
Clustering with Partition Level Side Information

Hongfu Liu1 and Yun Fu1,2

1Department of Electrical and Computer Engineering, Northeastern University, Boston
2College of Computer and Information Science, Northeastern University, Boston

liu.hongf@husky.neu.edu, yunfu@ece.neu.edu

Abstract—Constrained clustering uses pre-given knowledge
to improve the clustering performance. Among existing litera-
ture, researchers usually focus on Must-Link and Cannot-Link
pairwise constraints. However, pairwise constraints not only
disobey the way we make decisions, but also suffer from the
vulnerability of noisy constraints and the order of constraints.
In light of this, we use partition level side information instead
of pairwise constraints to guide the process of clustering. Com-
pared with pairwise constraints, partition level side information
keeps the consistency within partial structure and avoids self-
contradictory and the impact of constraints order. Generally
speaking, only small part of the data instances are given labels
by human workers, which are used to supervise the procedure
of clustering. Inspired by the success of ensemble clustering, we
aim to find a clustering solution which captures the intrinsic
structure from the data itself, and agrees with the partition
level side information as much as possible. Then we derive the
objective function and equivalently transfer it into a K-mean-
like optimization problem. Extensive experiments on several
real-world datasets demonstrate the effectiveness and efficiency
of our method compared to pairwise constrained clustering and
consensus clustering, which verifies the superiority of partition
level side information to pairwise constraints. Besides, our
method has high robustness to noisy side information.

Keywords-Clustering; Partition level side information; K-
means; Utility function

I. INTRODUCTION

Cluster analysis is a core technique in machine learning
and artificial intelligence [1], [8], [14], [23], [10], [25],
which aims to partition the objects into different groups that
objects in the same group are more similar to each other than
to those in other groups. To further improve the performance,
semi-supervised clustering or constrained clustering comes
into being, which incorporates pre-known information or
side information into the process of clustering.

Since clustering has the property of non-order, the most
usual constraints are pairwise constraints. Specifically Must-
Link and Cannot-Link constraints represent that two in-
stances should lie in the same cluster or not. At the first
thought, it is easy to decide yes or no for pairwise con-
straints. However, in real-world applications, just given one
image of a cat and one image of a dog, it is difficult to
answer whether these two images should be in a cluster
or not because no decision rule can be summarized only
based on two images. Besides, as [24] reported, large
disagreements are often observed among human workers

in specifying pairwise constraints; for instance, more than
80% of the pairwise labels obtained from human workers
are inconsistent with the ground truth for the Scenes data
set [9]. Moreover, it has been widely recognized [3], [5],
[13] that the order of constraints also has great impact on
the clustering results, therefore sometimes more constraints
even make a detrimental effect.

In response to this, we use another constraint, called par-
tition level side information to replace pairwise constraints.
Partition level side information also called partial labeling
means that only a small portion of data is selected to label
from 1 to 𝐾. This concept was proposed by [2], which used
partition level side information to initialize the centroids
for K-means and employed the standard K-means to finish
the clustering task; however, it did not involve the side
information into the process of clustering. In this paper,
we revisit partition level side information and involve it
into the process of clustering to obtain the final solution.
Inspired by the success of ensemble clustering, we take the
partition level side information as a whole and calculate the
utility between the learnt clustering solution and partition
level side information. We aim to find a clustering result
which captures the intrinsic structure from the data itself,
and agrees with the partition level side information as much
as possible. Based on this, the objective function is derived
and we give its corresponding solution by a K-means-like
optimization problem with only small modification on the
distance function and update rule for centroids. Extensive
experiments on several real-world datasets demonstrate the
effectiveness and efficiency of our method compared to
pairwise constrained clustering and ensemble clustering,
which verifies the superiority of partition level side informa-
tion to pairwise constraints. Besides, our method has high
robustness to noisy side information even with 50% noisy
side information.

II. RELATED WORK

In this part, we summarize the related work on constrained
clustering and ensemble clustering.

K. Wagstaff and C. Cardie first put forward the concept of
constrained clustering via incorporating pairwise constraints
(Must-Link and Cannot-Link) into a clustering algorithm
and modified COBWEB to finish the partition [18]. Later,
COP-K-means, a K-means-based algorithm kept all the
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(a) One pairwise (b) Multi pairwise (c) Partition level

Figure 1. The comparison between pairwise constraints and partition level
side information. In (a), we cannot decide a Must-Link or Cannot-link only
based on two instances; compared (b) with (c), it is more natural to label
the instances in the partition level way rather than pairwise constraints.

constraints satisfied and attempted to assign each instance
to its nearest centroid [19]. [15] developed a framework
to involve pre-given knowledge into density estimation with
Gaussian Mixture Model and presented a closed form EM
procedure and generalized EM procedure for Must-Link and
Cannot-Link respectively. However, sometimes satisfying all
the constraints as well as the order of constraints makes
the clustering intractable and no solution often can be
found by returning an empty partition. To overcome such
limitation, soft constrained clustering algorithms have been
developed to minimize the number of violated constraints.
Constrained Vector Quantization Error (CVQE) considered
the cost of violating constraints and optimized the cost with-
in the objective function of K-means [5]. Further, LCVQE
modified CVQE with different computation of violating con-
straints [13]. Metric Pairwise Constrained K-means (MPCK-
means) employed the constraints to learn a best Mahalanobis
distance metric for clustering [3]. Among these K-means-
based constrained clustering, [4] presented a thoroughly
comparative analysis and found that LCVQE presents better
accuracy and violates fewer constraints than CVQE and
MPCK-Means.

Another related area is ensemble clustering, which fuses
several basic partitions. [16] was the first to propose the
ensemble clustering problem, and some graph-based meth-
ods [6], co-association matrix based [7] and K-means-based
methods [17], [20], [21], [11], [12] are followed to fuse these
basic partitions in an efficient way. Here ensemble clustering
is applied to fuse the basic partition generated from the data
alone and partition level side information. Although there are
much work in this area, few of them can handle incomplete
partition level side information.

Different from the existing work, we consider a new
kind of constraint, called partition level side information.
Besides, partition level side information is not affected by
the order of constraints. Through extensive experiments,
partition level side information shows stronger robustness
to noisy constraints than pairwise constraints.

III. PROBLEM FORMULATION

In this section, we first introduce the definition of partition
level side information and discuss the relationship between

partition level side information and pairwise constraints.
Then based on partition level side information, we give the
problem definition and derive the objective function.

A. Partition Level Side Information

Since clustering is a orderless partition, pairwise con-
straints have been put forward to further improve the perfor-
mance of clustering for a long time. Specifically Must-Link
and Cannot-Link constraints represent that two instances
should lie in the same cluster or not. Although in the
framework of pairwise constraints we avoid answering the
mapping relationship among different clusters and at the first
thought it is easy to decide yes or no for pairwise constraints,
such pairwise constraints are illogic in essence. For example
(See Figure 1), given one image containing a cat and
another image containing a dog, the pairwise constraint
needs external information, such as human knowledge or
expert suggestion, to determine whether these two images
are in the same cluster or not. Here comes the first question
that what is the cluster. The goal of cluster analysis is to find
cluster structure. If we do not know the meaning of clusters,
how can we decide the given two images are located in the
same cluster or not? That means pairwise constraints request
the cluster structure in advance. Someone might argue that
experts have their own pre-defined cluster structure, but the
matching between pre-defined and true cluster structure also
begs questions. The second drawback of pairwise constraints
is that we cannot simply say yes or no only based on two
instances in practice. Also for the cat and dog images, users
might have different decision rules based on different pre-
defined cluster structures, such as animal or non-animal,
land, water or flying animal and just cat or dog categories.
That is to say, without seeing other instances as references,
we cannot make any decision to build pairwise constraints.
The third drawback is that pairwise constraints disobey the
way we make decisions. It is tedious to build an only
100 × 100 matrix of pairwise constraints. Even though the
pairwise constraints matrix is a symmetric matrix and there
exists transitivity for must-link and cannot-link constraints,
the elements of the pairwise constraints matrix is huge to
the number of instances.

To avoid these drawbacks of pairwise constraints, here
we propose a new constraint, called partition level side
information as follows.

Definition 1. Partition Level Side Information. Given a
data set containing 𝑛 instances, randomly select a small
portion 𝑝 ∈ (0, 1) of the data for a user to label from 1
to 𝐾, which is the user-predefined cluster number, then the
label information of these 𝑛𝑝 instances is called 𝑝−partition
level side information.

Different from pairwise constraints, partition level side
information groups the given 𝑛𝑝 instances as a whole
process. Taking other instances as references, it makes more
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sense to decide the group label than pairwise constraints.
Another benefit is that partition level side information has
high consistency, while sometimes pairwise constraints from
users might be self-contradictory by transitivity. That is
to say, given a 𝑝−partition level side information, we can
build a 𝑛𝑝×𝑛𝑝 pairwise constraints matrix with containing
the same information. On the contrary, a 𝑝−partition level
side information cannot be derived by several pairwise
constraints. In addition, for human beings it is much easier to
separate an amount of instances into different groups, which
accords with the way of labeling. As above mentioned,
partition level side information has obvious advantages over
pairwise constraints, which is a promising candidate for
crowd sourcing labeling.

Based on the Def. 1 of partition level side information,
we formalize the problem definition: How to incorporate
partition level side information in the process of clustering?

One naive way to solve the above problem is to transfer
the partition level side information into pairwise constraints,
then any traditional semi-supervised clustering method can
be used to obtain final clustering. However, such solution
does not make full use of the consistency of partition level
side information. Inspired by the huge success of ensemble
clustering, we treat the partition level side information as
an integrated one and make the clustering result agree the
given partition level side information as much as possible.
Specifically speaking, we calculate disagreement between
the clustering result and the given partition level side infor-
mation in a utility view as a penalty term in the objective
function of some clustering method. Here we take K-means
as the basic clustering method and give its corresponding
objective function for partition level side information.

B. Objective Function

Let 𝑋 be the data matrix with 𝑛 instances and 𝑚 features
and 𝑆 be a 𝑛𝑝 ×𝐾 side information matrix containing 𝑛𝑝
instances and 𝐾 clusters, where each row only has one
element with value 1 representing the label information and
others are all zeros. The objective function of our model is
as follows:

min
𝐻
∣∣𝑋 −𝐻𝐶∣∣2F + 𝜆∣∣𝑆 − (𝐻 ⊗ 𝑆)𝐺∣∣2F ,

s.t. 𝐻𝑖𝑘 ∈ {0, 1},
𝐾∑

𝑘=1

𝐻𝑖𝑘 = 1, 1 ≤ 𝑖 ≤ 𝑛.
(1)

where 𝐻 is the final label matrix, 𝐶 is the corresponding
centroids matrix, 𝐻 ⊗ 𝑆 is part of 𝐻 which the instances
are also in the side information 𝑆, 𝐺 is a 𝐾×𝐾 alignment
matrix, 𝜆 is a tradeoff parameter to present the confidence
degree of the side information and the 1-of-𝐾 coding
constraints make the final solution a hard partition, which
means one instance only belongs to one cluster.

The objective function consists of two parts. One is the
standard K-means with squared Euclidean distance, the other
is a term measuring the disagreement between the part of

𝐻 and the side information 𝑆. We aim to find a solution 𝐻 ,
which not only captures the intrinsic structural information
from the original data, but also has as little disagreement as
possible with the side information 𝑆. Here we introduce 𝐺,
which plays a role in shuffling the order of clusters in 𝑆. It
is crucial to align two partitions due to the non-ordering of
cluster labels. For instance, the distance between two exact
same partitions with different label orders cannot be zero
without alignment.

To solve the optimization problem in Eq. 1, we separate
the data 𝑋 and indicator matrix 𝐻 into two parts, 𝑋1 and
𝑋2, 𝐻1 and 𝐻2, according to side information 𝑆, therefore
the objective function can be written as:

min
𝐻1,𝐻2

∣∣𝑋1 −𝐻1𝐶∣∣2F + ∣∣𝑋2 −𝐻2𝐶∣∣2F + 𝜆∣∣𝑆 −𝐻1𝐺∣∣2F . (2)

IV. SOLUTIONS

In this part, we give the corresponding solution to Eq. 2
by equivalently transferring the problem into a K-means-like
optimization problem in an efficient way.

A. K-means-like optimization

Although we can use ALM to obtain the solution by
taking derivation of each unknown variables, it is not ef-
ficient due to some matrix multiply and inverse. Besides
if we have multi side information, the data is separated
to too many fractured pieces, which is hard to operate in
real-world applications. This pushes us to think that can we
solve the above problem in a neat mathematical way with
high efficiency. In the following, we equivalently transfer
the problem into a K-means-like optimization problem via
just concatenating the partition level side information with
the original data.

First, we introduce the concatenating matrix 𝐷,

𝐷 =

[
𝑋1 𝑆
𝑋2 0

]
with 𝐷 = [𝐷1 𝐷2], 𝐷1 = 𝑋 and 𝐷2 = [𝑆 0]⊤,

where 𝑑𝑖 consists of two parts, one is the original features
𝑑
(1)
𝑖 =< 𝑑𝑖,1, ⋅ ⋅ ⋅ , 𝑑𝑖,𝑚 >, i.e., the first 𝑚 columns; the other

last 𝐾 columns 𝑑
(2)
𝑖 =< 𝑑𝑖,𝑚+1, ⋅ ⋅ ⋅ , 𝑑𝑖,𝑚+𝐾 > denotes

the side information. Here we can see that 𝐷 is nothing
but a concatenating matrix with the original data 𝑋 and
partition level side information 𝑆; for those instances with
side information, we just put the side information behind
the original features, and for those instances without side
information, zeros are used to fill up.

If we just apply K-means on the matrix 𝐷, there will
be some problems, such as for those instances without side
information, all zero values contribute to the computation
of the centroids, which inevitably interferes the final cluster
structure. Since we make the partition level side information
guide the clustering process in a utility way, those all
zeros values should not provide any utility to measure the
similarity of two partitions. That is to say, the centroids
of K-means is no longer the mean of the data instances
belonging to certain cluster. Let 𝑚𝑘 = ⟨𝑚(1)

𝑘 ,𝑚
(2)
𝑘 ⟩ be the
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Algorithm 1 The algorithm of clustering with partition level
side information for K-means
Require: 𝑋: data matrix, 𝑛×𝑚;

𝐾: number of clusters;
𝑆: 𝑝−partition level side information, 𝑝𝑛×𝐾;
𝜆: trade-off parameter.

Ensure: optimal 𝐻∗;
1: Build the concatincating matrix 𝐷, 𝑛× (𝑚 + 𝐾);
2: Randomly select 𝐾 instances as centroids;
3: repeat
4: Assign each instance to its closest centroid by the distance function in Eq. 5;
5: Update centroids by Eq. 3;
6: until the objective value in Eq. 2 remains unchanged.

𝑘-th centroid of K-means, which 𝑚
(1)
𝑘 = ⟨𝑚𝑘,1, ⋅ ⋅ ⋅ ,𝑚𝑘,𝑚⟩

and 𝑚
(2)
𝑘 = ⟨𝑚𝑘,𝑚+1, ⋅ ⋅ ⋅ ,𝑚𝑘,𝑚+𝐾⟩. We modify the com-

putation of the centroids as follows,

𝑚
(1)
𝑘 =

∑
𝑥𝑖∈C𝑘

𝑑
(1)
𝑖

∣C𝑘∣ , 𝑚
(2)
𝑘 =

∑
𝑥𝑖∈C𝑘

∩
𝑆 𝑑

(2)
𝑖

∣C𝑘

∩
𝑆∣ . (3)

Recall that the standard K-means, the centroids are com-
puted by arithmetic means, whose denominator represents
the number of instances in its corresponding cluster. Here in
Eq. 3, our centroids have two parts 𝑚(1)

𝑘 and 𝑚
(2)
𝑘 . For 𝑚𝑘,1,

the denominator is also ∣C𝑘∣; but for 𝑚𝑘,2, the denominator
is ∣C𝑘 ∩ 𝑆∣. After modifying the computation of centroids,
we have the following the Theorem 1.

Theorem 1. Given the data matrix 𝑋 , side information 𝑆
and augmented matrix 𝐷, we have

min
𝐻
∣∣𝑋 −𝐻𝐶∣∣2F + 𝜆∣∣𝑆 − (𝐻 ⊗ 𝑆)𝐺∣∣2F

⇔ min
𝐾∑

𝑘=1

∑
𝑑𝑖∈C𝑘

𝑓(𝑑𝑖,𝑚𝑘),
(4)

where 𝑑𝑖 is a 1× (𝑚+𝐾) vector representing the 𝑖-th row
of 𝐷, 𝑚𝑘 is the 𝑘-th centroid calculated by Eq. 3 and the
distance function 𝑓 can be computed by

𝑓(𝑑𝑖,𝑚𝑘) = ∣∣𝑑(1)𝑖 −𝑚
(1)
𝑘 ∣∣22 + 𝜆𝐼(𝑑𝑖 ∈ 𝑆)∣∣𝑑(2)𝑖 −𝑚

(2)
𝑘 ∣∣22, (5)

where 𝐼(𝑑𝑖 ∈ 𝑆) = 1 means the side information contains
𝑥𝑖, and 0 otherwise.

Proof: According to the objective function, we have

𝐾∑
𝑘=1

∑
𝑑𝑖∈C𝑘

𝑓(𝑑𝑖,𝑚𝑘)

=

𝐾∑
𝑘=1

∑
𝑑𝑖∈C𝑘

(∣∣𝑑(1)𝑖 −𝑚
(1)
𝑘 ∣∣22 + 𝜆𝐼(𝑥𝑖 ∈ 𝑆)∣∣𝑑(2)𝑖 −𝑚

(2)
𝑘 ∣∣22)

=
𝐾∑

𝑘=1

∑
𝑑𝑖∈C𝑘∩𝑆

(∣∣𝑑(1)𝑖 −𝑚
(1)
𝑘 ∣∣22 + 𝜆∣∣𝑑(2)𝑖 −𝑚

(2)
𝑘 ∣∣22)

+

𝐾∑
𝑘=1

∑
𝑑𝑖∈C𝑘∩𝑆

∣∣𝑑(1)𝑖 −𝑚
(1)
𝑘 ∣∣22

= ∣∣𝑋1 −𝐻1𝐶∣∣2F + 𝜆∣∣𝑆 −𝐻1𝐺∣∣2F + ∣∣𝑋2 −𝐻2𝐶∣∣2F .
(6)

According to Eq. 2, we finish the proof.

Table I
EXPERIMENTAL DATA SETS

Data set #Instances #Features #Classes CV
𝑏𝑟𝑒𝑎𝑠𝑡 699 9 2 0.4390
𝑒𝑐𝑜𝑙𝑖∗ 332 7 6 0.8986
𝑔𝑙𝑎𝑠𝑠 214 9 6 0.8339
𝑖𝑟𝑖𝑠 150 4 3 0.0000

𝑝𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠 10992 16 10 0.0422
𝑠𝑎𝑡𝑖𝑚𝑎𝑔𝑒 4435 36 6 0.4255
𝑤𝑖𝑛𝑒+ 178 13 3 0.1939

∗: two clusters containing only two objects are deleted as noise.
+: the last attribute is normalized by a scaling factor 1000.

Remark 1. Taking a close look at the concatenating matrix
𝐷, the side information can be regarded as new features
with more weights, which is controlled by 𝜆. Besides, The-
orem 1 provides a way to clustering with both numeric and
categorical features together, which means we calculate the
difference between the numeric and categorical part of two
instances separately and add them together.

Remark 2. Different from standard K-means, the distance
function in Theorem 1 is a linear combination of two
squared Euclidean distances. Moreover, for some instances
the original features and side information jointly contribute
to the distance and for some instances only the original
features decide which cluster the instance should belong to.

By Theorem 1, we transfer the problem into a K-means-
like clustering problem. Since the update rule and distance
function have changed, it is necessary to verify the conver-
gency of the K-means-like algorithm.

Theorem 2. For the objective function in Theorem 1, the
optimization problem is guaranteed to converge in finite two-
phase iterations of K-means-like optimization problem.

Here we omit the proof of Theorem 2 due to the limited
pages. The proposed algorithm is summarized in Alg. 1.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
clustering with partition level side information compared
to pairwise constrained methods clustering and ensemble
clustering method. Generally speaking, we first demonstrate
the advantages of our method in terms of effectiveness
and efficiency. Then we add noises with different ratios to
analyse the robustness of our method.

A. Experimental Setup

Experimental data. 7 datasets from UCI repositories1 are
used for evaluating the performance of the proposed method.
The basic statistical information is reported in Table I
including the number of instances, features and classes and
the coefficient of variation of the classes.

Tools. We select two competitive methods for comparison.
One is LCVEQ [13], a K-means-based pairwise constraint
clustering method; the second is K-means-based Consensus

1https://archive.ics.uci.edu/ml/datasets.html
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Table II
CLUSTERING PERFORMANCE ON SEVEN REAL DATASETS BY NMI(%)

Data Sets percent Ours LCVQE KCC

𝑏𝑟𝑒𝑎𝑠𝑡
73.61 ± 0.00

10% 75.91 ± 1.37 75.88 ± 1.38 75.74 ± 1.22
20% 78.20 ± 1.85 78.15 ± 1.86 77.59 ± 1.48
30% 80.71 ± 2.14 80.59 ± 2.12 80.01 ± 1.98
40% 83.20 ± 1.96 81.56 ± 11.29 82.46 ± 1.86
50% 85.38 ± 1.86 81.96 ± 16.56 84.58 ± 1.82

𝑒𝑐𝑜𝑙𝑖
0.53 ± 2.53

10% 64.16 ± 2.31 60.87 ± 3.32 59.57 ± 5.22
20% 68.20 ± 2.98 63.24 ± 4.71 60.56 ± 5.11
30% 73.21 ± 2.74 67.82 ± 4.56 62.89 ± 6.21
40% 76.92 ± 2.84 70.46 ± 4.54 65.04 ± 4.84
50% 80.84 ± 2.72 72.83 ± 5.33 69.57 ± 6.11

𝑔𝑙𝑎𝑠𝑠
38.46 ± 3.61

10% 37.49 ± 2.92 37.44 ± 3.47 38.72 ± 3.33
20% 39.73 ± 2.70 35.95 ± 3.73 38.42 ± 3.14
30% 42.51 ± 2.96 34.66 ± 4.57 39.05 ± 3.06
40% 47.16 ± 3.37 34.05 ± 3.45 38.61 ± 3.24
50% 52.01 ± 2.82 32.08 ± 5.27 38.16 ± 4.15

𝑖𝑟𝑖𝑠
72.44 ± 6.82

10% 76.53 ± 1.77 75.97 ± 3.41 72.58 ± 9.29
20% 78.46 ± 2.41 78.29 ± 2.71 72.17 ± 11.65
30% 81.05 ± 2.79 80.96 ± 3.47 76.37 ± 9.61
40% 83.66 ± 2.83 83.03 ± 6.08 79.93 ± 7.27
50% 85.41 ± 3.03 85.02 ± 3.88 81.78 ± 6.70

𝑝𝑒𝑛𝑑𝑖𝑔𝑖𝑡𝑠
68.22 ± 1.48

10% 68.61 ± 0.52 66.72 ± 1.20 65.31 ± 2.61
20% 68.93 ± 0.48 63.13 ± 2.31 66.73 ± 3.92
30% 69.99 ± 0.59 59.84 ± 2.51 68.58 ± 1.64
40% 68.25 ± 0.02 57.86 ± 2.16 75.35 ± 3.06
50% 68.38 ± 0.34 54.06 ± 2.42 78.82 ± 3.06

𝑠𝑎𝑡𝑖𝑚𝑎𝑔𝑒
57.52 ± 5.88

10% 61.40 ± 0.05 54.56 ± 5.15 54.84 ± 7.24
20% 61.43 ± 0.06 52.63 ± 8.86 60.28 ± 4.98
30% 61.49 ± 0.05 51.33 ± 10.65 58.07 ± 6.79
40% 61.53 ± 0.04 44.46 ± 10.25 64.30 ± 4.47
50% 61.61 ± 0.08 45.05 ± 11.93 68.96 ± 5.21

𝑤𝑖𝑛𝑒
13.07 ± 0.87

10% 29.44 ± 5.32 26.97 ± 5.92 27.27 ± 5.52
20% 34.63 ± 5.05 25.54 ± 7.71 29.93 ± 5.65
30% 37.74 ± 4.82 23.39 ± 8.28 33.62 ± 5.27
40% 43.10 ± 3.45 19.81 ± 10.76 37.15 ± 5.32
50% 46.36 ± 3.55 19.60 ± 13.34 43.60 ± 5.31

Clustering (KCC) [21], which first generates one basic
partition alone from the data and then fuse this partition with
incomplete partition level side information. In our method,
we empirically set 𝜆 to 100, and we also set the weight
between side information and basic partition in KCC as
𝜆 : 1. In the experiments, we randomly select certain percent
partition level side information from the ground truth for
our method and KCC, then transfer the partition level side
information into pairwise constraints for LCVQE. Note that
the number of clusters for three algorithms is set to the
number of true clusters.

Validation measure. Since the class labels are provided for
each data set, the Normalized Mutual Information (NMI) is
used to measure the clustering performance [22].

B. Effectiveness and Efficiency

Table II shows the clustering performance of different
algorithms on all the seven data sets with side information of
different ratios. The first column represents the results with-
out constraints by K-means. In each scenario, 50 runs with
different side information are conducted and the average
performance as well as the standard deviation are reported.

Our method achieves the best performance in most s-
cenarios except on pendigits and satimage with 40% and
50% percent side information. If we take a close look at
Table II, our method and KCC keep consistently increasing
performance as the percent of side information. LCVQE gets

Table III
COMPARISON OF EXECUTION TIME (IN SECONDS)

Data Sets 𝑏𝑟𝑒𝑎𝑠𝑡 𝑒𝑐𝑜𝑙𝑖 𝑔𝑙𝑎𝑠𝑠 𝑖𝑟𝑖𝑠 𝑝𝑒𝑛𝑑. 𝑠𝑎𝑡𝑖. 𝑤𝑖𝑛𝑒
Ours 0.0014 0.0117 0.0052 0.0019 0.4538 0.1887 0.0094

LCVQE 0.0461 0.0318 0.0256 0.0097 76.7346 11.5499 0.0126
KCC 0.2638 0.2175 0.1263 0.0673 4.9807 1.7020 0.1030
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Figure 2. Improvement of constrained clustering on glass and wine

reasonable results on the well separated data sets breast and
iris; however, it is surprising that LCVQE gets much worse
results with more guidance on glass, pendigits, satimage
and wine. This might result from the great impact of the
order of pairwise constraints, which leads to the deformity
of clustering structure and the worse solutions even than the
basic K-means without any side information. In addition,
our method enjoys better stability than LCVQE and KCC.
For instance, LCVQE has up to 17.5% standard deviation
on breast with 50% side information and the volatility of
KCC on iris with 20% side information goes up to 16.7%.
Fig. 2 shows the improvement of constrained clustering
algorithms over the baseline methods on glass and wine.
We can see that in most scenarios, the performance of our
method shows a positive relevance with the percentage of
side information, which demonstrates the effectiveness of
partition level side information. Although we equivalently
transfer the partition level side information into pairwise
constraints, our clustering method based on partition level
side information utilizes the consistency within the side
information and achieves better results.

Next, we evaluate the efficiency of three algorithms.
Table III shows the average of execution time of different
algorithms with 10% side information. We can see that our
method shows obvious advantages than other algorithms.
On pendigits, our method is faster 10 times than KCC, and
nearly 170 times than LCVQE. Taking the effectiveness and
efficiency into account, our method not only achieves satis-
factory result, but also has high efficiency, which verifies that
it is suitable for large data set clustering with partition level
side information. In the following, we use our K-means-
based method as default to further explore its characteristics.

So far, we use a fixed 𝜆 to evaluate the clustering
performance, and on pendigits and satimage with 50% side
information, our method has a large gap with KCC. In the
following, we explore the impact of 𝜆 on these two data
sets. As can be seen in Fig. 3 with 𝜆 varying from 1𝑒 + 2
to 1𝑒 + 6, KCC keeps stable results with the change of
𝜆, but suffers from heavy volatility. The performance of
our method continuously goes up as 𝜆 increases with high
robustness; besides, our method achieves stability when 𝜆
is larger than a threshold, like 1𝑒 + 4. Compared to other
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Figure 3. Impact of 𝜆 on satimage and pendigits
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Figure 4. Impact of noisy side information on breast and pendigits

data sets, pendigits and satimage have more features so that
a larger 𝜆 might help to improve the performance.

C. Handling Side Information with Noises

In real-world application, the part of side information
might be noisy and misleading, thus we validate our method
with noisy side information. Here fixing 10% side infor-
mation, we randomly select certain instances from the side
information and randomly label them as noises. In Fig. 4,
we can see that the performance of LCVQE and KCC drops
sharply with the increasing of noise ratio; even 10% noise
ratio does great harm to LCVQE on breast. Misleading
pairwise constraints and large weights of the noisy side
information lead to corrupted results. On the contrary, our
method performs high robustness even when the noise ratio
is up to 50%. It demonstrates that we do not need exact
side information from the specialists, instead someone only
knows a bit also helps to improve the clustering results,
which validates the effectiveness of our method in practice
with noisy side information .

VI. CONCLUSION

In this paper, we propose a method for clustering with
partition level side information. Different from pairwise
constraints, partition level side information accords with
the labeling from human being with other instances as
references. Based on this, we formulate the problem via
conducting clustering and making the structure agree as
much as possible with side information. Then we equivalent-
ly transfer it into K-means clustering, which can be solved
with high efficiency. Extensive experiments demonstrate the
effectiveness and efficiency of our methods compared to two
state-of-the-art algorithms. Besides, our method has high
robustness when it comes to noisy side information.
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