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Abstract—Perceiving the surroundings accurately and quickly
is one of the most essential and challenging tasks for autonomous
systems such as self-driving cars. The most common sensing
systems such as RADAR and LIDAR that are used for perception
on self-driving cars today give a full 360◦ view to the car
making it more informed about the environment than a human
driver. This article presents a methodology to employ two 360◦

cameras to perceive obstacles all around the autonomous vehicle
using stereo vision. Using vertical, rather than horizontal, camera
displacement allows the computation of depth information in all
viewing directions, except zenith and nadir which have the least
useful information about the obstacles. The Key idea for obstacle
detection is to classify points in the 3D space based on height,
width and traversable slope relative to the neighbouring points.
The detected obstacle points can be mapped onto convenient
projection planes for motion planning.

I. INTRODUCTION

Computer vision is one of the toughest problems in Artificial
Intelligence (AI) that has been challenging researchers and
engineers for decades. This problem of extracting useful infor-
mation from images and videos finds application in a variety
of fields such as robotics, remote sensing, virtual reality,
industrial automation, etc. The concept of making cars drive
by themselves has gained immense popularity today in the
AI world, mainly motivated by the number of accidents that
occur due to driver errors/ negligence. Autonomous vehicles
are designed to sense their surroundings with techniques such
as RADAR, LIDAR, GPS and computer vision. This array
of sensors working coherently to observe and record the
surroundings constitute the perception module of the vehicle.
The next stage in the pipeline is the localization step which
stitches together the incomplete and disconnected information
obtained from the sensors to identify the position, velocity
and other states of the vehicle and the obstacles (including
dynamic obstacles). The final module is the planning stage
where the vehicle has to decide what it has to do given the
situation it is in. The present day research prototypes built
by major players in the industry/ academia have LIDAR and
RADAR as their primary perception systems. They generally
provide a very accurate full 360◦ view to the vehicle making
it more informed about the environment than a normal human
driver. The downside to these systems is the cost involved in
deploying them. So an option is to use cameras and computer
vision techniques to substitute these systems.

It has been shown in several cases that stereoscopic vision
can be applied to extract useful information about the sur-
roundings that could assist the navigation of mobile robots
[1], [2], [3]. But in most cases the field of view is limited to
just the front of the robot. It is very critical that the vision
system we are targeting doesn’t compromise on obtaining the
360◦ view provided by LIDAR / RADAR systems. This can
be achieved by employing special cameras that capture 360◦

by 180◦ image of a scene.

II. RELATED WORK

It is very essential for an autonomous vehicle to accu-
rately and reliably perceive and discriminate obstacles in
the environment. To this end, many approaches have been
presented for different application areas and scenarios in past
years using stereo vision or 2D/3D sensor technologies. Each
obstacle detection system is focused on a specific tessellation
or clustering strategy, hence they have been categorized into 4
main models [4]: (i) probabilistic occupancy map, (ii) digital
elevation map, (iii) scene flow segmentation and (iv) geometry-
based clusters.

In probabilistic occupancy maps, the world is represented
as a rigid grid of cells containing a random variable whose
outcome can be free, occupied, or undefined (not mapped)
[5], [6]. The goal here is to compute the associated joint
distribution depending on a set of measurements carried out on
a certain discrete set of time moments. Digital elevation maps
(DEM) is one of the algorithms that try to detect obstacles
relying on the fact that they protrude up from a dominant
ground surface. The obstacle detection algorithm proposed in
[7] marks DEM cells as road or obstacles, using the density of
3D points as a criterion. It also involves fitting a surface model
to the road surface. The scene flow segmentation or otherwise
called as optical flow utilizes temporal correlation between
different frames of a scene captured by stereo cameras to
classify obstacles that are in motion [8], [9], [10]. This method
thus naturally handles tracking dynamic obstacles. Finally
the geometry-based clustering involves classification based
on geometric structure of point clouds in the 3D space. The
obstacle detection algorithm that will best suit this category
is [11] which is based on a search method that clusters
points using a double cone model. This algorithm became
the basis for the obstacle detection module that went on the



intercontinental autonomous driving efforts by [12]. The real
time performance of this approach is thoroughly evaluated in
[13] and they were able to achieve a 10 Hz update rate with
this approach.

The approach we present in this report is inspired by the
method in [11]. Given our objective of obtaining a 360◦

view, we present a few modifications to this algorithm that
will use 360◦ stereo pair to obtain obstacle information. The
remainder of this report is structured as follows. Section 3
talks about the equipment setup that would best suit for
this application. Section 4 describes the disparity and depth
estimation technique used. Section 5 talks about the pixel-level
implementation details of the obstacle detection algorithm.
Section 6 discusses the experimental results on a few test
scenes. Section 7 outlines possible next steps from this project.

III. EQUIPMENT SET UP

A pair of cameras are required to implement stereo vision.
Since the application of this work is to replace existing
LIDAR-based perception systems, the system developed in
this work needs to detect obstacles all around the vehicle. Two
Ricoh Theta1 cameras were used to capture 360◦ by 180◦

spherical panoramas. The Ricoh Theta camera comprises of
two opposite-facing 185◦ fish-eye lens and sensors. The two
images are stitched by the Ricoh application to form a 360◦

by 180◦ spherical image.

The two cameras were displaced vertically as this would
result in loss of information directly above and below the
cameras, which are areas, not of interest to us. For the
purposes of this work, the camera was mounted on a tripod
at one position to capture the first image. A spirit level was
used to ensure that the camera was horizontal. The camera
was then vertically displaced through a known height on the
tripod to the second position to capture the second image.

Fig. 1: Vertically displaced Ricoh Theta cameras mounted on
a vehicle

IV. DEPTH MAP ESTIMATION

A. Image pair capture

The spherical images captured by the ricoh cameras are
in equirectangular format i.e. they are uniformly smapled in
azimuth and altitude angles. The azimuth variation is from −π

1https://theta360.com/en/

to π along the x-axis of the image and the altitude variation is
from −π/2 to π/2 along the y-axis of the image. The images
are of resolution 2048× 1024 pixels.

Fig. 2: Image of the scene from the lower camera. It’s a 360◦

by 180◦ spherical image in equirectangular format

B. Disparity estimation

The disparity for the spherical image pair is the change
in the altitude angle ∆θ between the two images, since the
cameras are displaced vertically. There are several techniques
to estimate disparity values such as those outlined in [14],
[15], [16]. The procedure adopted in this work involves
estimating the optical flow of each point. The optical flow
estimation is done using the optical flow software2 developed
by [17]. As the cameras are vertically displaced, the optical
flow is in the vertical direction. The optical flow at every
pixel gives us the disparity value in number of pixels, at that
pixel.

To speed up the disparity estimation step, the original
image is down-sampled to 1022 × 512 pixels. To further
speed up the computation, the top and bottom portions of
the image which don’t contain important information for
the vehicle are chopped out. An altitude range of −30◦

to 30◦ is considered for the process. The resolution of the
image so obtained is 1023× 171 pixels. The image is further
down-sampled to 767 × 129 pixels, on which the rest of the
algorithm is run. The black and white image of the obstacle
map obtained as the output of the obstacle detection algorithm
is then up-sampled to 1023× 171 pixels.

Fig. 3: Chopped and down sampled original lower image. The
image is of resolution 767 by 129 pixels with an altitude range
of −30◦ to 30◦.

2http://cs.brown.edu/ black/code.html

https://theta360.com/en/
http://cs.brown.edu/~black/code.html


Fig. 4: Disparity map generated from optical flow estimation.
Brighter pixels correspond to greater disparity and so smaller
depth. We observe uniform gradient of disparity along the
ground plane, in the bottom half of the image.

C. Depth estimation

The next step is to determine the depth map. This is
achieved through some basic geometry and trigonometric
transformations applied to the disparity map.

l

sin∆θ
=

PA

sin(π2 + θ1)
(1)

where l is the baseline distance, ∆θ is the disparity value,
θ1 is the altitude angle of the point with respect to the upper
camera center and PA is the distance from the point to the
upper camera center. The depth is then calculated as

depth =

√
PA2 + (

l

2
)2 − 2 · PA · l

2
· cos(π

2
+ θ1) (2)

Using the above formulae, the depth value for every pixel
can be calculated from the corresponding disparity value.

Fig. 5: Depth map generated from the disparity map. Darker
pixels correspond to smaller depth.

V. OBSTACLE DETECTION

Geometry-based clustering technique has been proposed to
detect obstacles in the scene. Before we dive into the obstacle
detection algorithm, we need to come up with a definition
for an obstacle. It is important to understand and visualize
obstacles in the 3D space. Let us consider the most general
case of obstacles found above a ground plane and focus our
analysis on this case. We later discuss some of the other
possibilities of obstacles or spaces in a scene that need to be
avoided by a vehicle. Thus, obstacles are points or areas in
the scene which are at a height from the dominant ground
plane.

Mathematically, we will define obstacles in terms of
two distinct points in space in the following way:
Two points P1 and P2 belong to the same obstacle and are
said to be compatible if

1) HT < |P2Z − P1Z | < Hmax. The difference between
the elevations of the two points is within a range defined
by HT and Hmax.

2) ((P2−P1) · (P3−P1)/||P2−P1||||P3−P1||) > cosθT .
The point P3 is obtained by displacing P1 through Hmax

in the z direction. This condition enforces that the angle
between P2 and P1 with respect to the z direction or
elevation direction is less than a threshold value.

In the above definition, HT is the minimum height of
an object for it to be considered an obstacle. Hmax is the
maximum height of on obstacle. The value of θT can be set
based on the accepted traversable slope to classify obstacles
appropriately.

The definition is illustrated in Figure 6. We construct
an upward cone from P1 in the 3D space based on the values
chosen for the three parameters HT , Hmax and θT . If any
of the points in the scene lie in the frustum as shown, those
points are classified as obstacle points.

Fig. 6: Cone formed in the 3D space with P1 at the center.
The point P2, if lies within the frustum formed by HT , Hmax

and θT , is classified as an obstacle point. (Source: [11])

From the depth map generated before, we have information
about the depth of all the pixels. All the points or pixels are
now 3D points in Azimuth-Altitude-Depth space. The points
are transformed from the Azimuth-Altitude-Depth space to
the X-Y-Z space.

A naive algorithm would involve examining all point
pairs which would have a complexity of O(N2). The
algorithm proposed is more efficient and compares a point
with a limited set of points. These set of points are the points
contained within the trapezium formed by the projection of
the frustum or cone formed above the point (referred to as
base point from here on) in the 3D space, onto the image
plane. The projected trapezium is scaled according to depth
of the base point. The parameters of the trapezium are

hT =
H

π
· HT

depth
(3)

where H is the height of the image and depth is the depth of
the base point. The first term H

π is a scaling factor to transform



the height to the altitude angle and thus, the number of pixels.
Similarly,

hmax =
H

π
· Hmax

depth
(4)

Here, hT is height of the closer parallel side of the trapezium
from the base point and hmax is height of the farther
parallel side from the base point. The upper left angle of the
trapezium is same as θT , the threshold angle chosen for the
compatibility definition earlier.

We loop through all the points in the trapezium and
form a point pair for each point with the base point. If
the pair of points satisy the definition of obstacles i.e. are
compatible, then we classify that point in the trapezium as an
obstacle point. This algorithm has a better time complexity
than the Naive alogrithm. Let K denote the average number
of points in the trapezium. The complexity is O(KN).

Algorithm:

• Classify all points as non-obstacles.
• Scan through all the pixels, P , in the image.

– Determine the set of pixels, TP , in the projected
trapezium of P on the 2D image plane.

– Examine all points in TP and determine set OP of
points Pi in TP , compatible with P .

– If OP is not empty, classify all points of OP as
obstacle points.

Fig. 7: Black and white image of the Obstacle map. The white
pixels correspond to obstacle points.

A. Post-processing

Due to the lack of texture on the ground, we get fewer
feature points in those regions and so the estimated disparity
values are inaccurate. The disparity gradient is discontinuous
in those regions on the ground, resulting in noise in the
output. Median filtering and morphological closing operation
are applied to the output of the obstacle detection algorithm
to close the small holes.

Fig. 8: Black and white image of the Obstacle map after post-
processing. The small holes in Figure 7 are filled.

Fig. 9: Original lower image with obstacles overlaid on it. The
pixels in yellow correspond to obstacles.

B. Polar Map

The primary application of this work is to detect obstacles so
as to plan the motion of the vehicle. It is important to represent
the obstacle points in a manner that might be useful for motion
planning. A polar map representation of the obstacle points
is chosen. The polar map is generated by projecting the 3D
obstacle points onto the ground plane. In figure 10, the vehicle
is at the center of the circle facing 0◦. The obstacle points
are depicted in blue with the radius of the circle indicating
the depth from the vehicle. The small patch at 0◦, close to
the center corresponds to the white sign board in the scene in
figure 3 and the patch at 30◦ corresponds to the black platform.
The buildings and trees can be seen further away in the map.
From the polar map, we can plan a path for the vehicle, not
obstructed by obstacles.
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Fig. 10: The agent is at the center of the map, facing 0◦. The
blue points correspond to polar positions of the obstacle points
around the agent.

VI. RESULTS

Figure 11 depcits a scene which has a good mix of
obstacles at short range and long range. The algorithm detects
all the obstacles in scene. The process was tested on various
outdoor settings and gave positive results in all the cases. In
figure 13, we can observe that the polar map representation
accurately captures the cars parked next to each other at
angles 315◦ to 35◦. Also, in figure 13, we notice small
erroneous detection at 90◦ on the ground. This is due to the
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Fig. 11: Scene 1: (a) lower image; (b) depth map; (c) black and
white image of obstacle map; (d) lower image with obstacles
overlaid; (e) polar map representation of obstacles

lack of texture on the ground, which results in inaccurate
disparity estimation. Thus, the obstacle detection algorithm
classifies it as an obstacle point. The accuracy of the obstacle
detection is limited by the accuracy of disparity estimation
techniques. The programs were developed in MATLAB3. The
average runtime of disparity estimation is 125s and that of
obstacle detection is 240s.

It was mentioned earlier that obstacles above the ground were
being considered for this work. But the process developed

3http://www.mathworks.com/products/matlab/
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Fig. 12: Scene 2: (a) lower image; (b) depth map; (c) black and
white image of obstacle map; (d) lower image with obstacles
overlaid; (e) polar map representation of obstacles

also works for potholes in the ground. When a point inside
the hole is picked, the cone/frustum in the 3D space will
contain points on the ground around the pothole. These points
will be classified as obstacles which implies that these points
will be avoided in the path planning process. Potholes are
areas that need to be avoided and the algorithm does exactly
that.

VII. FUTURE WORK

We have showed the working of an algorithm to detect
obstacles. But the challenge always lies in running it real-time
on the vehicle with a quick update rate so as to react quickly

http://www.mathworks.com/products/matlab/
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Fig. 13: Scene 3: (a) lower image; (b) depth map; (c) black and
white image of obstacle map; (d) lower image with obstacles
overlaid; (e) polar map representation of obstacles

to changes in the environment. The first among our future
steps should be optimizing the run time of this algorithm and
possibly explore efficient platforms and parallel architecture
if required to run it online. There are other quick depth-
estimation algorithms [18], [16] in the literature that are more
suitable for real time applications at the cost of reduced
accuracy. So a sensible trade off has to be made on the choice
of the depth estimation algorithm.

The obstacle detection algorithm is found to be decently
robust in detecting obstacles sticking out of the ground. But it
does not particularly consider holes or cliffs. Given the depth

map and 3D location of points in view, it is easy to build a few
more features in the pipeline to seamlessly handle these kinds
of obstacles as well. For example, we could classify the road
based on the fact that it has a steady gradient in depth value
and plan a path for the vehicle only along the definite road, if
exists, to avoid falling off cliffs. And of course, besides just
obstacles, the vision system should also detect lane markings,
sign boards, bicyclists’ hand signals, etc to complete the whole
perception package of the vehicle.
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APPENDIX

The work split up among the authors is as follows:
• Naveen: Data collection, disparity estimation, depth cal-

culation, obstacle detection algorithm development and
implementation, poster and report.

• Nitin: Data collection, disparity estimation, obstacle de-
tection algorithm development and implementation, post-
processing, poster and report.
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