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Abstract

This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features).
SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness,

yet can be computed and compared much faster.

This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors
and descriptors (specifically, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by sim-
plifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps.

The paper encompasses a detailed description of the detector and descriptor and then explores the effects of the most important param-
eters. We conclude the article with SURF’s application to two challenging, yet converse goals: camera calibration as a special case of image
registration, and object recognition. Our experiments underline SURF’s usefulness in a broad range of topics in computer vision.

© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The task of finding point correspondences between two
images of the same scene or object is part of many com-
puter vision applications. Image registration, camera cali-
bration, object recognition, and image retrieval are just a
few.

The search for discrete image point correspondences can
be divided into three main steps. First, ‘interest points’ are
selected at distinctive locations in the image, such as cor-
ners, blobs, and T-junctions. The most valuable property
of an interest point detector is its repeatability. The repeat-
ability expresses the reliability of a detector for finding the
same physical interest points under different viewing condi-
tions. Next, the neighbourhood of every interest point is
represented by a feature vector. This descriptor has to be
distinctive and at the same time robust to noise, detection
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displacements and geometric and photometric deforma-
tions. Finally, the descriptor vectors are matched between
different images. The matching is based on a distance
between the vectors, e.g. the Mahalanobis or Euclidean dis-
tance. The dimension of the descriptor has a direct impact
on the time this takes, and less dimensions are desirable for
fast interest point matching. However, lower dimensional
feature vectors are in general less distinctive than their
high-dimensional counterparts.

It has been our goal to develop both a detector and
descriptor that, in comparison to the state-of-the-art, are
fast to compute while not sacrificing performance. In order
to succeed, one has to strike a balance between the above
requirements like simplifying the detection scheme while
keeping it accurate, and reducing the descriptor’s size while
keeping it sufficiently distinctive.

A wide variety of detectors and descriptors have already
been proposed in the literature (e.g. [21,24,27,39,25]). Also,
detailed comparisons and evaluations on benchmarking
datasets have been performed [28,30,31]. Our fast detector
and descriptor, called SURF (Speeded-Up Robust
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Features), was introduced in [4]. It is built on the insights
gained from this previous work. In our experiments on
these benchmarking datasets, SURF’s detector and
descriptor are not only faster, but the former is also more
repeatable and the latter more distinctive.

We focus on scale and in-plane rotation-invariant detec-
tors and descriptors. These seem to offer a good compromise
between feature complexity and robustness to commonly
occurring photometric deformations. Skew, anisotropic
scaling, and perspective effects are assumed to be second
order effects, that are covered to some degree by the overall
robustness of the descriptor. Note that the descriptor can
be extended towards affine-invariant regions using affine
normalisation of the ellipse (cf. [31]), although this will have
an impact on the computation time. Extending the detector,
on the other hand, is less straightforward. Concerning the
photometric deformations, we assume a simple linear model
with a bias (offset) and contrast change (scale factor). Nei-
ther detector nor descriptor use colour information.

The article is structured as follows. In Section 2, we give
a review over previous work in interest point detection and
description. In Section 3, we describe the strategy applied
for fast and robust interest point detection. The input
image is analysed at different scales in order to guarantee
invariance to scale changes. The detected interest points
are provided with a rotation and scale-invariant descriptor
in Section 4. Furthermore, a simple and efficient first-line
indexing technique, based on the contrast of the interest
point with its surrounding, is proposed.

In Section 5, some of the available parameters and their
effects are discussed, including the benefits of an upright
version (not invariant to image rotation). We also investi-
gate SURF’s performance in two important application
scenarios. First, we consider a special case of image regis-
tration, namely the problem of camera calibration for 3D
reconstruction. Second, we will explore SURF’s applica-
tion to an object recognition experiment. Both applications
highlight SURF’s benefits in terms of speed and robustness
as opposed to other strategies. The article is concluded in
Section 6.

2. Related work
2.1. Interest point detection

The most widely used detector is probably the Harris
corner detector [15], proposed back in 1988. It is based
on the eigenvalues of the second moment matrix. However,
Harris corners are not scale invariant. Lindeberg [21] intro-
duced the concept of automatic scale selection. This allows
to detect interest points in an image, each with their own
characteristic scale. He experimented with both the deter-
minant of the Hessian matrix as well as the Laplacian
(which corresponds to the trace of the Hessian matrix) to
detect blob-like structures. Mikolajczyk and Schmid [26]
refined this method, creating robust and scale-invariant
feature detectors with high repeatability, which they coined

Harris-Laplace and Hessian-Laplace. They used a (scale-
adapted) Harris measure or the determinant of the Hessian
matrix to select the location, and the Laplacian to select the
scale. Focusing on speed, Lowe [23] proposed to approxi-
mate the Laplacian of Gaussians (LoG) by a Difference
of Gaussians (DoG) filter.

Several other scale-invariant interest point detectors
have been proposed. Examples are the salient region detec-
tor, proposed by Kadir and Brady [17], which maximises
the entropy within the region, and the edge-based region
detector proposed by Jurie and Schmid [16]. They seem less
amenable to acceleration though. Also several affine-invari-
ant feature detectors have been proposed that can cope
with wider viewpoint changes. However, these fall outside
the scope of this article.

From studying the existing detectors and from published
comparisons [29,30], we can conclude that Hessian-based
detectors are more stable and repeatable than their Harris-
based counterparts. Moreover, using the determinant of
the Hessian matrix rather than its trace (the Laplacian)
seems advantageous, as it fires less on elongated, ill-localised
structures. We also observed that approximations like the
DoG can bring speed at a low cost in terms of lost accuracy.

2.2. Interest point description

An even larger variety of feature descriptors has been
proposed, like Gaussian derivatives [11], moment invari-
ants [32], complex features [1], steerable filters [12],
phase-based local features [6], and descriptors representing
the distribution of smaller-scale features within the interest
point neighbourhood. The latter, introduced by Lowe [24],
have been shown to outperform the others [28]. This can be
explained by the fact that they capture a substantial
amount of information about the spatial intensity patterns,
while at the same time being robust to small deformations
or localisation errors. The descriptor in [24], called SIFT
for short, computes a histogram of local oriented gradients
around the interest point and stores the bins in a 128D vec-
tor (8 orientation bins for each of 4 x 4 location bins).

Various refinements on this basic scheme have been pro-
posed. Ke and Sukthankar [18] applied PCA on the gradi-
ent image around the detected interest point. This PCA-
SIFT yields a 36D descriptor which is fast for matching,
but proved to be less distinctive than SIFT in a second
comparative study by Mikolajczyk and Schmid [30]; and
applying PCA slows down feature computation. In the
same paper [30], the authors proposed a variant of SIFT,
called GLOH, which proved to be even more distinctive
with the same number of dimensions. However, GLOH is
computationally more expensive as it uses again PCA for
data compression.

The SIFT descriptor still seems the most appealing
descriptor for practical uses, and hence also the most
widely used nowadays. It is distinctive and relatively fast,
which is crucial for on-line applications. Recently, Se
et al. [37] implemented SIFT on a Field Programmable
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Gate Array (FPGA) and improved its speed by an order of
magnitude. Meanwhile, Grabner et al. [14] also used inte-
gral images to approximate SIFT. Their detection step is
based on difference-of-mean (without interpolation), their
description step on integral histograms. They achieve
about the same speed as we do (though the description step
is constant in speed), but at the cost of reduced quality
compared to SIFT. Generally, the high dimensionality of
the descriptor is a drawback of SIFT at the matching step.
For on-line applications relying only on a regular PC, each
one of the three steps (detection, description, matching) has
to be fast.

An entire body of work is available on speeding up the
matching step. All of them come at the expense of getting
an approximative matching. Methods include the best-
bin-first proposed by Lowe [24], balltrees [35], vocabulary
trees [34], locality sensitive hashing [9], or redundant bit
vectors [13]. Complementary to this, we suggest the use
of the Hessian matrix’s trace to significantly increase the
matching speed. Together with the descriptor’s low dimen-
sionality, any matching algorithm is bound to perform
faster.

3. Interest point detection

Our approach for interest point detection uses a very
basic Hessian matrix approximation. This lends itself to
the use of integral images as made popular by Viola and
Jones [41], which reduces the computation time drastically.
Integral images fit in the more general framework of box-
lets, as proposed by Simard et al. [38].

3.1. Integral images

In order to make the article more self-contained, we
briefly discuss the concept of integral images. They allow
for fast computation of box type convolution filters. The
entry of an integral image /s (x) at a location x = (x,y)"
represents the sum of all pixels in the input image / within
a rectangular region formed by the origin and x.

i<x Sy

Is(x) =) > 1(.)) (1)

=0 j=0

Once the integral image has been computed, it takes
three additions to calculate the sum of the intensities over
any upright, rectangular area (see Fig. 1). Hence, the calcu-
lation time is independent of its size. This is important in
our approach, as we use big filter sizes.

3.2. Hessian matrix-based interest points

We base our detector on the Hessian matrix because of
its good performance in accuracy. More precisely, we
detect blob-like structures at locations where the determi-
nant is maximum. In contrast to the Hessian-Laplace
detector by Mikolajczyk and Schmid [26], we rely on the

0]

Fig. 1. Using integral images, it takes only three additions and four
memory accesses to calculate the sum of intensities inside a rectangular
region of any size.

determinant of the Hessian also for the scale selection, as
done by Lindeberg [21].

Given a point x = (x,y) in an image I, the Hessian
matrix H(x, ¢) in x at scale ¢ is defined as follows

L.(X,0) Ly(x,0)

Hlx,0) = Ly(x,0) Ly(x,0)

(2)

where L, (X, o) is the convolution of the Gaussian second
order derivative % g(o) with the image [ in point x, and
similarly for L,,(x, ¢)andL,,(x, o).

Gaussians are optimal for scale-space analysis [19,20],
but in practice they have to be discretised and cropped
(Fig. 2, left half). This leads to a loss in repeatability
under image rotations around odd multiples of 7. This
weakness holds for Hessian-based detectors in general.
Fig. 3 shows the repeatability rate of two detectors
based on the Hessian matrix for pure image rotation.
The repeatability attains a maximum around multiples
of Z. This is due to the square shape of the filter. Nev-
ertheless, the detectors still perform well, and the slight
decrease in performance does not outweigh the advan-
tage of fast convolutions brought by the discretisation
and cropping. As real filters are non-ideal in any case,
and given Lowe’s success with his LoG approximations,
we push the approximation for the Hessian matrix even
further with box filters (in the right half of Fig. 2).
These approximate second order Gaussian derivatives
and can be evaluated at a very low computational cost

EEE |

Fig. 2. Left to right: The (discretised and cropped) Gaussian second order
partial derivative in y- (L,) and xy-direction (L,,), respectively; our
approximation for the second order Gaussian partial derivative in y- (D,,)
and xy-direction (D,,). The grey regions are equal to zero.
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Fig. 3. Top: Repeatability score for image rotation of up to 180°. Hessian-
based detectors have in general a lower repeatability score for angles
around odd multiples of §. Bottom: Sample images from the sequence that
was used. Fast-Hessian is the more accurate version of our detector (FH-
15), as explained in Section 3.3.

using integral images. The calculation time therefore is
independent of the filter size. As shown in Section 5
and Fig. 3, the performance is comparable or better
than with the discretised and cropped Gaussians.

The 9 x 9 box filters in Fig. 2 are approximations of a
Gaussian with ¢ = 1.2 and represent the lowest scale (i.e.
highest spatial resolution) for computing the blob response
maps. We will denote them by D,., D,,, and D,,. The
weights applied to the rectangular regions are kept simple
for computational efficiency. This yields

det(Happror) = DD,y — (WDy,)*. (3)

The relative weight w of the filter responses is used to bal-
ance the expression for the Hessian’s determinant. This is
needed for the energy conservation between the Gaussian
kernels and the approximated Gaussian kernels,

1Ly (12)] | DO,
[ Lo(12)]; [ Do)

where | x|, is the Frobenius norm. Notice that for theoret-
ical correctness, the weighting changes depending on the
scale. In practice, we keep this factor constant, as this did
not have a significant impact on the results in our
experiments.

Furthermore, the filter responses are normalised with
respect to their size. This guarantees a constant Frobenius
norm for any filter size, an important aspect for the scale
space analysis as discussed in the next section.

The approximated determinant of the Hessian repre-
sents the blob response in the image at location x. These
responses are stored in a blob response map over different
scales, and local maxima are detected as explained in Sec-
tion 3.4.

=0.912...~ 09, (4)

3.3. Scale space representation

Interest points need to be found at different scales, not
least because the search of correspondences often requires
their comparison in images where they are seen at different
scales. Scale spaces are usually implemented as an image
pyramid. The images are repeatedly smoothed with a
Gaussian and then sub-sampled in order to achieve a
higher level of the pyramid. Lowe [24] subtracts these pyr-
amid layers in order to get the DoG (Difference of Gaussi-
ans) images where edges and blobs can be found.

Due to the use of box filters and integral images, we do
not have to iteratively apply the same filter to the output of
a previously filtered layer, but instead can apply box filters
of any size at exactly the same speed directly on the original
image and even in parallel (although the latter is not
exploited here). Therefore, the scale space is analysed by
up-scaling the filter size rather than iteratively reducing
the image size, Fig. 4. The output of the 9 x 9 filter, intro-
duced in previous section, is considered as the initial scale
layer, to which we will refer as scale s = 1.2 (approximating
Gaussian derivatives with ¢ = 1.2). The following layers
are obtained by filtering the image with gradually bigger
masks, taking into account the discrete nature of integral
images and the specific structure of our filters.

Note that our main motivation for this type of sampling
is its computational efficiency. Furthermore, as we do not
have to downsample the image, there is no aliasing. On
the downside, box filters preserve high-frequency compo-
nents that can get lost in zoomed-out variants of the same
scene, which can limit scale-invariance. This was however
not noticeable in our experiments.

The scale space is divided into octaves. An octave repre-
sents a series of filter response maps obtained by convolv-
ing the same input image with a filter of increasing size. In
total, an octave encompasses a scaling factor of 2 (which
implies that one needs to more than double the filter size,
see below). Each octave is subdivided into a constant num-
ber of scale levels. Due to the discrete nature of integral
images, the minimum scale difference between two subse-
quent scales depends on the length /; of the positive or neg-
ative lobes of the partial second order derivative in the
direction of derivation (x or y), which is set to a third of
the filter size length. For the 9 x 9 filter, this length [, is
3. For two successive levels, we must increase this size by

Scale
Scale

Fig. 4. Instead of iteratively reducing the image size (left), the use of
integral images allows the up-scaling of the filter at constant cost (right).
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a minimum of 2 pixels (1 pixel on every side) in order to
keep the size uneven and thus ensure the presence of the
central pixel. This results in a total increase of the mask size
by 6 pixels (see Fig. 5). Note that for dimensions different
from /; (e.g. the width of the central band for the vertical
filter in Fig. 5), rescaling the mask introduces rounding-
off errors. However, since these errors are typically much
smaller than /,, this is an acceptable approximation.

The construction of the scale space starts with the 9 x 9
filter, which calculates the blob response of the image for
the smallest scale. Then, filters with sizes 15 x 15,
21 x 21, and 27 x 27 are applied, by which even more than
a scale change of two has been achieved. But this is needed,
as a 3D non-maximum suppression is applied both spa-
tially and over the neighbouring scales. Hence, the first
and last Hessian response maps in the stack cannot contain
such maxima themselves, as they are used for reasons of
comparison only. Therefore, after interpolation, see Sec-
tion 3.4, the smallest possible scale is ¢ = 1.6 = 1.2 corre-
sponding to a filter size of 12 x 12, and the highest to
c=32= 1.2%. For more details, we refer to [2].

Similar considerations hold for the other octaves. For
each new octave, the filter size increase is doubled (going
from 6-12 to 24-48). At the same time, the sampling inter-
vals for the extraction of the interest points can be doubled
as well for every new octave. This reduces the computation
time and the loss in accuracy is comparable to the image
sub-sampling of the traditional approaches. The filter sizes
for the second octave are 15,27, 39, 51. A third octave is com-
puted with the filter sizes 27, 51, 75, 99 and, if the original
image size is still larger than the corresponding filter sizes,
the scale space analysis is performed for a fourth octave,

-

LI

|

\

T T

Fig. 5. Filters D,, (top) and D,, (bottom) for two successive scale levels
(9 x 9 and 15 x 15). The length of the dark lobe can only be increased by
an even number of pixels in order to guarantee the presence of a central
pixel (top).

using the filter sizes 51, 99, 147, and 195. Fig. 6 gives an over-
view of the filter sizes for the first three octaves. Further
octaves can be computed in a similar way. In typical scale-
space analysis however, the number of detected interest
points per octave decays very quickly, cf. Fig. 7.

The large scale changes, especially between the first fil-
ters within these octaves (from 9 to 15 is a change of
1.7), renders the sampling of scales quite crude. Therefore,
we have also implemented a scale space with a finer sam-
pling of the scales. This computes the integral image on
the image up-scaled by a factor of 2, and then starts the
first octave by filtering with a filter of size 15. Additional
filter sizes are 21, 27, 33, and 39. Then a second octave
starts, again using filters which now increase their sizes
by 12 pixels, after which a third and fourth octave follow.
Now the scale change between the first two filters is only
1.4 (21/15). The lowest scale for the accurate version that
can be detected through quadratic interpolation is
s=(12%)/2=12.

As the Frobenius norm remains constant for our filters
at any size, they are already scale normalised, and no fur-
ther weighting of the filter response is required, for more
information on that topic, see [22].

3.4. Interest point localisation

In order to localise interest points in the image and over
scales, a non-maximum suppression in a 3 X 3 x 3 neigh-
bourhood is applied. Specifically, we use a fast variant
introduced by Neubeck and Van Gool [33]. The maxima
of the determinant of the Hessian matrix are then interpo-
lated in scale and image space with the method proposed
by Brown and Lowe [5].

Scale space interpolation is especially important in our
case, as the difference in scale between the first layers of every
octave is relatively large. Fig. 8 shows an example of the
detected interest points using our ‘Fast-Hessian’ detector.

4. Interest point description and matching

Our descriptor describes the distribution of the intensity
content within the interest point neighbourhood, similar to

| |
p 27 |51 |75 o9
>
§ | 15 | 27 | 39 |51|
o |15 |21 27| |
1 2 4 8
Scale

Fig. 6. Graphical representation of the filter side lengths for three different
octaves. The logarithmic horizontal axis represents the scales. Note that
the octaves are overlapping in order to cover all possible scales seamlessly.
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Fig. 7. Histogram of the detected scales. The number of detected interest
points per octave decays quickly.

Fig. 8. Detected interest points for a Sunflower field. This kind of scenes
shows the nature of the features obtained using Hessian-based detectors.

the gradient information extracted by SIFT [24] and its
variants. We build on the distribution of first order Haar
wavelet responses in x and y direction rather than the gra-
dient, exploit integral images for speed, and use only 64D.
This reduces the time for feature computation and match-
ing, and has proven to simultaneously increase the robust-
ness. Furthermore, we present a new indexing step based
on the sign of the Laplacian, which increases not only the
robustness of the descriptor, but also the matching speed
(by a factor of 2 in the best case). We refer to our detec-
tor-descriptor scheme as SURF—Speeded-Up Robust
Features.

The first step consists of fixing a reproducible orienta-
tion based on information from a circular region around
the interest point. Then, we construct a square region
aligned to the selected orientation and extract the SURF
descriptor from it. Finally, features are matched between
two images. These three steps are explained in the
following.

4.1. Orientation assignment

In order to be invariant to image rotation, we identify a
reproducible orientation for the interest points. For that
purpose, we first calculate the Haar wavelet responses in
x and y direction within a circular neighbourhood of radius
6s around the interest point, with s the scale at which the
interest point was detected. The sampling step is scale
dependent and chosen to be s. In keeping with the rest, also
the size of the wavelets are scale dependent and set to a side
length of 4s. Therefore, we can again use integral images
for fast filtering. The used filters are shown in Fig. 9. Only
six operations are needed to compute the response in x or y
direction at any scale.

Once the wavelet responses are calculated and weighted
with a Gaussian (o = 2s) centred at the interest point, the
responses are represented as points in a space with the hor-
izontal response strength along the abscissa and the vertical
response strength along the ordinate. The dominant orien-
tation is estimated by calculating the sum of all responses
within a sliding orientation window of size %, see Fig. 10.
The horizontal and vertical responses within the window
are summed. The two summed responses then yield a local
orientation vector. The longest such vector over all win-
dows defines the orientation of the interest point. The size
of the sliding window is a parameter which had to be cho-
sen carefully. Small sizes fire on single dominating gradi-
ents, large sizes tend to yield maxima in vector length
that are not outspoken. Both result in a misorientation of
the interest point.

Note that for many applications, rotation invariance is
not necessary. Experiments of using the upright version
of SURF (U-SURF, for short) for object detection can
be found in [3,4]. U-SURF is faster to compute and can
increase distinctivity, while maintaining a robustness to
rotation of about +15°.

4.2. Descriptor based on sum of Haar wavelet responses

For the extraction of the descriptor, the first step con-
sists of constructing a square region centred around the
interest point and oriented along the orientation selected
in previous section. The size of this window is 20s. Exam-
ples of such square regions are illustrated in Fig. 11.

The region is split up regularly into smaller 4 x 4 square
sub-regions. This preserves important spatial information.
For each sub-region, we compute Haar wavelet responses

Fig. 9. Haar wavelet filters to compute the responses in x (left) and y
direction (right). The dark parts have the weight —1 and the light parts +1.
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dy

Fig. 10. Orientation assignment: a sliding orientation window of size %
detects the dominant orientation of the Gaussian weighted Haar wavelet
responses at every sample point within a circular neighbourhood around
the interest point.

Fig. 11. Detail of the Graffiti scene showing the size of the oriented
descriptor window at different scales.

at 5 x 5 regularly spaced sample points. For reasons of
simplicity, we call d, the Haar wavelet response in horizon-
tal direction and d, the Haar wavelet response in vertical
direction (filter size 2s), see Fig. 9 again. “Horizontal”
and “‘vertical” here is defined in relation to the selected
interest point orientation (see Fig. 12).! To increase the
robustness towards geometric deformations and localisa-
tion errors, the responses d, and d, are first weighted with
a Gaussian (¢ = 3.3s) centred at the interest point.

Then, the wavelet responses d, and d, are summed up
over each sub-region and form a first set of entries in the

! For efficiency reasons, the Haar wavelets are calculated in the
unrotated image and the responses are then interpolated, instead of
actually rotating the image.

3 dx
2 lax]

2 |yl

Fig. 12. To build the descriptor, an oriented quadratic grid with 4 x 4
square sub-regions is laid over the interest point (left). For each square,
the wavelet responses are computed from 5 x 5 samples (for illustrative
purposes, we show only 2 x 2 sub-divisions here). For each field, we
collect the sums dy, |d.|, d,, and |d, |, computed relatively to the
orientation of the grid (right).

feature vector. In order to bring in information about the
polarity of the intensity changes, we also extract the sum
of the absolute values of the responses, | d, | and |d, |.
Hence, each sub-region has a 4D descriptor vector v for
its underlying intensity structure v=(>.d,, > d,,
>>1di|,>°1d,|). Concatenating this for all 4 x 4 sub-
regions, this results in a descriptor vector of length 64.
The wavelet responses are invariant to a bias in illumina-
tion (offset). Invariance to contrast (a scale factor) is
achieved by turning the descriptor into a unit vector.

Fig. 13 shows the properties of the descriptor for three
distinctively different image-intensity patterns within a
sub-region. One can imagine combinations of such local
intensity patterns, resulting in a distinctive descriptor.

SUREF is, up to some point, similar in concept as SIFT,
in that they both focus on the spatial distribution of gradi-
ent information. Nevertheless, SURF outperforms SIFT in
practically all cases, as shown in Section 5. We believe this
is due to the fact that SURF integrates the gradient infor-
mation within a subpatch, whereas SIFT depends on the
orientations of the individual gradients. This makes SURF

2 dy

HIE

Fig. 13. The descriptor entries of a sub-region represent the nature of the
underlying intensity pattern. Left: In case of a homogeneous region, all
values are relatively low. Middle: In presence of frequencies in x direction,
the value of > | d, | is high, but all others remain low. If the intensity is
gradually increasing in x direction, both values > d, and ) | d, | are high.

> dx
2 lax|
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Image sub-region SIFT gradients SURF sums

> dx
2 ldx]
> dy
2 ldyl

clean

> dx
2 ldx|
2. dy
2 layl

noisy

Fig. 14. Due to the global integration of SURF’s descriptor, it stays more
robust to various image perturbations than the more locally operating
SIFT descriptor.

less sensitive to noise, as illustrated in the example of
Fig. 14.

In order to arrive at these SURF descriptors, we exper-
imented with fewer and more wavelet features, second
order derivatives, higher-order wavelets, PCA, median val-
ues, average values, etc. From a thorough evaluation, the
proposed sets turned out to perform best. We then varied
the number of sample points and sub-regions. The 4 x 4
sub-region division solution provided the best results, see
also Section 5. Considering finer subdivisions appeared to
be less robust and would increase matching times too
much. On the other hand, the short descriptor with 3 x 3
sub-regions (SURF-36) performs slightly worse, but allows
for very fast matching and is still acceptable in comparison
to other descriptors in the literature.

We also tested an alternative version of the SURF
descriptor that adds a couple of similar features (SURF-
128). It again uses the same sums as before, but now splits
these values up further. The sums of d, and | d, | are com-
puted separately for d, < 0 and d, > 0. Similarly, the sums
of d, and | d, | are split up according to the sign of d,,
thereby doubling the number of features. The descriptor
is more distinctive and not much slower to compute, but
slower to match due to its higher dimensionality.

4.3. Fast indexing for matching

For fast indexing during the matching stage, the sign of
the Laplacian (i.e. the trace of the Hessian matrix) for the
underlying interest point is included. Typically, the interest
points are found at blob-type structures. The sign of the
Laplacian distinguishes bright blobs on dark backgrounds
from the reverse situation. This feature is available at no
extra computational cost as it was already computed dur-
ing the detection phase. In the matching stage, we only
compare features if they have the same type of contrast,
see Fig. 15. Hence, this minimal information allows for fas-
ter matching, without reducing the descriptor’s perfor-
mance. Note that this is also of advantage for more
advanced indexing methods. For example for k-d trees, this

Yy nomacch y

Fig. 15. If the contrast between two interest points is different (dark on
light background vs. light on dark background), the candidate is not
considered a valuable match.

extra information defines a meaningful hyperplane for
splitting the data, as opposed to randomly choosing an ele-
ment or using feature statistics.

5. Results

The following presents both simulated as well as real-
world results. First, we evaluate the effect of some param-
eter settings and show the overall performance of our
detector and descriptor based on a standard evaluation
set. Then, we describe two possible applications. For a
detailed comparative study with other detectors and
descriptors, we refer to [4]. SURF has already been tested
in a few real-world applications. For object detection, its
performance has been illustrated in [3]. Cattin et al. [7]
use SURF for mosaicing human retina images—a task that
no other detector/descriptor scheme was able to cope with.
Taking this application to image registration a bit further,
we focus in this article on the more difficult problem of
camera calibration and 3D reconstruction, also in wide-
baseline cases. SURF manages to calibrate the cameras
even in challenging cases reliably and accurately. Lastly,
we investigate the application of SURF to the task of
object recognition.

5.1. Experimental evaluation and parameter settings

We tested our detector using the image sequences and
testing software provided by Mikolajczyk.? The evaluation
criterion is the repeatability score.

The test sequences comprise images of real textured and
structured scenes. There are different types of geometric
and photometric transformations, like changing view-
points, zoom and rotation, image blur, lighting changes
and JPEG compression.

In all experiments reported in this paper, the timings
were measured on a standard PC Pentium IV, running at
3 GHz.

5.1.1. SURF detector

We tested two versions of our Fast-Hessian detector,
depending on the initial Gaussian derivative filter size.
FH-9 stands for our Fast Hessian detector with the initial

2 http://www.robots.ox.ac.uk/vgg/research/affine/.
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filter size 9 x 9, and FH-15 is the 15 x 15 filter on the dou-
ble input image size version. Apart from this, for all the
experiments shown in this section, the same thresholds
and parameters were used.

The detector is compared to the Difference of Gaussians
(DoG) detector by Lowe [24], and the Harris- and Hessian-
Laplace detectors proposed by Mikolajczyk [29]. The num-
ber of interest points found is on average very similar for
all detectors (see Table 1 for an example). The thresholds
were adapted according to the number of interest points
found with the DoG detector.

The FH-9 detector is more than five times faster than DoG
and ten times faster than Hessian-Laplace. The FH-15 detec-
tor is more than three times faster than DoG and more than
four times faster than Hessian-Laplace (see also Table 1). At
the same time, the repeatability scores for our detectors are
comparable or even better than for the competitors.

The repeatability scores for the Graffiti sequence
(Fig. 16 top) are comparable for all detectors. The repeat-
ability score of the FH-15 detector for the Wall sequence
(Fig. 16 bottom) outperforms the competitors. Note that
the sequences Graffiti and Wall contain out-of-plane rota-
tion, resulting in affine deformations, while the detectors in
the comparison are only invariant to image rotation and
scale. Hence, these deformations have to be accounted
for by the overall robustness of the features. In the Boat
sequence (Fig. 17, top), the FH-15 detector shows again a
better performance than the others. The FH-9 and FH-15
detectors are outperforming the others in the Bikes
sequence (Fig. 17, bottom). The superiority and accuracy
of our detector is further underlined in Sections 5.2 and 5.3.

5.1.2. SURF descriptor

Here, we focus on two options offered by the SURF
descriptor and their effect on recall/precision.

Firstly, the number of divisions of the square grid in
Fig. 12, and hence the descriptor size, has a major impact
on the matching speed. Secondly, we consider the extended
descriptor as described above. Fig. 18 plots recall and pre-
cision against the side length of the square grid, both for
the standard as well as the extended descriptor. Only the
number of divisions is varied, not the actual size of the par-
ent square. SURF-36 refers to a grid of 3 x 3, SURF-72 to
its extended counterpart. Likewise, SURF-100 refers to
5x5 and SURF-144 to 6 x 6, with SURF-200 and
SURF-288 their extended versions. To get averaged num-

Table 1
Thresholds, number of detected points and calculation time for the
detectors in our comparison

Detector Threshold Nb of points Comp. time (ms)
FH-15 60,000 1813 160
FH-9 50,000 1411 70
Hessian-Laplace 1000 1979 700
Harris-Laplace 2500 1664 2100
DoG Default 1520 400

First image of Graffiti scene, 800 x 640.
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Fig. 16. Repeatability score for the Graffiti (top) and Wall (bottom)
sequence (viewpoint change).

bers over multiple images (we chose one pair from each
set of test images), the ratio-matching scheme [24] is used.

Clearly, a square of size 4 x 4 performs best both with
respect to recall and precision in both cases. Still, 3 x 3 is
a viable alternative as well, especially when matching speed
is of importance. From further analysis, we discovered that
the extended descriptor loses with respect to recall, but
exhibits better precision. Overall, the effect of the extended
version is minimal.

Extensive comparisons with other descriptors can be
found in [4]. Here, we only show a comparison with two
other prominent description schemes (SIFT [24] and
GLOH [30]), again averaged over the test sequences
(Fig. 19). SURF-64 turns out to perform best.

Another major advantage of SURF is its low computa-
tion time: detection and description of 1529 interest points
takes about 610 ms, the upright version U-SURF uses a
mere 400 ms. (first Graffiti image).

5.2. Application to 3D

In this section, we evaluate the accuracy of our Fast-
Hessian detector for the application of camera self-calibra-
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Fig. 17. Repeatability score for the Boat (top) and Bikes (bottom)
sequence (scale change, image blur).

tion and 3D reconstruction. The first evaluation compares
different state-of-the-art interest point detectors for the
two-view case. A known scene is used to provide some
quantitative results. The second evaluation considers the
N-view case for camera self-calibration and dense 3D
reconstruction from multiple images, some taken under
wide-baseline conditions.

5.2.1. Two-view case

In order to evaluate the performance of different interest
point detection schemes for camera calibration and 3D
reconstruction, we created a controlled environment. A
good scene for such an evaluation are two highly textured
planes forming a right angle (measured 88.6° in our case),
see Fig. 20. The images are of size 800 x 600. Principal
point and aspect ratio are known. As the number of correct
matches is an important factor for the accuracy, we
adjusted the interest point detectors’ parameters so that
after matching, we are left with 800 correct matches
(matches not belonging to the angle are filtered). The
SURF-128 descriptor was used for the matching step.
The location of the two planes was evaluated using RAN-

recall

% SURF-16
A-SURF-36
- SURF-64
-© SURF-100|
-©- SURF-144

OO 0.2 0.4 0.6 0.8 1

1—precision

% SURF-32
08l ‘ : -2A-SURF-72
- SURF-128
-©- SURF-200
-0- SURF-288

recall

0 0 0.2 0.4 0.6 0.8 1

1—precision

Fig. 18. Recall-precision for nearest neighbour ratio matching for varying
side length of square grid. A maximum is attained for a square of 4 x 4.
Figures averaged over eight image pairs of Mikolajczyk’s database. Top:
Standard descriptor, bottom: extended descriptor.

+-SURF-64

-%-SIFT

© GLOH

0 0.2 0.4 0.6 0.8 1
1—precision

Fig. 19. Recall-precision for nearest neighbour ratio matching for
different description schemes, evaluated on SURF keypoints. Figures
averaged over eight image pairs of Mikolajczyk’s database.
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Fig. 20. Input images for the quantitative detector evaluation. This
represents a good scene choice for the comparison of different types of
interest point detectors, as its components are simple geometric elements.

Table 2
Comparison of different interest point detectors for the application of
camera calibration and 3D reconstruction

Detector Angle (°) Mean dist (pixels) SD (pixels)
FH-15 88.5 1.14 1.23
FH-9 88.4 1.64 1.78
DoG 88.9 1.95 2.14
Harris-Laplace 88.3 2.13 2.33
Hessian-Laplace 91.1 2.85 3.13

The true angle is 88.6°.

SAC, followed by orthogonal regression. The evaluation
criteria are the angle between the two planes, as well as
the mean distance and the variance of the reconstructed
3D points to their respective planes for different interest
point detectors.

Table 2 shows these quantitative results for our two ver-
sions of the Fast-Hessian detector (FH-9 and FH-15), the
DoG features of SIFT [24], and the Hessian- and Harris-
Laplace detectors proposed by Mikolajczyk and Schmid
[29]. The FH-15 detector clearly outperforms its
competitors.

Fig. 21 shows the orthogonal projection of the Fast-
Hessian (FH-15) features for the reconstructed angle.
Interestingly, the theoretically better founded approaches
like the Harris- and Hessian-Laplace detectors perform
worse than the approximations (DoG and the SURF
features).

5.2.2. N-view case

The SURF detection and description algorithms have
been integrated with the Epoch 3D Webservice of the VIS-
ICS research group at the K.U. Leuven.’ This webservice
allows users to upload sequences of still images to a server.
There, the calibration of the cameras and dense depth maps

3 http://home.esat.kuleuven.be/~visit3d/webservice/
html.

N
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Fig. 21. Orthogonal projection of the reconstructed angle shown in
Fig. 20.

are computed automatically using these images only [40].
During the camera calibration stage, features need to be
extracted and matched between the images. The use of
SUREF features improved the results of this step for many
uploaded image sets, especially when the images were taken
further apart. The previous procedure using Harris corners
and normalised cross correlation of image windows has
problems matching such wide-baseline images. Further-
more, the DoG detector combined with SIFT description
failed on some image sequences, where SURF succeeded
to calibrate all the cameras accurately.

For the example in Fig. 22, the traditional approach
managed to calibrate only 6 from a total of 13 cameras.
Using SURF however, all 13 cameras could be calibrated.
The vase is easily recognisable even in the sparse 3D model.

Fig. 23 shows a typical wide-baseline problem: three
images, taken from different, widely separated view points.
It is a challenging example, as three images represent the
absolute minimum number of images needed for an accu-
rate dense 3D reconstruction. The obtained 3D model
can be seen in Fig. 23 (bottom). In general, the quality of
the camera calibration can best be appreciated on the basis
of the quality of such resulting dense models. These exper-
iments confirm the use of the SURF detector/descriptor
pair for applications in image registration, camera calibra-
tion, and 3D reconstruction, where the accuracy of the cor-
respondences is vital.

5.3. Application to object recognition

Bay et al. [3] already demonstrated the usefulness of
SURF in a simple object detection task. To further illus-

Fig. 22. 3D reconstruction with K.U. Leuven’s 3D webservice. Left: One
of the 13 input images for the camera calibration. Right: Position of the
reconstructed cameras and sparse 3D model of the vase.
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Fig. 23. 3D reconstruction with K.U. Leuven’s 3D webservice. Top row:
The three input images of a detail of the San Marco Cathedral in Venice.
Middle row: Samples of the textured dense reconstruction. Bottom row:
Un-textured dense reconstruction. The quality of the dense 3D model
directly reflects the quality of the camera calibration. The images were
taken by Maurizio Forte, CNR-ITABC, Rome.

trate the quality of the descriptor in such a scenario, we
present some further experiments. Basis for this was a pub-
licly available implementation of two bag-of-words classifi-
ers [10].* Given an image, the task is to identify whether an
object occurs in the image or not. For our comparison, we
considered the naive Bayes classifier, which works directly
on the bag-of-words representation, as suggested by Dance
et al. [8]. This simple classifier was chosen as more compli-
cated methods like pLSA might wash out the actual effect
of the descriptor. Similar to [10], we executed our tests
on 400 images each from the Caltech background and air-
planes set.® Fifty percent of the images are used for train-
ing, the other 50% for testing. To minimise the influence
of the partitioning, the same random permutation of train-
ing and test sets was chosen for all descriptors. While this is
a rather simple test set for object classification in general, it

4 http://people.csail.mit.edu/fergus/iccv2005/
bagwords.html.

5 http://www.vision.caltech.edu/html-files/
archive.html.

definitely serves the purpose of comparing the performance
of the actual descriptors.

The framework already provides interest points, chosen
randomly along Canny edges to create a very dense sam-
pling. These are then fed to the various descriptors. Addi-
tionally, we also consider the use of SURF keypoints,
generated with a very low threshold, to ensure good
coverage.

Fig. 24 shows the obtained ROC curves for SURF-128,
SIFT and GLOH. Note that for the calculation of SURF,
the sign of the Laplacian was removed from the descriptor.
For both types of interest points, SURF-128 outperforms
its competitors on the majority of the curve significantly.
Fig. 25 investigates the effect of the index size and the
extended descriptor of SURF. As can be seen, the upright
counterparts for both SURF-128 and SURF-64 perform
best. This makes sense, as basically all the images in the
database were taken in an upright position. The other alter-
natives perform only slightly worse, but are comparable.
Even SURF-36 exhibits similar discriminative power, and
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Fig. 24. Comparison of different descriptor strategies for a naive Bayes
classifier working on a bag-of-words representation. Top: Descriptors
evaluated on random edge pixels. Bottom: On SURF keypoints.
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Fig. 25. Comparison of different options for the SURF descriptor for a
naive Bayes classifier working on a bag-of-words representation. The
descriptor was evaluated on SURF keypoints. Top: Standard, bottom:
extended descriptor.

provides a speed-up for the various parts of the recognition
system due to its small descriptor size.

The same tests were also carried out for the Caltech
motorcycles (side) and faces dataset, yielding similar results.

In conclusion, SURF proves to work great for classifica-
tion tasks, performing better than the competition on the test
sets, while still being faster to compute. These positive results
indicate that SURF should be very well suited for tasks in
object detection, object recognition or image retrieval.

6. Conclusion and outlook

We presented a fast and performant scale and rotation-
invariant interest point detector and descriptor. The impor-
tant speed gain is due to the use of integral images, which
drastically reduce the number of operations for simple box
convolutions, independent of the chosen scale. The results
showed that the performance of our Hessian approxima-
tion is comparable and often better than the state-of-the-
art interest point detectors. The high repeatability is advan-

tageous for camera self-calibration, where an accurate
interest point detection has a direct impact on the accuracy
of the camera self-calibration and therefore on the quality
of the resulting 3D model.

The most important improvement, however, is the speed
of the detector. Even without any dedicated optimisations,
an almost real-time computation without loss in perfor-
mance was achieved, which represents an important advan-
tage for many on-line computer vision applications.

Our descriptor, based on sums of Haar wavelet compo-
nents, outperforms the state-of-the-art methods. It seems
that the description of the nature of the underlying image-
intensity pattern is more distinctive than histogram-based
approaches. The simplicity and again the use of integral
images make our descriptor competitive in terms of speed.
Moreover, the Laplacian-based indexing strategy makes
the matching step faster without any loss in terms of
performance.

Experiments for camera calibration and object recogni-
tion highlighted SURF’s potential in a wide range of com-
puter vision applications. In the former, the accuracy of the
interest points and the distinctiveness of the descriptor
showed to be major factors for obtaining a more accurate
3D reconstruction, or even getting any 3D reconstruction
at all in difficult cases. In the latter, the descriptor genera-
lises well enough to outperform its competitors in a simple
object classification task as well.

The latest version of SURF is available for public
download.®
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