
ESAMR: An Enhanced Self-Adaptive MapReduce Scheduling Algorithm

Xiaoyu Sun, Chen He and Ying Lu
Department of Computer Science and Engineering,

University of Nebraska-Lincoln, Lincoln, NE 68588-0115, U.S.A.

Email: {xsun, che, ylu}@cse.unl.edu

Abstract—MapReduce is a programming model and an asso-
ciated implementation for processing and generating large data
sets. Hadoop is an open-source implementation of MapReduce,
enjoying wide adoption, and is used not only for batch jobs
but also for short jobs where low response time is critical.
However, Hadoop’s performance is currently limited by its
default task scheduler, which implicitly assumes that cluster
nodes are homogeneous and tasks make progress linearly, and
uses these assumptions to decide when to speculatively re-execute
tasks that appear to be stragglers. In practice, the homogeneity
assumption does not always hold. Longest Approximate Time
to End (LATE) is a MapReduce scheduling algorithm that
takes heterogeneous environments into consideration. It, however,
adopts a static method to compute the progress of tasks. As
a result neither Hadoop default nor LATE schedulers perform
well in a heterogeneous environment. Self-adaptive MapReduce
Scheduling Algorithm (SAMR) uses historical information to
adjust stage weights of map and reduce tasks when estimating
task execution times. However, SAMR does not consider the fact
that for different types of jobs their map and reduce stage
weights may be different. Even for the same type of jobs,
different datasets may lead to different weights. To this end,
we propose ESAMR: an Enhanced Self-Adaptive MapReduce
scheduling algorithm to improve the speculative re-execution
of slow tasks in MapReduce. In ESAMR, in order to identify
slow tasks accurately, we differentiate historical stage weights
information on each node and divide them into k clusters using
a k-means clustering algorithm and when executing a job’s tasks
on a node, ESAMR classifies the tasks into one of the clusters and
uses the cluster’s weights to estimate the execution time of the
job’s tasks on the node. Experimental results show that among
the aforementioned algorithms, ESAMR leads to the smallest
error in task execution time estimation and identifies slow tasks
most accurately.

Keywords: MapReduce, speculative task re-execution,
heterogeneity

I. INTRODUCTION

In Today’s world, data is growing exponentially, doubling

its size every three years [1]. Huge amounts of data are being

generated from digital media, web authoring, scientific instru-

ments, physical simulations, and so on. Effectively storing,

querying, analyzing, understanding, and utilizing these huge

data sets presents one of the grand challenges to the computing

industry and research community. A popular solution [2], [3],

[4] is to build data-center scale computer systems to meet the

high storage and processing demands of these applications.

Such a system is composed of hundreds or thousands of

commodity computers connected through a local area network

housed in a data center. It has a much larger scale than a

traditional computer cluster, while enjoying better and more

predictable network connectivity than wide area distributed

computing systems.

One of the most popular programming paradigms on data-

center scale computer systems is the MapReduce programming

model [2]. MapReduce is a programming model and an

associated implementation for processing and generating large

data sets [2]. It was first developed at Google by Jeffrey Dean

and Sanjay Ghemawat. Under this model, an application is

implemented as a sequence of MapReduce operations, each

consisting of a map stage and a reduce stage that process a

large number of independent data items. The system supports

automatic parallelization, distribution of computations, task

execution, and fault tolerance in hopes that application devel-

opers can focus on the design and implementation of appli-

cations without worrying about these complex system issues.

Being a simple programming model, MapReduce has achieved

great successes in various applications [5] [6] [7] [8] [9] [10]

[11] [12] [13]. Hadoop[14], created by Doug Cutting [15], is

an open source implementation of the MapReduce framework.

It makes MapReduce framework widely accessible.

As mentioned, a key benefit of MapReduce is its automatic

handling of failures, which hides the complexity of fault-

tolerance [16] [14] [17] from application developers. If a node

crashes, MapReduce re-executes failed tasks on a different

machine. Equally importantly, when an available node per-

forms poorly, a condition referred to as a straggler, MapReduce

speculatively re-executes a straggler task on another machine

to finish the computation faster. Without this speculative

execution mechanism [18], a job would be as slow as the

misbehaving task.

In this work, we address the problem of how to robustly

perform speculative execution to maximize performance [19]

[20]. Assuming homogeneous environments, Hadoop default

scheduler starts speculative tasks based on a naive heuris-

tic that compares each task’s progress to the average task

progress of a job. LATE [21] MapReduce scheduling algo-

rithm takes heterogeneous environments into consideration.

However, LATE has a poor performance due to its static

fixed-weight based method. SAMR algorithm [22] shares a

similar idea as LATE. It, however, also leverages historical

information to tune weights of map and reduce stages in

order to get a more accurate estimation of task execution time.

SAMR falls short of solving one crucial problem. It considers

only hardware heterogeneity but not other factors, such as

different job types and different job sizes, which also affect

stage weights.

To overcome the deficiency of SAMR, we have developed

ESAMR: an Enhanced Self-Adaptive MapReduce scheduling

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.30

148

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.30

148

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.30

148

algorithm. Like SAMR, ESAMR is inspired by the fact that

slow tasks prolong the execution time of the whole job and

different amounts of time are needed to complete the same task

on different nodes due to hardware heterogeneity. In addition,

considering that there are other factors that affect a task’s

progress [23], ESAMR records historical information for each

node and adopts a k-means cluster identification algorithm to

dynamically tune stage weight parameters and find slow tasks

accurately. As a result, ESAMR significantly improves the

performance of MapReduce scheduling in terms of estimating

task execution time and launching backup tasks.

II. BACKGROUND

In this section, we first describe the MapReduce program-

ming model. It is the basis of ESAMR scheduling algorithm.

We also introduce Hadoop default scheduler, LATE scheduler,

and SAMR scheduler. The deficiencies of these schedulers

have motivated us to develop ESAMR scheduling algorithm.

A. Basic Concepts in MapReduce

Next, we briefly describe how a Hadoop cluster works since

other MapReduce-style clusters work similarly. In later parts

of this paper, we will use the terms “Hadoop cluster” and

“MapReduce cluster” interchangeably. A Hadoop cluster is of-

ten composed of many commodity PCs, where one PC acts as

the master node and others as slave/worker nodes. A Hadoop

cluster uses Hadoop Distributed File System (HDFS) [24] to

manage its data. It divides each file into small fixed-size (e.g.,

64 MB) blocks and stores several (e.g., 3) copies of each

block in local disks of cluster machines. A MapReduce [2]

computation is comprised of two parts, map and reduce, which

take a set of input key/value pairs and produce a set of output

key/value pairs. When a MapReduce job is submitted to a

Hadoop cluster, it is divided into M map tasks and R reduce

tasks, where each map task will process one block (e.g., 64

MB) of input data.

A Hadoop cluster uses worker nodes to execute map and

reduce tasks. A worker node who is assigned a map task

reads the content of the corresponding input data block, parses

input key/value pairs out of the block, and passes each pair

to the user-defined map function. The map function generates

intermediate key/value pairs, which are sorted, written to the

local disk, and divided into R regions by the partitioning

function. The locations of these intermediate data are passed

back to the master node, which is responsible for forwarding

these locations to reduce tasks. A reduce task uses remote

procedure calls to read the intermediate data generated by the

M map tasks of the job. Each reduce task is responsible for a

region (partition) of intermediate data with certain keys. Thus,

it has to retrieve its partition of data from all worker nodes

that have executed the M map tasks. This process is called

shuffle, which involves many-to-many communications among

worker nodes. When a reduce task has read all intermediate

data, it sorts it by the intermediate key so that all occurrences

of the same key are grouped together. The reduce task then

invokes the reduce function to produce the final output data

(i.e., output key/value pairs) for its reduce partition [2]. Thus, a

map task is often considered to have two stages: map and sort

phases, while a reduce task has three stages: shuffle phase, sort

phase, and reduce phase. Figure 1 illustrates the task stages

and their time weights, i.e., M1, M2, R1, R2, and R3, where

M1 +M2 = 1 and R1 +R2 +R3 = 1.

Fig. 1. MapReduce task stages

For a MapReduce job, all its map tasks are independent of

each other and can be executed simultaneously. While reduce

tasks depend on map tasks because the latter’s outputs are the

former’s inputs, all reduce tasks are independent of each other

and can be executed in parallel. Thus, the completion time

of a map stage is determined by the slowest map task and a

job’s completion time (i.e., the completion time of a reduce

stage) is determined by the slowest reduce task. To prevent

slow tasks from prolonging the job execution time, Hadoop

default scheduler, LATE scheduler, SAMR scheduler, and our

ESAMR scheduler all employs a mechanism to speculatively

re-execute slow tasks. Their speculative re-execution mecha-

nisms are, however, different.

B. Existing Re-Execution Mechanisms

To select tasks for speculative re-execution, Hadoop default

scheduler monitors the progress of tasks using a Progress

Score (PS) between 0 and 1. The average progress score of a

job is denoted by PSavg. The progress score of the ith task

is denoted by PS[i]. Suppose: a job has K number of tasks

being executed; a task has a total of N number of key/value

pairs to be processed and M of them have been processed

successfully. Hadoop default scheduler gets PS according to

Eq. (1) and Eq. (2), and then launches backup tasks according

to Eq. (3).

149149149

PS =

{
M/N For Map tasks

1/3 ∗ (K +M/N) For Reduce tasks
(1)

PSavg =
K∑
i=1

PS[i]/K (2)

For task Ti: PS[i] < PSavg − 20% (3)

Here, it is assumed that a map task spends negligible time

in the order stage (i.e., M1=1 and M2=0) and a reduce task

has finished K stages and each stage takes the same amount

of time (i.e., R1=R2=R3=1/3). If Eq.(3) is satisfied, task Ti

needs a backup task.

This method has several deficiencies, as pointed out by

Chen et al. [22]. First, it uses fixed stage time weights by

setting M1, M2, R1, R2, and R3 at 1, 0, 1/3, 1/3, and 1/3

respectively. The values of M1, M2, R1, R2, and R3 could,

however, be different when tasks are running on different

nodes, especially in a heterogeneous environment. Second,

this scheduler launches backup tasks based on progress score

(PS), which may not be appropriate, since in a heterogeneous

environment, a lower PS does not necessarily mean a longer

remaining execution time. Third, backup could be launched for

fast tasks due to the inappropriate setting of stage weights. For

instance, the first phase of a reduce task, i.e., the shuffle phase

is often much slower than the sort and reduce phases, because

shuffle involves communication with several map tasks over

the network. Thus, a reduce task executing in the end of the

shuffle phase could be a fast task. However, a backup may be

launched for this task since its progress score, as computed

by this method, is less than 1/3.

By launching backup for tasks with long remaining execu-

tion time, Longest Approximate Time to End (LATE) MapRe-

duce scheduling algorithm overcomes the second deficiency of

the aforementioned re-execution mechanism. LATE also first

uses Eq.(1) to calculate a task’s progress score (PS). But, it

then computes a task’s remaining execution time (denoted by

TimeToEnd) with the following equations:

PR = PS/Tr (4)

T imeToEnd = (1− PS)/PR (5)

where Tr denotes how long a task T has executed and PR the

task progress rate. TimeToEnd, how much time remains until

T finishes, is estimated by Eq.(5).

Although LATE uses an improved strategy to launch backup

tasks, it still frequently chooses wrong tasks to re-execute. This

is because when estimating TimeToEnd, LATE still sets the

stage time weights, i.e., M1, M2, R1, R2, and R3, at fixed

values of 1, 0, 1/3, 1/3, and 1/3 respectively. This setting will

lead to inaccurate TimeToEnd estimation.

Same as LATE algorithm, Self-Adaptive MapReduce

(SAMR) scheduler identifies slow tasks via estimating task

execution time. SAMR, however, does not use fixed stage

weights for map and reduce tasks. It stores historical infor-

mation of stage weight values on every node and updates

it after every task execution on the node. When estimating

the TimeToEnd of a task running on a node, SAMR reads

historical information stored on the node to dynamically set

the stage weights.

Figure 2 illustrates the way adopted by SAMR to use and

update historical information on a node.

Fig. 2. SAMR: the way to use and update historical information

Since SAMR uses historical information recorded on each

node to tune the stage weights, it adopts more realistic

weights and could apply different weights for tasks running

on different nodes. Thus, compared to Hadoop default and

LATE schedulers, SAMR scheduler works better, especially

in a heterogeneous environment.

SAMR only considers one factor that affects task stage

weights, i.e., the hardware heterogeneity. However, even run-

ning on the same node, tasks of different MapReduce jobs

could have different stage weights since it may take them

different amounts of time to execute map and reduce functions

and their amounts of intermediate data could be different. In

addition, tasks of the same MapReduce job can have different

stage weights when handling datasets of different sizes. For

instance, larger input data size results in larger intermediate

data size, which could cause relatively even more time spent

on the shuffle phase.

This paper develops ESAMR: an Enhanced Self-Adaptive

MapReduce scheduling algorithm. Knowing besides hardware

heterogeneity there are many other factors that affect a task’s

stage weights, ESAMR records historical information on every

node and adopts a k-means cluster identification algorithm to

dynamically tune stage weights, estimate task execution time,

and find slow tasks. Next section presents ESAMR algorithm

in detail.

III. ESAMR ALGORITHM

In this section, we describe our new Enhanced Self-adaptive

MapReduce (ESAMR) scheduling algorithm. ESAMR classi-

fies the historical information stored on every node into k
clusters using a machine learning technique. If a running job

has completed some map tasks on a node, ESAMR records

the job’s temporary map phase weight (i.e., M1) on the node

according to the job’s map tasks completed on the node. The

150150150

temporary M1 weight is used to find the cluster whose M1
weight is the closest. ESAMR then uses the cluster’s stage

weights to estimate the job’s map tasks’ TimeToEnd on the

node and identify slow tasks that need to be re-executed. If a

running job has not completed any map task on a node, the

average of all k clusters’ stage weights are used for the job.

In the reduce stage, ESAMR carries out a similar procedure.

After a job has finished, ESAMR calculates the job’s stage

weights on every node and saves these new weighs as a part of

the historical information. Finally, ESAMR applies k-means,

a machine learning algorithm, to re-classify the historical

information stored on every worker node into k clusters and

saves the updated average stage weights for each of the k

clusters. By utilizing more accurate stage weights to estimate

the TimeToEnd of running tasks, ESAMR can identify slow

tasks more accurately than SAMR, LATE, and Hadoop default

scheduling algorithms. Algorithm 1 gives the pseudo code of

ESAMR algorithm.

Algorithm 1 ESAMR

Require:
1: PFM (Percentage of Finished Map Tasks), a

threshold used to control when to begin the slow map task

identification

2: PFR (Percentage of Finished Reduce Tasks), a

threshold used to control when to begin the slow reduce

task identification

3: history, historical information of the k clusters,

where each record of a cluster contains 5 values, M1,

M2, R1, R2 and R3
4: if a job has completed PFM of its map tasks then
5: M1= CalculateWeightsMapTasks
6: M2=1-M1
7: end if
8: if a job has completed PFR of its reduce tasks then
9: < R1, R2 >= CalculateWeightsReduceTasks

10: R3=1-R1-R2
11: end if
12: slowTasks= FindSlowTasks
13: run backup tasks for slowTasks
14: if a job has finished then
15: run k-means algorithm to re-classify historical informa-

tion into k clusters

16: end if

In statistics and data mining, k-means [25] [26] clustering

is a method of cluster analysis. The main purpose of k-means

clustering is to partition a set of entities into different clusters

in which each observation belongs to a cluster with the nearest

mean value.

In our k-means algorithm, ESAMR first assigns random

values for the centroids (i.e., mean values) of k groups.

Second, ESAMR assigns each entity to a cluster that has the

closest centroid. Third, ESAMR recalculates the centroids and

repeats the second and third steps until entities can no longer

change groups.

Algorithm 2 CalculateWeightsMapTasks

1: if a node has finished map tasks for the job then
2: calculate tempM1 based on the job’s map tasks com-

pleted on the node

3: M1=randomly chosen first stage weight M1 from the

corresponding node’s history
4: beta=abs(tempM1-M1)

5: for each M1[i] ∈ the node′s history, i=1,2,...,k do
6: if abs(M1[i]-tempM1)<beta then
7: M1=M1[i]
8: beta=abs(tempM1-M1)

9: end if
10: end for
11: return M1
12: else
13: M1=

k∑
i=1

M1[i]/k

14: return M1
15: end if

Algorithm 3 CalculateWeightsReduceTasks

1: if a node has finished reduce tasks for the job then
2: calculate tempR1 based on the job’s reduce tasks

completed on the node

3: calculate tempR2 based on the job’s reduce tasks

completed on the node

4: < R1, R2 >=a randomly chosen R1 and R2 pair from

the node’s history
5: beta = abs(tempR1−R1) + abs(tempR2−R2)
6: for each R1[i] and R2[i] pair in the node’s history,

i=1,2,..,k do
7: if abs(tempR1-R1[i])+abs(tempR2-R2[i])<beta

then
8: R1=R1[i]
9: R2=R2[i]

10: beta=abs(tempR1-R1)+abs(tempR2-R2)

11: end if
12: end for
13: return< R1, R2 >
14: else
15: R1=

k∑
i=1

R1[i]/k

16: R2=
k∑

i=1

R2[i]/k

17: return< R1, R2 >
18: end if

Each worker node runs k-means algorithm to classify

the historical information stored on the node. No additional

communication between nodes is needed when reading and

updating historical information. According to our experiments,

the running time of the k-means algorithm is around 80

151151151

A
Highlight

milliseconds on a node. Since it only runs once upon the

completion of a MapReduce job, we think it adds a negligible

overhead to ESAMR algorithm. Algorithm 6 gives the pseudo

code of the k-means algorithm used in ESAMR.

Algorithm 4 FindSlowTasks

1: STT (Slow Task Threshold), a variable for selecting slow

tasks

2: set SlowTasks //a temp list to save all slow tasks

3: for each job that has completed PFM (or PFR) of its

map (or reduce) tasks do
4: for each running task i of the job do
5: PSi=CalculateProgressScore
6: PRi=PSi/Tri, where Tri is the time that has been

used by the task

7: TTEi= (1-PSi)/PRi

8: end for
9: ATTE=

N∑
i=1

TTEi/N, where N is the total number of

running tasks of the job

10: for each running task i of the job do
11: if TTEi-ATTE > ATTE * STT then
12: slowTasks.add(ith task)

13: end if
14: end for
15: end for
16: return SlowTasks

Algorithm 5 CalculateProgressScore

1: SubPS=Nf /Na, where Nf is the number of key/value

pairs which have been processed in a phase of a task and

Na is the total number of key/value pairs that need to be

processed in a phase of the task

2: if the task is a map task then
3: if the map task is at the first phase then
4: PS = M1 * SubPS
5: else
6: PS = M1+M2 * SubPS
7: end if
8: end if
9: if the task is a reduce task then

10: if the reduce task is at the first phase then
11: PS = R1 * SubPS
12: else if the reduce task is at the second phase then
13: PS = R1+R2 * SubPS
14: else
15: PS = R1+R2+R3 * SubPS
16: end if
17: end if
18: return PS

Algorithm 6 K-means

Require: E=e1,e2,...,en (set of entities to be clustered)

1: k (number of clusters)

2: MaxIters (Maximum number of iterations)

3:

Ensure: C = {c1,c2,...,ck} (set of cluster centroids)

4: L = {l(e)|e = 1, 2, ..., n} (set of cluster labels of E)

5:

6: for i = 1 to k do
7: ci=ej (randomly select an ej from E)

8: end for
9: for ei ∈ E do

10: l(ei) = argminDistance(ei, cj), j ∈ {1...k}// find the

cluster j whose center is nearest to an entity

11: end for
12: iter = 0

13: repeat
14: for ci ∈ C do
15: ci= avg(ek), for all l(ek) = i
16: end for
17: changed = false
18: for ei ∈ E do
19: clusterID= argminDistance(ei, cj), j ∈ {1...k}
20: if clusterID �= l(ei) then
21: l(ei) = clusterID
22: changed = true
23: end if
24: end for
25: iter++

26: until changed = false or iter > MaxIters

IV. EVALUATION

To evaluate our ESAMR algorithm, we compare it with

the other two existing algorithms designed to work in hetero-

geneous environments: SAMR and LATE algorithms. Since

in [22] Chen et al. have shown that SAMR is advantageous

than Hadoop default scheduler, we only compare ESAMR

with SAMR and skip the comparison with Hadoop default

scheduler. We modified Hadoop-0.21 and integrated each one

of the aforementioned three re-execution algorithms into it. We

run WordCount and Sort jobs, which are classic examples of

Hadoop applications, to evaluate the algorithms’ performance.

Three metrics: weight estimation error, TimeToEnd estima-

tion error, and identified slow tasks, are used for evaluation.

We run experiments in a cluster of 1 master node and 5

worker nodes that are configured as a rack. Table I lists the

cluster hardware environment and configuration. For ESAMR

algorithm, we set its parameters as follows: PFM at 20%, PFR

at 20%, k at 10, and STT at 40%. The same PFM, PFR,

and STT parameter values are used for SAMR and LATE

algorithms. In addition, we have carefully tuned SAMR and

LATE algorithms. For instance, HISTORY PRO(HP) is an

important parameter for SAMR [22]. We set HP at 0.2 since

that value has been shown by experiments to achieve the best

performance [22] for SAMR.

152152152

A
Highlight

TABLE I
EVALUATION ENVIRONMENT

Nodes Quantity Hardware and Hadoop Configuration
Master node 1 2 single-core 2.2GHz Optron-64 CPUs,

6GB RAM, 1Gbps Ethernet

Type-A worker nodes 3 2 single-core 2.2GHz Optron-64 CPUs,
4GB RAM, 1Gbps Ethernet,

2 map and 1 reduce slots per node

Type-B worker nodes 2 2 single-core 2.3GHz Optron-64 CPUs,
2GB RAM, 100Mbps Ethernet,

2 map and 1 reduce slots per node

To verify the correctness of estimation, we list the stage

weights estimated by ESAMR and the actual weights col-

lected from the system in Table II. Because M1+M2=1 and

R1+R2+R3=1, we only list M1, R1 and R3 to show the result.

From Table II, we see that weights estimated by ESAMR are

not far from the real weights. However, all stage weights are

far from the constant weights (1, 0, 1/3, 1/3, 1/3) used in LATE

algorithm. Comparing data in Tables II and III, we conclude

that the weight estimation errors of SAMR are bigger than

those of ESAMR.

TABLE II
WEIGHTS ESTIMATED BY ESAMR VS REAL WEIGHTS OF A WORDCOUNT

10GB JOB

Node Name M1 R1 R3
Node 1 0.7261/0.7198 0.1926/0.1901 0.8062/0.8078
Node 2 0.7633/0.7502 0.1917/0.1899 0.8072/0.8090
Node 3 0.6200/0.6109 0.2060/0.2079 0.7920/0.7814
Node 4 0.2142/0.2078 0.3647/0.3699 0.6327/0.6284
Node 5 0.2062/0.2012 0.3954/0.3894 0.6028/0.6012

TABLE III
WEIGHTS ESTIMATED BY SAMR VS REAL WEIGHTS OF A WORDCOUNT

10GB JOB

Node Name M1 R1 R3
Node 1 0.9563/0.7902 0.5717/0.2247 0.4248/0.7747
Node 2 0.2942/0.8074 0.5839/0.2332 0.4116/0.7661
Node 3 0.9487/0.7836 0.5683/0.1794 0.4276/0.8197
Node 4 0.8241/0.5922 0.4990/0.3395 0.4513/0.5549
Node 5 0.8164/0.4071 0.6949/0.2960 0.2916/0.6948

Next, we compare the TimeToEnd estimation error of the

three algorithms. Figures 3 and 4 show the TimeToEnd esti-

mation error of map and reduce tasks by ESAMR, SAMR, and

LATE on a WordCount 10GB job. The job has 100 map tasks.

For convenience, we chose the first 20 map tasks to show the

performance, since 20 map tasks are enough to illustrate the

difference. There are 20 reduce tasks in the job. We use all

20 reduce tasks to show the algorithm performance. Figures 3

and 4 illustrate the effectiveness of ESAMR. Among the three

algorithms, ESAMR always leads to the smallest prediction

error. With ESAMR, the differences between estimated and

actual TimeToEnd of map and reduce tasks average at 4 and 5

seconds respectively. With SAMR, the differences average at

38 and 27 seconds respectively and with LATE, the average

differences are 64 and 129 seconds respectively.

Fig. 3. Map task TimeToEnd estimation error (WordCount 10GB)

Fig. 4. Reduce task TimeToEnd estimation error (WordCount 10GB)

Figures 5 and 6 show the TimeToEnd estimation error of

map and reduce tasks by ESAMR, SAMR and LATE on a Sort

10GB job. From these figures, we can see that ESAMR still

has the smallest error, but initially (i.e., for the first 7 tasks)

LATE has a better performance than SAMR. The reason is that

the default stage weights used by LATE are closer to the real

weights than those used by SAMR which are still based on the

historical data collected from running the previous WordCount

job. As SAMR begins to use historical information from

running the Sort job to adjust the stage weights, it performs

better than LATE for the second half of the experiment (i.e.,

from the
8th to the 20th tasks). With ESAMR, the differences

between estimated and actual TimeToEnd of map and reduce

tasks average at 0.77 and 3 seconds respectively. With SAMR,

the average differences are 14 and 83 seconds respectively and

with LATE, the average differences are 27 and 139 seconds

respectively.

Figure 7 shows the map task execution time estimated by

ESAMR, SAMR and LATE vs. the real execution time. From

the figure, we can see that ESAMR considers the 8th and 9th

map tasks as the slow tasks. SAMR chooses the 10th map task

and LATE chooses the 1st map task as the slow task. Based on

153153153

Fig. 5. Map task TimeToEnd estimation error (Sort 10GB)

Fig. 6. Reduce task TimeToEnd estimation error (Sort 10GB)

the real execution time, we know the slow tasks are actually

the 8th and 9th map tasks. Only ESAMR has identified the

slow tasks correctly.

Figure 8 shows the reduce task execution time estimated

by ESAMR, SAMR and LATE vs. the real execution time.

ESAMR estimates the 1st reduce task as the slow task, while

SAMR chooses the 8th reduce task and LATE chooses the

8th and 9th reduce tasks. The slow reduce task is actually the

1st task. ESAMR is the only algorithm that has identified the

slow reduce task correctly.

V. CONCLUSION

To overcome the limitations of existing MapReduce re-

execution mechanisms, in this paper we develop ESAMR:

an Enhanced Self-Adaptive MapReduce scheduling algorithm,

which uses k-means clustering algorithm to classify historical

information into k clusters and thus generates more accurate

estimation of task’s stage weights to correctly identify slow

tasks and re-execute them. Experimental results have shown

the effectiveness of ESAMR.

Fig. 7. Real and estimated map task execution time of a WordCount 10GB
job

Fig. 8. Real and estimated reduce task execution time of a WordCount 10GB
job

ACKNOWLEDGEMENTS

The authors acknowledge support from NSF award

1018467. This work was completed utilizing the Holland

Computing Center of the University of Nebraska.

REFERENCES

[1] P. Dubey, “A platform 2015 workload model recognition, mining and
synthesis moves computers to the era of tera,” White paper, Intel
Corporation, 2008.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, January 2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proceedings of the 21st
ACM SIGOPS symposium on Operating systems principles, SOSP ’07,
(New York, NY, USA), pp. 205–220, ACM, 2007.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume
7, OSDI ’06, (Berkeley, CA, USA), pp. 15–15, USENIX Association,
2006.

154154154

[5] P. R. Elespuru, S. Shakya, and S. Mishra, “Mapreduce system over
heterogeneous mobile devices,” in Proceedings of the 7th IFIP WG
10.2 International Workshop on Software Technologies for Embedded
and Ubiquitous Systems, SEUS ’09, (Berlin, Heidelberg), pp. 168–179,
Springer-Verlag, 2009.

[6] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos, “Support-
ing mapreduce on large-scale asymmetric multi-core clusters,” SIGOPS
Oper. Syst. Rev., vol. 43, pp. 25–34, April 2009.

[7] M. de Kruijf and K. Sankaralingam, “MapReduce for the Cell B.E.
Architecture,” Tech. Rep. TR1625, Department of Computer Sciences,
The University of Wisconsin-Madison, Madison, WI, 2007.

[8] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
mapreduce framework on graphics processors,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, PACT ’08, (New York, NY, USA), pp. 260–269, ACM, 2008.

[9] M. C. Schatz, “Cloudburst: highly sensitive read mapping with mapre-
duce,” Bioinformatics, vol. 25, no. 11, pp. 1363–1369, 2009.

[10] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng, “Spatial queries
evaluation with mapreduce,” in Proceedings of the 8th International
Conference on Grid and Cooperative Computing, GCC ’09, (Washing-
ton, DC, USA), pp. 287–292, IEEE Computer Society, 2009.

[11] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user mapreduce clusters,” Tech.
Rep. UCB/EECS-2009-55, EECS Department, University of California,
Berkeley, Apr 2009.

[12] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic mapreduce scheduler
for heterogeneous workloads,” in Proceedings of the 8th International
Conference on Grid and Cooperative Computing, GCC ’09, (Washing-
ton, DC, USA), pp. 218–224, IEEE Computer Society, 2009.

[13] C. Jin and R. Buyya, “Mapreduce programming model for .net-based
cloud computing,” in Proceedings of the 15th International Euro-Par
Conference on Parallel Processing, Euro-Par ’09, (Berlin, Heidelberg),
pp. 417–428, Springer-Verlag, 2009.

[14] “Hadoop.” http://hadoop.apache.org.
[15] “Apache hadoop.” http://en.wikipedia.org/wiki/Apache Hadoop.
[16] “Yahoo hadoop tutorial.” http://public.yahoo.com/gogate/

hadoop-tutorial/starttutorial.html.
[17] S. Manoharan, “Effect of task duplication on the assignment of depen-

dency graphs,” Parallel Comput., vol. 27, pp. 257–268, February 2001.
[18] “Hbase.” http://hbase.apache.org/book/book.html.
[19] G. Barish, “Speculative plan execution for information agents,” tech.

rep., University of Southern California, 2003.
[20] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous

computing systems,” in Proceedings of the 6th Heterogeneous Com-
puting Workshop, HCW ’97, (Washington, DC, USA), pp. 135–, IEEE
Computer Society, 1997.

[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, (Berkeley, CA, USA), pp. 29–42,
USENIX Association, 2008.

[22] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “Samr: A self-
adaptive mapreduce scheduling algorithm in heterogeneous environ-
ment,” in Proceedings of the 10th IEEE International Conference on
Computer and Information Technology, CIT ’10, (Washington, DC,
USA), pp. 2736–2743, IEEE Computer Society, 2010.

[23] R. Nanduri, N. Maheshwari, A. Reddyraja, and V. Varma, “Job aware
scheduling algorithm for mapreduce framework,” in Proceedings of
the 3rd International Conference on Cloud Computing Technology and
Science, CLOUDCOM ’11, (Washington, DC, USA), pp. 724–729, IEEE
Computer Society, 2011.

[24] “Hdfs.” http://hadoop.apache.org/common/docs/current/hdfsdesign.html.
[25] “K-means.” http://en.wikipedia.org/wiki/K-means clustering.
[26] G. Hamerly and C. Elkan, “Alternatives to the k-means algorithm

that find better clusterings,” in Proceedings of the 11th international
conference on Information and knowledge management, CIKM ’02,
(New York, NY, USA), pp. 600–607, ACM, 2002.

155155155

