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To tackle the large scale QoS-based service selection problem, a novel efficient clustering guided ant colony service selection
algorithm called CASS is proposed in this paper. In this algorithm, a skyline query process is used to filter the candidates related to
each service class, and a clustering based shrinking process is used to guide the ant to the search directions.We evaluate our approach
experimentally using standard real datasets and synthetically generated datasets and compared it with the recently proposed related
service selection algorithms. It reveals very encouraging results in terms of the quality of solution and the processing time required.

1. Introduction

With the proliferation of the Cloud Computing and Software
as a Service (SaaS) concepts, more and more web services
will be offered on the web at different levels of quality
[1]. There may be multiple service providers competing to
offer the same functionality with different quality of service.
Quality of service (QoS) has become a central criterion for
differentiating these competing service providers and plays
a major role in determining the success or failure of the
composed application. Therefore, a Service Level Agreement
(SLA) is often used as a contractual basis between service
consumers and service providers on the expected QoS level.
The QoS-based service selection problem aims at finding the
best combination of web services that satisfy a set of end-to-
end QoS constraints in order to fulfill a given SLA, which is
an NP-hard problem [2].

This problembecomes especially important and challeng-
ing as the number of functionally equivalent services offered
on the web at different QoS levels increases exponentially [3].
As the number of possible combinations can be very huge,
based on the number of subtasks comprising the composite
process and the number of alternative services for each
subtask, using the proposed exact search algorithms [4, 5] to
perform an exhaustive search to find the best combination
that satisfies a certain composition level SLA is impractical.

So, most of the researches are concentrated on heuristic-
based algorithms especially the metaheuristic approaches
aiming to find near-optimal compositions [6]. In [5], the
authors propose heuristic algorithms that can be used to
find a near-optimal solution efficiently. The authors propose
two models for the QoS-based service composition problem
and introduce a heuristic for each model. In [7], the authors
present a genetic algorithm for this problem, in which a spe-
cial relation matrix coding scheme of chromosomes and an
evolution function of population are designed. A simulated
annealing process is introduced to increase the population
diversity. In [8], a new cooperative evolution (coevolution)
algorithm consisting of a stochastic particle swarm optimiza-
tion (SPSO) and a simulated annealing (SA) is presented to
solve this problem. As a metaheuristic approach, the ACO
algorithm is defined by Dorigo et al. [9], motivated by the
intelligent behavior of ant system. It has been applied to solve
many problems and obtained satisfying results [10, 11]. The
research of its applications for service selection has been also
made by several researchers. In [12, 13], the basic principle
of ACO is expounded and the service selection based on
the QoS is transformed into the problem of finding the
optimization path. In [14], a service composition graph is
applied to model this problem and an extended ant colony
system using a novel ant clone rule is applied to solve it. In
[15], an algorithm named multipheromone and dynamically



2 Discrete Dynamics in Nature and Society

updating ant colony optimization algorithm (MPDACO) is
put forward to solve this problem, which includes a global
optimization process and a local optimizing process. In
[16], the ACO is combined with genetic algorithm to the
service selection problem. But, these existing researches for
this problem have the following shortcomings. (1)The used
construction graphs are static and their information granu-
larities for this problem are too coarse, which makes these
algorithms excessively rely on their local search processes. (2)
The efficiency of these existing service selection algorithms is
not satisfying when the number of candidates becomes large.
This is mainly because many redundant candidates exist. If
they are not filtered beforehand, lots of search efforts will be
wasted at running. Furthermore, if the promising areas are
identified early, lots of searching efforts will be saved.

In this paper, the ACO algorithm is extended for solving
the QoS based service selection problem, in which an unsu-
pervised clustering process is used for constructing a directed
clustering graph to guide the ants making exploration, and a
dynamic expanding process is used to enlarge this path for
ants making exploitation based on the obtained global infor-
mation. Furthermore, theMulticriteria Dominance Relation-
ships [17] are introduced to reduce the problem space for ant-
based clustering [18] to further improve the service selection
efficiency. We have compared our approach with the recently
proposed service selection algorithms DiGA [7], SPSO [8],
andMPDACO [15].The performance of these algorithms has
been tested on a variety of data sets provided from several
real-life situations and synthetically generated datasets. The
computational results demonstrate the effectiveness of our
approach in comparison to these approaches. This paper is
organized as follows. In Section 2, we give the definition of
the QoS-based service selection problem and the basic ant
colony algorithm. The CASS algorithm including its model
and concrete algorithm description is provided in Section 3.
Section 4 present experimental studies and compared the
CASS with some other recently proposed algorithms. Finally,
Section 5 summarizes the contribution of this paper along
with some future research directions.

2. Problem Definition and Ant
Colony Algorithm

2.1. The QoS-Based Service Selection Problem. For a com-
posite application composed of a set of abstract services S
that is specified as abstract workflowI, each abstract service
𝑖, 𝑖 ∈ [0, ‖S‖ − 1] corresponds to a service class 𝑆

𝑖
= {𝑠
𝑖1
, 𝑠
𝑖2
,

. . . , 𝑠
𝑖𝑛
}, and 𝑆

𝑖
consists of all services that deliver the same

functionality but potentially differ in terms of QoS values.
Since the value of a QoS attribute is published by the service
provider, its value may be positive or negative. We use the
vector 𝑄

𝑠
= {𝑞
1
(𝑠), 𝑞
2
(𝑠), . . . , 𝑞

𝑟
(𝑠)} to represent the QoS

values of service 𝑠, and the function 𝑞
𝑖
(𝑠) determines the

published value of the 𝑖th attribute of the service 𝑠. Then, the
QoS vector for a composite service consisting of 𝑛 service
components CS = {𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
}, 𝑛 ∈ [1, ‖S‖] is defined as

𝑄CS = {𝑞


1
(CS), 𝑞

2
(CS), . . . , 𝑞

𝑟
(CS)}, where the 𝑞

𝑖
(CS) is the

estimated end-to-end value of the 𝑖thQoS attribute. Although

many different service composition structures may exist in
the workflow, we only focus on the sequential structure,
since the other structures can be reduced or transformed
to the sequential structure, using for example, techniques
for handling multiple execution paths and unfolding loops
[18]. So the 𝑞

𝑖
(CS) can be computed by aggregating the

corresponding published values of component services.

Definition 1 (abstract metaworkflow). For an abstract work-
flow I, it is an abstract metaworkflow if all its contained
abstract services need to bind with a candidate service.

Definition 2 (abstract subworkflow). For an abstract meta-
workflow I ⊆ I, it is an abstract sub-workflow of I if the
solution of composite application corresponding toI is also
a solution of composite application corresponding to I.

Definition 3 (feasible selection). For a given abstract work-
flow I and a vector of global QoS constraints 𝐶 = {𝑐

1
, 𝑐
2
,

. . . , 𝑐
𝑚
}, 1 ≤ 𝑚 ≤ 𝑟, which refer to the user’s requirements

are and expressed in terms of a vector of upper (or lower)
bounds for different QoS criteria, we consider a selection of
concrete services CS to be a feasible selection, if and only if
it contains exactly one service for each service class 𝑆

𝑖
of a

sub-workflow of I and its aggregated QoS values satisfy the
global QoS constraints; that is, 𝑞

1
(CS) ≤ c

𝑘
, for all 𝑘 ∈ [1,𝑚].

In order to evaluate the overall quality of a given feasible
selection CS, a utility function 𝑈 is used which maps the
quality vector 𝑄CS into a single real value, which is defined
as follows:

𝑈

(CS) =

𝑟

∑
𝑘=1

𝑄max (𝑘) − 𝑞


𝑘
(CS)

𝑄max (𝑘) − 𝑄


min (𝑘)
⋅ 𝑤
𝑘 (1)

with𝑤
𝑘
∈ 𝑅+
0
, ∑
𝑟

𝑘=1
𝑤
𝑘
= 1 being theweight of 𝑞

𝑘
to represent

user’s priorities,

𝑄


min (𝑘) = 𝐹
𝑛

𝑗=1
(min
∀𝑠∈𝑆𝑗

𝑞
𝑘 (𝑠)) ,

𝑄


max (𝑘) = 𝐹
𝑛

𝑗=1
(max
∀𝑠∈𝑆𝑗

𝑞
𝑘 (𝑠))

(2)

being the minimum and maximum aggregated values of the
𝑘th QoS attribute for composite service CS, and 𝐹 denoting
an aggregation function that depends on QoS criteria shown
as in Table 1.

Definition 4 (service selection). For a given abstract process
I and a vector of global QoS constraints 𝐶 = {𝑐

1
, 𝑐
2
,

. . . , 𝑐
𝑚
}, 1 ≤ 𝑚 ≤ 𝑟, the service selection is to find the feasible

selection that maximizes the overall utility function𝑈 value.

2.2. The Ant Colony Optimization Algorithm. In nature, for-
aging ants communicate indirectly by depositing and sensing
pheromone trails. This sets up a positive feedback loop that
reinforces promising paths.TheACOalgorithm is inspired by
this behavior of real ants, in which the artificial ants complete
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Table 1: The considered attributes, their priorities, and aggregation
functions.

Type Attributes (priority) Function

Summation

Response time (0.2)
Latency (0.1)

𝑞 (CS) = ∑𝑛
𝑗=1
𝑞 (𝑠
𝑗
)

Compliance (0.1)
Best practices (0.1)
Documentation (0.1)

𝑞 (CS) = 1/𝑛∑𝑛
𝑗=1
𝑞 (𝑠
𝑗
)

Multiplication
Availability (0.1)
Reliability (0.1)
Successability (0.1)

𝑞 (CS) = ∏𝑛
𝑗=1
𝑞 (𝑠
𝑗
)

Minimum Throughput (0.1) 𝑞

(CS) = min𝑛

𝑗=1
𝑞 (𝑠
𝑗
)

Set parameters and Initialize pheromone trails
Begin

𝑏𝑒𝑠𝑡𝐴 = {}; //Take cost({}) = ∞;
repeat

for each ant k do
construct an assignment A

𝑘
;

if fit(A
𝑘
) < fit(𝑏𝑒𝑠𝑡𝐴) then

𝑏𝑒𝑠𝑡𝐴 = A
𝑘
;

endfor;
update pheromone trails;

until the maximum evaluation number is arrived or
the other termination condition is satisfied;

return 𝑏𝑒𝑠𝑡𝐴;
End

Algorithm 1: ACO Basic.

a series of walks of a data structure, known as a construction
graph. They lay pheromone trails on this graph edges and
choose their path with respect to probabilities that depend
onpheromone trails and these pheromone trails progressively
decrease by evaporation. In most cases, pheromone trails
are updated only after having constructed a complete path
and not during the walk, and the amount of pheromone
deposited is usually a function of the quality of the path.
Furthermore, the probability for an artificial ant to choose
an edge often depends not only on pheromones, but also
on some problem-specific local heuristics. The classical ACO
algorithm is shown as Algorithm 1.

At each cycle, each ant constructs a complete assign-
ment and then pheromone trails are updated including the
pheromone depositing and evaporating. The fit is a fitness
function used to evaluate an assignment. We can see that
whenusing theACOmetaheuristic to solve a new combinato-
rial optimization problem, one of the main tasks is to model
the problem as the search of a feasible minimum cost path
over a weighted graph, where the feasibility is defined with
respect to a set of constraints.

3. The Clustering Based Ant Colony Algorithm
for Service Selection

Obviously, for an application request with 𝑛 service classes
and 𝑙 candidate services per class, there are 𝑙𝑛 possible combi-
nations to be examined. So, when the number of functionally-
equivalent services offered becomes large, how to effectively
shrink the solution space and make the search quickly go
right direction is very important. In the CASS algorithm, a
skyline query process is used to filter the candidates related
to each service class, and an unsupervised clustering process
is introduced to partition the skyline services in per service
class. Then a directed clustering graph is constructed based
on clustering result to abstract the search space and used to
guide the ants global searching.

Definition 5 (skyline services). The skyline of a service class 𝑆,
denoted by SLS, comprises the set of those services in 𝑆 that
are not dominated by any other service; that is, SLS = {𝑖 ∈
𝑆 | ¬∃𝑗 ∈ 𝑆; 𝑗 ≺ 𝑖}. We regard these services as the skyline
services of 𝑆.

Definition 6 (dominance). Consider a service class 𝑆 and two
services 𝑖, 𝑗 ∈ 𝑆, characterized by a set of𝑄 of QoS attributes.
𝑖 dominates 𝑗, denoted as 𝑖 ≺ 𝑗, if 𝑖 is as good as or better than
𝑗 in all parameters in 𝑄 and better in at least one parameter
in 𝑄, that is, for all 𝑘 ∈ [1, |𝑄|] : 𝑞

𝑘
(𝑥) ⩽ 𝑞

𝑘
(𝑦) and ∃𝑘 ∈

[1, |𝑄|] : 𝑞
𝑘
(𝑥) < 𝑞

𝑘
(𝑦).

Since not all services are potential candidates for the solu-
tion. Thus, a skyline query can be performed on the services
in each class to identify those potential candidates for com-
position. In the CASS algorithm, the skyline query process
is implemented using the fast nondominated process in [19].
If the candidate service number in the skyline 𝑙

𝑖
⊂ 𝑆
𝑖
of a

service class 𝑆
𝑖
is more than 𝑇, an unsupervised clustering

process is used to discover the similar candidate services, and
the candidate service 𝑐

𝑖,𝑗
∈ 𝑆
𝑖
nearest to the cluster center 𝐶

𝑖,𝑗

is chosen to represent the service candidates in the 𝑗th cluster.
Then, a directed clustering graph CG(𝑉, 𝐸) which is used as
a represented construction graph for ant colony searching is
defined,𝑉 = {V

𝑖,𝑗
| V
𝑖,𝑗
∈ (𝑙
𝑖
∧𝑐
𝑖,𝑗
), 𝑖 ∈ [0, ‖S‖−1], 𝑗 ∈ [0, ‖𝑆

𝑖
‖−

1]} ∨ {V
𝑠
, V
𝑑
} and 𝐸 = {⟨V

𝑖,𝑗
, V
𝑘,ℎ
⟩ | (⟨𝑆

𝑖
, 𝑆
𝑘
⟩ ∈ I) ∧ (V

𝑖,𝑗
∈

𝑉)∧(V
𝑘,ℎ
∈ 𝑉), 𝑘 ∈ [0, ‖S‖−1], ℎ ∈ [0, ‖𝑆

𝑘
‖−1]}∨{⟨V

𝑠
, V
𝑖,𝑗
⟩ |

𝑓in (V𝑖,𝑗) = 0, V𝑖,𝑗 ∈ 𝑉}{⟨V𝑖,𝑗, V𝑑⟩ | 𝑓out(V𝑖,𝑗) = 0, V𝑖,𝑗 ∈ 𝑉}, with
V
𝑠
, V
𝑑
representing the start point and end point and 𝑓in(V𝑖,𝑗)

and 𝑓out(V𝑖,𝑗) being the in-degree and out-degree of node V
𝑖,𝑗
.

When eighty percent ants deposit the pheromone along the
same path 𝑝 = (𝑉

𝑝
, 𝐸
𝑝
) in CG, an expanding process is

used to rebuild a construction graph EG(𝑉, 𝐸) based on this
path for ants making exploitation, where 𝑉 = {V

𝑖,𝑘
| (V
𝑖,𝑘
∈

𝐶
𝑖,𝑗
∧𝑐
𝑖,𝑗
∈ 𝑉
𝑝
), 𝑖 ∈ [0, ‖S‖−1, 𝑘 ∈ [0, ‖𝑆

𝑖
‖−1]]}∨ {V

𝑠
, V
𝑑
} and

𝐸 = {⟨V
𝑖,𝑘
, V
ℎ,𝑞
⟩ | ⟨𝑐
𝑖,𝑗
, 𝑐
ℎ,𝑚
⟩ ∈ 𝐸
𝑝
∧ V
𝑖,𝑘
∈ 𝐶
𝑖,𝑗
∧ V
ℎ,𝑞
∈ 𝐶
ℎ,𝑚
} ∨

{⟨V
𝑠
, V
𝑖,𝑘
⟩ ∨ ⟨V

𝑖,𝑘
, V
𝑑
⟩ | (⟨V

𝑠
, 𝑐
𝑖,𝑗
⟩ ∈ 𝐸
𝑝
∨ ⟨𝑐
𝑖,𝑗
, V
𝑑
⟩) ∧ V

𝑖,𝑘
∈ 𝐶
𝑖,𝑗
}.

The pheromone of the new add vertex V
𝑖,𝑘

is set the same as
its related cluster center 𝑐

𝑖,𝑗
. We can see that each vertex in

these two graphs is associated with a binding relationship of
a service class and its service instance.
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Begin
for each vertex v in the construction graph do

𝜏(V) = (1 − 𝜌) ⋅ 𝜏(V) + ∑
𝐴𝑘∈𝐸𝑙𝑖𝑡𝑖𝑠𝑡𝑜𝑓𝐶𝑦𝑐𝑙𝑒

Δ𝜏(𝐴
𝑘
, V)

if 𝜏(V) < 𝜏min then 𝜏(V) = 𝜏min;
if 𝜏(V) < 𝜏max then 𝜏(V) = 𝜏max;

endfor
End

Procedure 1: Updating the pheromones.

In the CASS algorithm, the ants communicate by laying
pheromone on graph vertices. The amount of pheromone on
vertex V

𝑖,𝑗
is denoted by 𝜏(V

𝑖,𝑗
). Intuitively, the amount of

pheromone represents the learnt desirability of binding the
service class 𝑆

𝑖
with its 𝑗th service instance. As proposed in

the MAX-MIN ant system [10], we explicitly impose lower
and upper bounds 𝜏min and 𝜏max on pheromone trails (0 <
𝜏min < 𝜏max). The goal is to favor a larger exploration of the
search space by preventing the relative differences between
pheromone trails from becoming too extreme during pro-
cessing. Also, pheromone trails are set to 𝜏max at the begin-
ning of the algorithm to achieve a higher exploration of
the search space during the first cycle. The way for an ant
constructing a complete assignment is outlined in Procedure
1.

For a given ant 𝑘 that is building the assignment 𝐴
𝑘
and

is currently at the vertex V
𝑖𝑗
, its feasible neighborhood in

the construction 𝐺(𝑉, 𝐸) (i.e., CG or EG defined above) is
defined as Nbr

𝑘
(V
𝑖,𝑗
) = {V

𝑝,𝑞
| ⟨V
𝑖𝑗
, V
𝑝,𝑞
⟩ ∈ 𝐸 ∧ V

𝑝,𝑞
∈ 𝑉}.

The probability for this ant to select the vertex V
𝑝,𝑞

in its
feasible neighborhood is computed as follows:

pro (⟨V
𝑝,𝑞
, 𝐴
𝑘
, V
𝑖,𝑗
⟩) =

[𝜏 (V
𝑝,𝑞
)]
𝛼

[𝜂 (V
𝑝,𝑞
)]
𝛽

∑V∈Nbr𝑘(V𝑖,𝑗) [𝜏 (V)]
𝛼
[𝜂 (V)]

𝛽
, (3)

where 𝜏(V
𝑝,𝑞
) is the pheromone factor of vertex V

𝑝,𝑞
, 𝜂(V
𝑝,𝑞
)

is its heuristic factor, and 𝛼 and 𝛽 are the parameters that
determine their relative weights. A main difference with
many ACO algorithms is that the heuristic factor 𝜂(V

𝑝,𝑞
)

depends on the whole current set of visited vertices in 𝐴
𝑘
.

It is inversely proportional to the number of new violated
constraints when adding V

𝑝,𝑞
to 𝐴
𝑘
and computed as follows:

𝜂 (V
𝑝,𝑞
) =

1

1 + V cons (𝐴
𝑘
∪ V
𝑝,𝑞
) − V cons (𝐴

𝑘
)
. (4)

After every ant has constructed a complete assignment,
the pheromone trails are updated. All pheromone trails
are decreased uniformly in order to simulate evaporation
and allow ants to forget bad assignments, and then the
best ants of the cycle deposit pheromone. More formally,
at the end of each cycle, the quantity of pheromone on
each vertex is updated as in Procedure 2, where 𝜌 is the
evaporation rate, 0 ≤ 𝜌 ≤ 1, and ElitistsofCycle contains
the best𝑁 assignments constructed during the current cycle.

The Δ𝜏(𝐴
𝑘
, V) is the quantity of pheromone that should be

deposited on vertex V. It is defined as follows:

Δ𝜏 (𝐴
𝑘
, V) =

{

{

{

1

1 + 𝑓𝑖𝑡 (𝐴
𝑘
)
, if V ∈ 𝐴

𝑘
,

0, otherwise,

𝑓𝑖𝑡 (𝐴
𝑘
) = {

1 − 𝑈 (𝐴
𝑘
) , if V cons (𝐴

𝑘
) = 0,

1, otherwise.

(5)

We can see that the fitness value of an assignment is decided
by both its utility value and whether any constraint has been
violated by it. Based on the above descriptions, the framework
of CASS algorithm can be formulated as Algorithm 2.

In this paper, the ant-based clustering algorithm pro-
posed in [18] is used for the clustering process. Based on
the clustering result, a cluster graph is constructed which
provides insight into the large scale service selection prob-
lem space and is exploited to predict the subspace crucial
to search. When a promising search area is identified, a
dynamically expanding process is used to fractionize it for
ants exploitation, which greatly improves the solving quality.

4. Experimental Evaluation

In this section, we present an experimental evaluation of our
approach, focusing on its efficiency in terms of execution
time and the quality in terms of the obtained best solution
fitness value, and compare it with the recently proposed
related algorithmsDiGA [7], SPSO [8], andMPDACO[15] on
different scale test instances. All algorithms are implemented
in C++ language and executed on a Core (i7), 2.93GHZ, 2GB
RAM computer.

4.1. Experimental Setup. In our evaluation we experimented
with two types of datasets. The first is the publicly available
updated data set called QWS (http://www.uoguelph.ca/∼
qmahmoud/qws/index.html), which comprises measure-
ments of nineQoS attributes for 2507 real-world web services
used in this paper.These attributes, priorities, and their aggre-
gation functions are shown in Table 1. These services were
collected from public sources on the web, including UDDI
registries, search engines, and service portals, and their QoS
values were measured using commercial benchmark tools.
More details about this dataset can be found in [3]. We also
experimented with three synthetically generated datasets in
order to test our approach with larger number of services and
different distributions through a publicly available synthetic
generator (http://randdataset.projects.postgresql.org/): (a) a
correlated data set (cQoS), in which the values of QoS param-
eters are positively correlated, (b) an anticorrelated (aQoS)
data set, in which the values of the QoS parameters are
negatively correlated, and (c) an independent dataset, in
which theQoS values are randomly set. Each dataset contains
25000 QoS vectors, and each vector represents the nine QoS
attributes of the one web service. Since all other models can
be reduced or transformed to the sequential model using
the techniques for handling multiple execution paths and
unfolding loops [20], the sequential composition model is
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Begin
𝐴
𝑘
= {V
𝑠
};

repeat
Select a vertex V from the ant feasible neighborhood with a probability;
Move the ant to this vertex, 𝐴

𝑘
= 𝐴
𝑘
∨ {V};

until (V == V
𝑑
)

End

Procedure 2: Construct assignment by ant 𝑘.

Set parameters and Initialize pheromone trails
Begin

for each service class do
use the skyline query process to identify its skyline services;
Clustering the skyline services into several different clusters;

endfor;
build the clustering graph and make it as the initial construct graph;
repeat

ElitistsofCycle = {};
for each ant 𝑘 do

construct an assignment 𝐴
𝑘
using Procedure 1;

if fit(𝐴
𝑘
)<fit(𝑏𝑒𝑠𝑡𝐴) then

𝑏𝑒𝑠𝑡𝐴 = 𝐴
𝑘
;

endfor;
find the best 𝑁 assignments and add them into ElitistsofCycle;
update pheromone trails using Procedure 2;
if (eighty percent ants obtained the same assignment) then

use the expanding process to fractionize the construction graph;
endif .

until the maximum evaluation number is arrived or
the other termination condition is satisfied;

return 𝑏𝑒𝑠𝑡𝐴;
End

Algorithm 2: CASS.

focused on in this paper. For the purpose of our evaluation,
we considered a scenario, where a composite application
comprises 10 different service classes. Each of the aforemen-
tioned datasets is randomly partitioned into the 10 service
classes. Through this way, six different scale test instances
are created and shown as in Table 2. The T1, T2, and T3 are
built from QWS data set, and the other three are built from
our synthesized datasets. Tc4 (2500) denotes a composite
application with ten service classes, and each service class
contains 2500 candidate services from the correlated data set.
We then created several QoS vectors of up to 9 random values
to represent the user end-to-end QoS constraints. Each QoS
vector corresponds to one QoS based composition request,
for which one concrete service needs to be selected from each
class, such that the overall utility value ismaximized, while all
end-to-end constraints are satisfied.

4.2. Comparative Results. We run each algorithm twenty
times on each test instance. The termination condition for
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Figure 1: The compare of the time consumed.
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Figure 2: The Boxplots of the 𝑟 value distributions.

all the algorithms on each test instance is set based on the
maximum candidate evaluation number, which is set as 3 ∗
10
4. The colony size is set as 50 and the other parameters of

the CASS algorithm are set as follows: 𝛼 = 2, 𝛽 = 8, 𝜌 =

0.02, 𝜏max = 4.0, 𝜏min = 0.01, and 𝑁 = 5. The parameters
of the other three compared algorithms are set as the same as
the original papers. We do not made much effort in finding

the best parameter settings and leave this task for a future
study based on the I-race package [21].We run each algorithm
twenty times on each test instance. The obtained best, worst,
and average fitness values are given in Table 2, and the average
consuming time for the compared algorithms on each test
instance is shown in Figure 1. In order to show the solutions
distribution more clearly, the fitness value 𝑓

𝑖
obtained by an
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Figure 3: The comparison of the convergent speed on different instances.
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Table 2: The obtained fitness values for the compared algorithms (best/worst/average).

Instances DiGA SPSO MPDACO CASS
T1(150) 0.1455/0.1614/0.1555 0.1468/0.1573/0.1536 0.1455/0.1501/0.1481 0.1455/0.1529/0.1481
T2(200) 0.1595/0.1798/0.1677 0.1546/0.1561/0.1549 0.1521/0.1562/0.1539 0.1521/0.1559/0.1533
T3(250) 0.1474/0.1637/0.1562 0.1469/0.1519/0.1476 0.1426/0.1503/0.1464 0.1415/0.1470/0.1447
Tc4(2500) 0.1705/0.1884/0.1808 0.1694/0.1829/0.1796 0.1724/0.1865/0.1780 0.1676/0.1819/0.1742
Ta5(2500) 0.1753/0.1899/0.1818 0.1621/0.1845/0.1732 0.1683/0.1862/0.1795 0.1597/0.1763/0.1698
Ti6(2500) 0.1768/0.1890/0.1834 0.1689/0.1775/0.1746 0.1792/0.1860/0.1829 0.1627/0.1740/0.1685

algorithm for 𝑖th run is converted to a value 𝑟
𝑖
using the

following rule:

𝑟
𝑖
=

𝑓
𝑖
− 𝑓best

𝑓worst − 𝑓best
, (6)

where 𝑓worst and 𝑓best are the minimum fitness value and
maximumfitness value found by all the compared algorithms
for this test instance. Then the solutions distribution based
on 𝑟 value is shown as in Figure 2. The comparisons of their
convergence properties for different scale problem are given
in Figure 3.

From Figure 1, we can see that the CASS algorithm is
faster than the other three compared algorithms for the
test instances Tc4, Ta5, and Ti6 and slower than the other
algorithms for T1, T2, and T3. The larger the test instance
scale is, the faster it is than the other algorithms. This is
mainly because the preprocessing phrase for skyline query
process and the clustering process will occupy more propor-
tion of the consuming time when the test instance is not large
enough. From Table 2, we can clearly get that the proposed
CASS algorithm performed greatly better than the compared
algorithms. It obtained smaller upper bound, smaller average
and smaller lower bound of fitness value which can be further
proved by Figure 2. From this figure, we can see that the
𝑟 values of most solutions obtained by CASS algorithm are
better than the average 𝑟 values of the solutions obtained by
the other algorithms.The average convergence rate in 20 runs
for each algorithm on different scale test instances are shown
as in Figure 3 which can indicate the convergence properties
of these algorithms explicitly. We can obtain that the CASS
algorithm converges not faster than the compared other
algorithms, but it is not easily trapped into local optimum
and its convergent point is the best. So, we can conclude that
the proposed CASS algorithm outperforms the compared
methods in terms of the utility score, as well as execution
time, and possesses competitive performance for the large
scale service selection problem.

5. Conclusions

To tackle the large scale service problem, we propose the
CASS algorithm in this paper which is based on the ACO
algorithm, the skyline query technique, and the clustering
technique. The results of experiment evaluation indicate that
our approach excels in both utility and execution time. It

not only provides a useful way to solve the service selection
problem but also can give a reference for solving other opti-
mization problem. There are a number of research directions
that can be considered as useful extensions of this research.
We can combine it with some local search strategy or hybrid
it with other meteheuristic algorithms. Furthermore, how to
tackle the QoS uncertainty during service selection in the
CASS algorithm is our next studying problem.
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