pair (q , c) in any
of the lists L(i) exceeds this threshold, i.e. c > T ,
the item (4 , c) is not included in L(i) . Practically, this
prevents any item which will not contribute to the fi-
nal solution from being considered, and thus speeds
up the algorithm. Theoretically, it reduces the time
complexity of the parser from O(n.m) to O(n.T) (see
Section 2). The concrete value of T has been varied
in our experiments as will be described below.

A number of experiments were done aiming at the
classification of a check into its type based on the out-
put of the OCR-module. The 14 most frequent check
types, i.e. 14 different fsa’s, were used in these ex-
periments. As OCR-module, a commercial product
was used. Particularly, we were interested in error
rate and reliability depending on the error threshold
T . Let N = N I + N2 + N3 where N denotes the to-
tal number of checks, and N I , N z , N3 are the number
of rejected, correctly, and incorrectly classified checks,
respectively. From these numbers, we define the re-
jection rate R = NI/N, the correct recognition rate
C = N2/N, the substitution error rate E = N3/N,
and the reliability rate L = N2/(N - NI). We will
say that the word x has the distance i 2 1 to the lan-
guage L(A) , d(z ,L(A)) = i , where A is a fsa, if (1)
x # L(A) , (2) there exists y E L(A) with d(z,y) = i ,
and (3) there is no z E L(A) with d(z, z) < d(z, 9). If
z E L(A) then x has distance zero to L(A).

In our first experiment, we used 2’455 coding lines
that came from real checks. The result of this ex-
periment is shown in Table 4. There were 99,27%
of all checks correctly classified with T = 0. This
means that one or more OCR error occurred in 0,73%
of all checks such that a word 3; E L(A) was trans-
formed into another word 5’ $! L(A) . As E = 0, no
word x E L(A) was transformed into another word
x’ E L(A’), A’ # A. With T = 1, all distorted words
x with distance 1 to L(A) have been correctly classi-
fied. The remaining words x’ were rejected because
d(z’,L(A)) > 1 for any fsa A. Finally, setting T = 2,
all words were correctly classified. For T = 2, the ex-
ecution speed is over 100 documents per second on a

PC.
It can be concluded from the first experiment that

the error-correcting parser proposed in this paper is a
very suitable tool for the classification of checks in a
real world scenario. In order to reveal the limitations
of the method, we did another experiment with more
difficult data, that were artificially generated. The
results of this experiment are reported in [6].

5 Discussion and Conclusions

A postprocessing module for automatic check pro-
cessing was proposed in this paper. It is based on
an error correcting parser fo regular languages. The
method has been tested on a large number of real
and syntesized data, and has shown very good perfor-
mance, in terms of classification and error-correcting
accurracy, and computational efficiency. In an exper-
iment with over 2’000 real checks, a correct classifica-
tion rate of 100% has been achieved with an appropri-
ate error threshold T = 2.

One additional strength of the method is that it can
be easily adapted to new types of coding lines. Ear-
lier (commercial) postprocessing modules were mainly
”handcrafted” , i.e. heuristically designed1. A serious
drawback of this approach is that the whole postpro-
cessing module has to be redesigned from scratch if a
new type of check is to be taken into account, or an
old one is redefined. By contrast, in the present sys-
tem, all format definitions can be kept in a database
and automatically converted into their corresponding
fsa2. Thus, any updates or modifications of the coding
line format definitions can be handled by our system
at almost zero cost.

A theoretical alternative to the method proposed in
this paper is not to represent a coding line by means of
a fsa, but by the finite set of all its possible instances,
i.e. words, and to use an algorithm for string edit dis-
tance computation [9] instead of the error-correcting
parser. As the number of different coding lines is fi-
nite for any type of check, this method is equivalent
to the one proposed in this paper from the theoretical
point of view. In practice, however, it can be expected
much slower because of the large number of different
prototype strings that are to be tested.

Finally, we would like to mention that the parser
described in Section 2 is not restricted to the appli-
cation described in Section 3. It is rather a general
tool that may have applications in many other OCR
contextual postprocessing tasks.

I According to various personal communications.
2This feature is included in our present implementation.

225

References 161 Bunke, H,. Liviero, R.: An error-correcting

Pavlidis, T . and Mori, S. (eds.): Optical Charac-
ter Recognition, Special Issue of Proceedings of
the IEEE, Vol. 80, No. 7, July 1992, 1027-1209

Rice, S.V., Kanai, J. and Norther, T.A.: An eval-
uation of OCR accuracy, in UNLV Inform. Sci.
Research Inst., Annual Reprot, 1993, 9-39

Kukich, K.: Techniques for automatically cor-
recting words in text, ACM Comp. Surveys, Vol.
24, NO. 4, 1992, 377-439

Elliman, D.G. and Lancaster, I.T.: A review of
segmentation and contextual analysis techniques
for text recognition, Pattern Recognition, Vol. 23,
NO. 314, 1990, 337-346

Srihari, S.N.(ed.): Computer Text Recognition
and Error Correction, Tutorial, IEEE Computer
Society Press, Silver Spring, LID, 1985

_ _
parser for the postprocessing of documents,
Technical Report IAM-Ogbxxx, Department of
Comp. Science, Univ. of Bern, 1995

[7] Aho, A.V. and Peterson, T.G.: A minimum dis-
tance error-correcting parser for context-free lan-
guages, SIAM J. Computing 1, 1972, 305-312

[8] Wagner, A.: Order-n correction for regular lan-
guages, CACM, Vol. 17, No. 5, 1974, 265-268

[9] Wagner, R.A. and Fischer, M.J.: String-to-string
correction problem, Journal of the ACM, Vol. 21,
NO. 1, 1974, 168-173

Fe"(dedirdrtim (R))
LNmtla, d e s
l6lko"unlcrllwrr (DT)
Dfredone dell0
ldecwnnrludd (DT) TeI.113

3030 BE R N

I 18711 S O]

20 01128 23670
02209 31024 81391
T h i e n Ha H i n h
Z B h r i n g e r s t r . 14
3012 B e r n

ElnbwM m I Verrc par I Versalo da

CM A e ~ h m s m e
L'OI iPx de dew
L U k O 6.85celI.lO.0

t w o / h t e / ~ i o 0 1 - 6 4- 6 ...
W F ~ H Iv d ?tll.melW 6 r f m b

20 01128 23670 02209 31024 61391
E h M w/k& w / Yrrato di

T h i e n Ha Minh
I n g e n i e u r
Z P h r i n g e r s t r . 14
3012 Bern

0100000187503~200112823670022093102481391+ 010000646>

Figure 2: Example of a check

I
n a

226

