Natural Image Colorization

Abstract

In this paper, we present an interactive systemufars to easily colorize the natural
images of complex scenes. In our system, colodagbrocedure is explicitly separated
into two stages: Color labeling and Color mappiRixels that should roughly share
similar colors are grouped into coherent regionthecolor labeling stage, and the color
mapping stage is then introduced to further fingetthe colors in each coherent region.
To handle textures commonly seen in natural imagespropose a new color labeling
scheme that groups not only neighboring pixels wgithilar intensity but also remote
pixels with similar texture. Motivated by the inBiginto the complementary nature
possessed by the highly contrastive locations &edstooth locations, we employ a
smoothness map to guide the incorporation of inyeentinuity and texture-similarity
constraints in the design of our labeling algoritiiithin each coherent region obtained
from the color labeling stage, the color mappingpglied to generate vivid colorization
effect by assigning colors to a few pixels in tagion. A set of intuitive interface tools is
designed for labeling, coloring and modifying tresult. We demonstrate compelling
results of colorizing natural images using our eystwith only a modest amount of user
input.

1. Introduction

Colorization is the process of coloring monochramages. It has been widely used in
photo processing and scientific illustration. Ttawhally, colorization process is tedious,

time consuming and requires artistic skills to pely add the appropriate colors to the



image. In recent years, several interactive cadion techniquesVWWAMO02, LLWO04,
ICOLO5HTC_05HKO05,YS06QWHO06KV06] have been proposed to effectively

colorize images with significantly reduced amouintiger efforts.

These techniques colorize the image based on #rwsusput examples, which can be
given in form of a similar colored imag&/[AM02, TJT05 ICOLO5] or manually marked
strokes in the input image&llW04,HTC_ 05YS06, QWH06KVO06]. The task in image
colorization is in specifying which parts of theage should be colorized by what colors.
The method by Levin et alLLWO04], for instance, uses strokes to indicate colors of
certain pixels and colorizes the image using amopation based on intensity continuity
constraints where adjacent pixels with similar msiey have similar colors. However, it
may still require a very large number of strokeathieve high quality colorization of
images with complex textures, as shown in Figl(®. Moreover, selecting colors for

more than a hundred strokes is no simple task.

The colorization problem is closely related to imagegmentation since it aims to
propagate user-specified colors (e.g., with strakesxample segments) to nearby image
regions. Colorization techniques assume, expliatlymplicitly, that image segments can
be well defined as coherent segments in intengiacs [LW04,HTC 05HKO05,YS06,
KV06], or in texture spacelQOL05QWHO06. The interactive Manga colorization
technique QWHO€], for example, groups uniform pattern regions iatemall number of
distinctive clusters before colorization. While Bupatterncontinuity constraints work
well for Manga cartoons, they are not effective fatural images with rich and

inhomogeneous texture distributions.

In this paper, we present an interactive colormagystem that requires modest amounts
of user interactions for natural image colorizati@olorization is explicitly divided into
two steps in our system, Color Labeling and Colgoplag. Instead of assgining colors

directly to the image using strokes, users firgibbte to group regions that would



roughly share similar colors in the color labelistep, without worrying about the
specific color for each local region. Then the cahapping step is applied in each

labeled region to create vivid colorization effect.

In the color labeling step, we designed a new Iagedcheme to handle texture regions
commonly seen in the natural images, in which naiy aearby pixels with similar

intensities but also remote pixels with similarttar features should share similar colors.
This new framework makes it possible to segmenirahimages into coherent regions

with a small number of strokes specified by tha.use

In the color mapping step, colorization with ricblar variation can be obtained using
only a few color pixels assigned in the labeledaegWe provide the user with realtime
feedback so that he can simply select appropri@Etesor create colorization of a variety

of different styles.

Overview of our system An example of our system is shown in Fig@&Vith only
several strokes in (a), we obtain a color labelimgb) where coherent regions (sky,
house, grasses, and flowers) are segmented. Bifyspgcolors for a couple of points in

each coherent region, we get the colorized imade)in

The user starts by scribbling distinctive colordBsbon the regions of interest. For
example, when scribbling a couple of strokes on tlewers, the user says something
like “I'd like to colorize the flower field similato these two flowers". The yellow color
labels associated with these two strokes are iNefgt propagated across the whole
image. Our energy optimization propagates colorlglo intensity-continuous and
texture-similar regions that may be far apart amtahnected. This labeling scheme

reduces a large amount of interaction in scribbiiregstrokes.

Once the regions are labeled with colors, we usiengle color mapping scheme for rich

colorization. For each coherent region in the image choose a few pixels that have



significantly different luminance values and assigiors to them. Their luminance (Y)
values define a piecewise linear mapping that campiplied to corresponding chroma
channels (U,V) to effectively colorize rich textdreegions. This process of specifying a
few color pixels for those with high and low lumntz values is intuitive for the user.
This becomes a simpler task for the user to thihkabors for only a few pixels in a

coherent region (e.g., a flower field), without hmeyto worry about the whole image.

The colorized image now is ready for the user gpétt. The user may be unsatisfied
with some parts of the colorized image, possiblg tlu errors that occurred while we
labeling complex images. Whenever necessary, tbeeps of color labeling can be
refined by adding a few more strokes, and by camstrg the optimization in a much
smaller search range. We have designed two inguitil tools to help with this

refinement task.




Figure 1. Levin’'s method. (a) Strokes on the image. (b) Sisollone. (c) Results using
[Levin et al.2004]. Hundreds of strokes are neefdedcolorizing a natural image with

texture regions like this.

Figure 2: Our colorization procedure: First, several strokéh pseudo colors are drawn
to group the regions that roughly share similapoilas shown in (a). Only six strokes
are drawn to label the image. Then, in each labglon, we fine-tune the color by
specifying colors for several pixels, as shownkh Only two pixels in each region are

chosen to assign colors in this example. (c) hal ftolorization effect.

Previous work To facilitate the colorization of images, a numloértechniques have
been recently proposedWAMO02, LLWO04, ICOL0O5, TJTO5 HTC_05 HKO5, YSO06,
QWHO06, KVO06]. One approach for colorization is based on leantechniques
[WAMOZ2]. The relation between the grey level image asdcdlored version is learned
from examplesRAGSO01TJTOY. Irony [ICOLO5] use a supervised learning technique to
better classify feature-space and a voting teclentquncrease the spatial consistency of

the colorized image. This technique assumes thatmalar example image is pre-



segmented. Otherwise, the task of segmenting tampbe image itself can be almost as

hard as colorizing the input image.

A new class of colorization techniques is user-gdidLLW04, HTC_05 YSO06
QWHO06 KVO06]. The user draws color strokes over the image, thedcolors diffuse
from the strokes outward across the image. Levial.efLLWO04] propagate the colors
from the strokes to the entire image by solvingnapse optimization problem, based on
the premise that neighboring pixels in image sphe¢ have similar (monochromatic)
intensity should also have similar colors. Yatziv a. [YS0g color pixels with a
weighted average of stroke colors, where the weiginé proportional to the geodesic
distance between the pixel and corresponding strbkese techniques assume that the

intensities are locally smooth, an assumptiondioas not hold for textured images.

Qu et al. DWHO0q introduce a method for colorizing Manga imagekeyl analyze the
texture space, and define an affinity to measustadces between a pixel and a stroke in
feature space. Then for a given stroke they evallevel set around it to associate a
spatially-coherent region with that scribble. Tleedl set is defined by considering the
affinity and the smoothness of the image. This négle is designed to deal with Manga
illustrations which can be successfully segmentéd iegions of homogeneous textures.
In a natural image the variety of textures is laayed the texture space cannot be clearly
clustered, thus there is no hope to successfuliinelean effective affinity and hence
define a good criterion to control the level sdteTtechnique we introduce in this paper
avoids defining a global affinity or a metric, brdather defines a color distribution
function by taking local decisions only. This all®wropagating through smoothly
varying textures. Figurd5 shows how our technique can successfully deal with

Kimono example fromQWHOg|.

Our work is also very much related to texture @usg and segmentation. Texture

clustering often uses features such as filter bgeks., VZ03]), random fields, and



wavelets. Texture clusters have been used for insagenentation in computer vision,
and texture patches have also been successfully imeefficient texture synthesis
[EL99] in computer graphics. Similar tQWHO06, we make use of texture clusters for

colorization.

2. Color Labeling

In our interface, a user scribbles a few strokeshenimage indicating which regions or
objects should be colored by what specific labébrso(as shown in Figurg(a)). This
high level user interaction does not need precipatisince our method is not sensitive to
where we draw strokes(shown in the video). Thedatiye of color labeling is to assign a
color label to every pixel in the image, given t{eeudo colors associated with user-

drawn strokes.

2.1. Energy Optimization Framework

Labeling of the natural image with texture regiassa challenging task. Existing
interactive image segmentation methods lik8TS04 would fail in handling texture
regions since only intensity distribution is corsigld (as shown in Figurgb)). To
address this problem, the textures should be etpliaken into the consideration. One
straightforward method is using the texture featasethe likelihood term in graphcut.
However, erroneous labels may be brought in, asvshia Figure3(c). These errors
essentially originate from the confusion amongusxtfeatures in different regions of the

image, which incurs a high risk of misclassificatio



(¢) graphcut using texture feature

Figure 3: Comparison with other segmentation methods. (a) 3tnekes (we tried

several sets of strokes, and these were the orthsthvd best segmentation results) (b)
The lazy snapping resulL$TS04(we segment two regions at a time). Notice the
repeated texture is not well handled. (c) The tassihg graphcut with texture feature as

likelihood. The spatial smooth term in graphcutreatrhandle severe misclassication.



Investigation of the problem leads us to the insigtio the complementary nature

inherently possessed by the highly contrastivetiona and the smooth locations.

1. The texture features at the highly contrastoations tend to be well clustered in the

feature space.

2. The smooth regions are characterized by therenobe between neighboring colors,

thus a pixel therein can be reliably colorized blase the intensity continuity.

Motivated by the observation above, we proposeva foemulation that integrates the
intensity continuity and the texture-similarity. fnoothness value identifying different
natures of locations is used to guide the incotpmreof the two constraints. We trust
more in the texture similarity term for highly ceedtive locations, while the intensity

continuity is considered as more reliable for srhdotations.




Figure 4: The smoothness map. (a) A gray image. (b) Edgeenfag(a) generated by
canny operator. (c) The smoothness map obtainegplying Gaussian filter with kernel

N(0,3) to the edge map shown in (b).

Specifically, we obtain the likelihood of every pixto be colored by each label color.
This color label likelihood function is denoted &¢C;p), where C=[C1,Cy,...,G\]"

represents all the label colors.

We introduce an energy optimization framework thatorporates both intensity

continuity and texture similarity constraints fdrthe pixels p in the image:

E= Y (MpEi+(1—Ap))Er), (1)

—

pEimg

where the textural termiE&and the spatial termqEre

Ey = Z u‘;,q |L(C; p) —L(C:q)|| (2)
qe(p)
E, = Z Whg ||IL(C: p) — L(C:q)|| (3)

under hard constrain: C{p)=[0,...,k,...0] , pestroke, where strokemeans strokes with

the color G.

To solve the above optimization, we need to defime weight mapl(p), textural

neighbord: (p) and spatial neighbof¥(p).



2.2. Smoothness Map: A(p).

There are many ways to estimate the smoothnessidérauspecific location. In our
method, we use the filtered edge map. At each pxéhe value ofl(p) is related to the
distance between p to its nearest edge. Specyfica#t use the Canny operator to extract
the edges of the image. We then apply a Gausstan \fiith kernel N(Gg?) on the edge
image to obtain a smoothed edge map. If p is nége®A(p) is large, otherwisg(p) is
small. In our implementation, theis set as a quarter of the patch size that we feged

texture space analysis, as shown in Figlre
2.3. Textural neighbors Q«(p) and wy,.

We regard the texture neighbors of a pixel p asdhmpxels that are similar to p in feature
space. The set of the texture neighbors is derast@dp). Before the user interaction, a
pre-processing of texture analysis is done to eluste patches collected in the image.

The calculations of th@«(p) andwy,, are based on these pre-computed clusters.

Texture Analysis. Since the value of(p) vanishes for pixels which are away from any
edge, the textural termiEan be ignored at these pixels to speed up thareeghalysis
process. Therefore, we collect only the texturelped whose centers are on the edges.
These patches are then clustered according todppearance. Sometimes patches with
similar appearance belong to regions that are apatpart. Inspired by the texture
analysis method inMBLSO01], we further cluster those texture patches witmilgir
appearance according to their spatial relationskijois, our texture clustering consists of

two levels: appearance clustering and spatial fudiering.

We first apply k-means clustering on all collectpdtches, using Sum of Squared
Distance (SSD) as the distance metric. More saphtsd clustering techniques like

expectation maximization (EM) have not shown sigaiit improvement in our



experiments. In general, the cluster number igraath larger than the number of color

labels to guarantee that the patches in one clasterery similar in appearance.

Figure 5: lllustration of spatial sub-clustering process. (@)l squares show all the
texture patches in one patch cluster. (b) centetheopatches are connected to build a
graph (Delaunay Triangulation). (c) Distributionr fthe length of the graph edges is
shown by dark blue bar. Red line represents thedfiéaussian distribution. The position
of light blue line is the Expected Distance thrddh¢d) Two sub-clusters obtained by
spatial clustering are shown. Purple points remtepatches of one sub-cluster while

green points for the other.

Any given cluster can then be further clusteredediag to their spatial relationships. In
Figure5, we show an example describing the details ofdustering. For all the patches
in one cluster (Figur&(a)), we compute a Delaunay triangulation of th&clpaenters,

shown in Figures(b). Next we analyze the distances of the nearldesan the graph.

The rationale is that texture patches in the saluster tend to also form clusters in



image space, and the outlier patches tend to beteeriihe distribution of distances of
nearby nodes is shown in Figge). We model this distribution as a Gaussian N¢yn,

and set the Expected Distance as gm+2gv. All etlgggsare longer than the Expected
Distance in the graph are disconnected to form reéw&ubgraphs, which are now

represented as sub-clusters (see Fi§(d®.

Cluster 1

« Clusterr

Figure 6: Multi-patch decision. The color of the pixel p isaded by all the patches that
contains the pixel, such as the blue patch P1 laad/i¢llow patch £ All such patches
belong to the patch clusters, shown as Clusterd1CGinster n. The color likelyhood of p
is accordingly decided by all the patches in theasters, shown asi) and R(j). The
set of texture neighbors of p is formed by all figels in the patches with the same

relative spatial location as p (such a§)and g(j)).

Multi-patch decision for Qi(p): Now we need to find all the texture neighbors okepp
and formQi(p). Note that we consider all the image patchas ¢tontain the p, not only
the one which is centered on it. Each patch thaemsothe pixel p belongs to a patch
cluster. We get all the patches that belong sugstets, and take the pixels on the same

relative spatial positions of p to form thgp). As shown in Figuré. Let R,k=1,...,n be



the patches that contain the pixel p, andjjif=1...m} be the set of patches that share the
same appearance cluster with B is the number of patches in this cluster. L dpe

the pixels in patches«§) that have the same relative spatial positiop &spatch R All
these () are included to compose the §kfp,k) andQ:(p)=Uxx(p,k)

Decide wy,. using sub-clusters: When we computev,,, texture neighbors from the

q )
different sub-clusters get much smaller weightsith@ose from the same sub-cluster.
Specifically, for every texture neighboed(p), if the patch that contains p and the
patch that contains g belong to the same sub-cjusfg=0.9/Z; while if they belong to

different sub-clusterswy, =0.1/Z. The Z is a normalization constant to gutan

Yqeat(p) Wpq = 1.

Since we take patches from different sub-clustensell to define):, we can colorize the

same textures that are spatially separated by dgastrokes in only one region.

2.4. Spatial neighbors Q(p) and w;y,.

We follow [LLWO04] to defineQs andwy, is defined as 8-neighbors of a pixel ang} =

—(1)-1@)°
exp —252

)/(Zq wp4)- In our implementation d is set to 10.
2.5. Iterative Energy Optimization

The energy function in Equatiahis solved by iteratively propagating the L with ot

textural and spatial neighbors:



0/, " { (()]/\())T /)ES”Y)/"(’/\' )

otherwise

L”+I(C:/)) = A(p) Z n';,qL”(C:q)
qey(p)

+ (1=A(p)) Z wpgLl" (Ciq)  (5)

qeQ4(p)

Since thes(p) is defined as the 8-neighbors of the pixelh® tolor label propagation
along the spatial neighbors is rather slow. To dpg® we over-segment the image to
super-pixels using the Mean Shift algorith@MO02]. Instead of nearby pixels, we use the
nearby super-pixels to propagate the color labeilifgrmation to the current pixel.
Weights are decided by the intensities of adjaqexels in the nearby super-pixels.
Figure 7(b)(c)(d) show the iterations in the color labelirfgor this image, L stops
changing after 3 iterations to the result in Figdf@), using the iterative algorithm with
super-pixels. It would require more than 70 itenagi without using super-pixels. Note
that the super pixel only extends the spatial r@gh of current pixel, the texture

neighbors of current pixel remain the same.

When we get the label map after several iteratidnis, straightforward to assign each
pixel the color label with maximum likelihood, aBosvn in the Figure/(d). However,
some color noises and color leaks near the boundasy exist, for example, at the left
edge of the roof. To refine the color label, we thee a-expansion multi-label graph-cut
algorithm BVZO01]. The labeling noise is suppressed and the boiexlaf color regions

are enforced along the strong roof edge in the-gcaye image, as shown in Figui@).

2.6. Discussion



More experiments are done to validate the useesthoothness map and the sub-cluster

in our labeling algorithm.

Smoothness map plays an important role in integgatie texture-similarity constraint
and the intensity-continuity constraint. We trieding a constani instead of the
smoothed edge map as the weighting in our enemygtibin. Figure8(a) shows the result
usingA=0.5.We can see errors in both the grass regiorhaunse region, which is mainly
caused by misclassifications of the texture in aamed region. In our method, we use
the smoothed edge map to 8@t) for the textural term. By putting more weiglis the
spatial term in the smooth region, the labelinginfation from spatial neighbors helps to
correct some mistakes from textural space. Thusaveget a better labeling result as

shown in Figure3(c).

Figure 7: The process of color labeling. (a) The user inputkes. (b) (c) (d) The color
labels after the 1st, 2nd and 3rd iterations. We s=e that, with small number of input
strokes, color labels are propagated to neighbalpiwith similar intensity and remote

pixels with similar texture pattern. (e) Color léibg after applying multi-label graph-cut.



Figure 8: (a) The color label using constantlabeling errors can be seen in the house
and grass regions, which are mainly due to the lasstfication in texture features in
smooth locations. (b) The color label without slilsster, large misclassified regions can
be seen in the house and grass region, since eegiohouse and grass are mixed in

feature spaces. (c) Our algorithm proves to becg¥e in labeling the natural images.

Using sub-clustering is another novel idea in dgodthm. Figure8(b) shows the result
without using spatial sub-clustering. We can seaymaisclassified regions in the house
and grass parts. Using sub-clustering, the hougerrend the grass region can be well
divided into two different sub-clusters. By weiglgiless the information from different

sub-clusters, we can get a better labeling resushawn in Figuré(c).

3. Color Mapping

In this section, we show an simple yet effectivepsthat enables users to generate rich
colorization with vivid colors. We call this stel6r Mapping . Figur® shows the color

mapping process.



Once a region is selected, the user chooses a if@ls @s shown in the top image of
Figure 9(b). These pixels represent a significant luminavexeéation in the region. Each
pixel is then given a corresponding color by theruss shown in Figuré(c). The
chroma (UV) values for any other pixels are theterpolated by piece-wise linear
mapping in luminance (Y) space to get a color paleis shown in Figurg(d). More
sophisticated non-linear functions have been triest have not shown much
improvement in our experiments. The color mappiagult of the selected region is
shown in the bottom image of Figudé).

Note that in our system, the final colorizationuless not a hard composite of each
colorized region. After colorizing the regions, we a soft blending around the region
boundary to make the color transition natural,fasa in Figured(f). Over a band along
the boundary, we run the intensity continuity temntquationl to get a blending weight
for each label. The final color in this boundargion is the weighted average of the

colors for each label. This enables our systenolorize the fine structures in the image.

We have designed an easy-to-use Ul for colorizifpen a user clicks a pixel in the
image, the corresponding labeled region is selectéwn the user can choose an
appropriate color for this specified pixel. Thigiag is shown in the attached video. Our
Ul allows the user to go back and forth easily ée $he original image, color labels,

blended image, and partially finished colorized gma




Figure 9: lllustration of color mapping process. (a) Coldndhis directly blended with

the gray image. (b) Top: the region of mountaisatected for color mapping. The user
chooses three pixels to assign colors for thisoregBottom: the mountain after color
mapping. (c) Three pixels with their intensity vedufrom the image. Their corresponding
colors specified by the user are shown on the right From the three known pairs,
colors for all the possible intensities are intéaped, shown with the two bars here. (e)
The final image after color mapping all the regioffis Zoom-in views of regions where

soft blending between nearby regions is applied.

Figure 10: We can obtain various colorization effects fromyomhe color label using our
color mapping tool. Here we show an example. Lisfhige shows a natural image with
highly textured regions. Middle and right imageswlidifferent colorizations using our

system.

Compared with other stroke-based colorization na#thour color mapping is effective
in editing the final effect. In most cases, useysdt know exactly what color to use in
each location before they preview the effect. Byasating the colorizing process from
the labeling process, users can edit in realtireecthlor in each region. Users can also
obtain different colorizing effects of an image erits color labels are obtained. Figure
10 shows the impressive results we get for a singtarahimage. Moreover, our color
mapping step can overcome small amount of inacguiacolor labeling, we do not

assume perfect color labeling for images with caxpéxtures.



4. Local Refinement

Our system works well on many images such as toos€igures2 and 9. With the
casually specified strokes, our global optimizatitabeling algorithm can find a
sufficiently good label map for colorization. Fanages with more complex textures,
however, texture misclassification may still caygeblems, as shown in FigurkL
Recognizing that there are inevitable mistakeseiiure clustering, we have designed

two simple Ul's to help the user to interactivebyriect the color labeling.

For instance, some yellow flowers were missinghatbdottom of image in FigurEL. The
user may not be satisfied with the incorrectly leeegioin. He can draw a short stroke
with the correct color, then a local optimizatioh energy in Equationl using the
surrounding areas of the strokes would be run tahgedesired color labels, as shown in
Figure 11. Pixels on the stroke drawn by the user are usetlaad constraints (with

yellow labels) in the optimization.



(® (b

Figure 11: Two Ul’s for local refinement. (a) An image withearsspecified strokes. (b)
Colorization result before local refinement. (c)-$8ow an example of using short stroke
tool for refinement. A yellow stroke is drawn insithe green region (d), here we use a
green line to highlight the small yellow stroke tre flower. Local optimization is
applied to propagate the yellow color label anchwbthe desired result (e). (f)-(h) show
an example of using the rectangle tool for refinetnen (g) a rectangle is drawn
indicating the error in this specific region. Loagdtimization runs inside the region to

get a better colorization (h).



As shown in the Figur&1(f), some patches near the inverted reflectiornefttee cannot
be distinguished with patches in the flower regiajch results in some errors in the
color labeling. the user can also draw strokesotoect the label, but this time the label
cannot be easily corrected with one or two of strokinstead, we designed another
simple Ul for the user to draw a rectangle (or tgrike in [RKBO04]) which includes the
erroneous pixels and correctly labeled pixels whle desired color. Equatiof is
optimized only for the indicated region to refineetcolorization. By confining the
optimization in a local region, we prevent the @oation of error information from the
outside of the region. Thus a better label map lmambtained. The result is shown in

Figurell(h). Sophisticated selection tools other than taregle can also be used.

Note that after the color mapping step, most ofldbeling problems become unnoticable
in the colorization. We do not need a perfect sagat®n to get a nice colorization
result. The user can usually get satisfactory teswith a rather small number of

refinement.

5. Experiments

The clustering (pre-processing) time depends omébeh size, the number of edge pixels
and the cluster number. For all the images in apegment we use cluster number 500,
which shows to be sufficient for images with diéiat level of complexity. Patch size is
manually select which roughly equals the largest sif texture element in the image.
The width of the square patch used in the examaesl3 (Figure), 17 (Figurel0), 13
(Figure12), 17 (Figurel3), 19 (Figureld), 9 (Figurelb), 11 (Figurel6(a)), 15 (Figure
16(c)), 19 (Figurel6(e)), respectively. For the image(size of 262x382figure 2 with
the edge map shown in Figuteand the patch size 13x13, the time for clustersnghbiout

2 minutes on a Pentium 4 3GHz PC. Each iteratiapimmization requires 0.7 second. It
took 3 iterations (less than 3 seconds) to gettiafaetory color label for this example.

All the examples in this paper require no more th@niterations to be stable. Color



mapping for all the examples is done in real-tilnecal refinement has also been done

interactively as shown in the video.

We show a number of examples to demonstrate tbetaféness of our approach.

In Figure12 we compare our method with some previous methodshge that with 10
interactions (3 strokes(in(a)) + 1 local refinemer@ specified color pixels), we obtain a
compelling colorization in (b). For a fair compans we also use 10 interactions for
other methods. Using 10 strokes as shown in (cg (feéd many sets of strokes, this is
the one with the best colorization) we show thegpation results of Welsh et al. in (d)
[WAMO2], Levin et al. in (e) ILLWO04], and Yatziv et al. in (f)YS0€g. we can see that
the strokebased method like Levin’'s method and i¥atanethod cannot colorize the
texture regions of the image properly within 10enactions, resulting in many visible
mis-colored regions particularly for trees and ckn the experiment of Welsh’'s
method, we use the region under the user strokbeaswatch described iWAMO2].
We also use patches with size of 13x13, as in auelins clustering. In Welsh’'s method,
the patch distance is not sufficient to distinguisé different regions, especially the sky

region and the grass region as shown in Figacd).

Labeling methods based solely on intensity would fa identifying the texture
boundary. We can see in Figut&(b) that Lazy SnappingLETS04 cannot catch the
boundary around the wall, while our method perfesdgment this region (Figufie}(c)).

We show the final colorization result of our methodrigurel13(d).

As discussed previously, using existing methodsbtain results with vivid color is not a
simple task. We demostrate this in Figie Even with several carefully chosen strokes
that well labeled the image, the colorization s$tibks flat and unnatural in Figudel(a).

Of course, one can add more tiny strokes with dfie colors to create color variation in
each region (Figur&4(b)). However, it is very hard to specify the ldoatand the color

for hundreds of strokes, especially without theddidn interactive preview. The example



in Figure 1(b) shows one attempt to get the vivitea, and the result is still
unsatisfactory. We show our result in Figarc), with only 17 interactions (7 strokes +

10 specified color pixels), we can get a compeltotprization effect.

Figure 12: Comparison of different colorization methods. Fomparison proposes, we
use a total 10 of actions in all the methods. Uderg operations (3 strokes(in(a)) + 1
rectangle refine + 6 color specified color pixelsg get a nice colorization result shown
in (b). With the ten strokes in (c), we tried WessfWAMO2], Levin’'s [LLWO04] and
Yatziv's [YS06] methods, results are shown in (d), (e), and (f).



ser strokes ) .
(a) user strokes (d) our result after color mapping

(¢) our labeling result

Figure 13: Comparison with lazy snapping. Here we show a ix@atimple foreground
segmentation case that lazy snapping would fail tduthe lack of texture feature. (a)
shows the user interaction, (b) is the result kgy lanapping, we can see that lazy
shapping fails on the texture boundary around thk, wince only intensity distribution is
considered in their likelihood for graphcut. Ourthwe can well handle the texture

boundary as shown in (c). We show our final reafitir color mapping in (d)

In Figure1l5 we compare our algorithm with the Manga colorizatrnethod QWHO0€E.
The manga method failed in the inhomogeneous texgegion, as shown in Figui&(b).
Since we only use the local decision of neighborsur labeling scheme, we can handle
the inhomogeneous texture in images, and the rssshown in Figuré.5(c) Moreover,
we use the patch appearance distance insteadtististd features for texture analysis,
which enables us to colorize the texture regiorhwitultiple colors. We can see that
using strokes shown in Figufig(d), we can get the result as in Figafg€e). This is the
unique property of our method. (Note that in thiaraple, we add three white strokes for

the flat white regions in order to label the eniimage).



(a) Levin's result 1 (b) Levin’s result 2 (¢) Our result

Figure 14: Comparison with Levin’s method.[WO04]. The first row shows the input
strokes, the second row shows the colorization lteslsing Levin’'s method, it is
tedious to get a vivid colorization as in the gaeunatural scene. We can see in (a) that
strokes well segment at the image is not sufficient vivid colorization. An attempt is
made to specify variant colors in different locasan the image. It is still hard to get a
satisfactory colorization(as shown in (b)). We showr colorization result in (c).

Compelling effects can be easily achieved usindlsmanber of interactions.

To demonstrate the effectiveness of our methodliorizing the texture pattern, we show
more examples of colorizing texture using multipldors in Figurel6. As discussed
previously, it would be rather hard for user toocide these type of textural regions using
previous methodd [ W04,QWHO06]. In these images, each tiny region inside théutex



region requires a new color, which means the usedsito carefully add strokes in all the
regions. In our method, the user only needs torz@an example pattern in the texture
region, so that the rest of the similar patternsulddoe colorized based on the given

example. Interactions are largely reduced in ostesy.

The peacock example in Figufé also shows the limitation of our approach: those
regions that are not properly labeled is not cakxticorrectly. Notice that toward the left
side of the tail of the peacock, some smaller-spalterns are not well colorized with
current strokes and a small amount of local refieemSurely the user can make a better
colorization if he spends more time on locally mefg the result, which is out of the

scope of the effectiveness of our labeling algamith

6. Summary and Discussion

In this paper, we present an interactive systemc@dorization of natural images. We
show compelling colorization results of natural gaea with highly textured regions.

These natural images are very difficult to colofizeprevious colorization methods.

Figure 15: Comparison with Manga Colorization: (a) Strokesduisethe paper of Manga
Colorization (plus 3 white strokes for the flat véhregions in order to get the label of the

entire image). (b) Result by Manga Colorizatior). Qur result using strokes in (a). One



key property of our method is colorizing texturghwmultiple colors, as shown in (d)-(e).
O©T.T.Wong/CUHK

Our method labels an image with colors associatildl strokes drawn on the image by
the user. We introduce a novel energy optimizaframework that incorporates both

intensity-continuity and texture-similarity constis to cluster the image into a number
of coherent regions, indicated by distinctive celoFhen, for each coherent region, we

assign colors to a few chosen pixels, and therr cobp the rest of pixels in the region.

By separating the color labeling from the color miag, the interaction of colorization
becomes more intuitive for users. What users neeatbtfor color labeling is to specify,
with several strokes, some meaningful objects giores to be labeled, whether it is the
sky, or a flower field, or a lake. Specifying caaat a few pixels for color mapping is

effective in getting satisfactory final results.

Good colorization results using our system arat faf all, due to the success of color
labeling. Although we do not need sub-pixel accyrboundary segmentation for the
purpose of colorization, our novel energy optimmatframework makes it possible to
label the image into color and texture coherenioreg) that can be easily colorized.
Although texture clustering may never be perfental$ errors resulting from our color
labeling step can be easily corrected, by interabtirefining incorrect labeled local

regions using our easy-to-use Ul tools.

In the pre-processing phase, we used texture patalithout consideration of scale,
orientation or transformation. As shown in the saexample in Figurd6, we had to
draw multiple strokes on similar patterns with @réfnt orientations and scales to obtain
good colorization results. In the future, we plan study how to incorporate more
sophisticated texture clustering techniques sucepésmes JFK0J to further improve

the usability of our system.



Figure 16: Colorize texture with multiple colors. Strokes atgown in (a) (c) (e), our
colorization results are shown in (b) (d) (f). Qataion of texture can be quite tedious
using the previous methods since each tiny regisiaé the texture requires a new color.

Colorizing texture with multiple color is the unigproperty of our method.



