
Ant Colony versus Genetic Algorithm based on Travelling Salesman Problem
Mohammed Alhanjouri Belal Alfarra

 Islamic University of Gaza Islamic University of Gaza
 mhanjouri@iugaza.edu.ps

fbelal@zim.iugaza.edu

Abstract

The travelling salesman problem (TSP) is a
nondeterministic Polynomial hard problem in
combinatorial optimization studied in operations
research and theoretical computer science. And to
solve this problem we used two popular meta-heuristics
techniques that used for optimization tasks; the first
one is Ant Colony Optimization (ACO), and the second
is Genetic Algorithm (GA). In this work, we try to apply
both techniques to solve TSP by using the same dataset
and compare between them to determine the best one
for travelling salesman problem. for Ant Colony
Optimization, we studied the effect of some parameters
on the produced results, these parameters as: number
of used Ants, evaporation, and number of iterations. On
the other hand, we studied the chromosome population,
crossover probability, and mutation probability
parameters that effect on the Genetic Algorithm results.
The comparison between Genetic Algorithm and Ant
Colony Optimization is accomplished to state the better
one for travelling salesman problem.

1. Introduction
Optimization is one of the most important tasks of
engineers, which the engineer asked to design new,
better, more efficient and less expensive systems as
well as to devise plans and procedures for the improved
operation of existing systems in both industrial and the
scientific world.
The travelling salesman problem (TSP) is a
nondeterministic Polynomial hard problem in
combinatorial optimization studied in operations
research and theoretical computer science.
The problem was described as: there are cities and
given distances between the, a travelling salesman has
to visit all of them, but he does not want to spend much
time on travelling, therefore we need to find the
sequence of cities to minimize the traveled distance.
The problem was first formulated as a mathematical
problem in 1930 and is one of the most intensively
studied problems in optimization. It is used as a
benchmark for many optimization methods. Even
though the problem is computationally difficult, a large

number of heuristics and exact methods are known, so
that some instances with tens of thousands of cities can
be solved.
The TSP is represented in numerous transportation and
logistics applications such as:
 arranging routes for school buses to pick up

children in a school district,
 delivering meals to home-bound people,
 scheduling stacker cranes in a warehouse,
 Planning truck routes to pick up parcel post and

many others.
 Planning, logistics, and the manufacture of

microchips.
 A classic example of the TSP is the scheduling of

a machine to drill holes in a circuit board.
Slightly modified, it appears as a sub-problem in many
areas, such as DNA sequencing. In these applications,
the concept city represents, for example, customers,
soldering points, or DNA fragments, and the concept
distance represents travelling times or cost, or a
similarity measure between DNA fragments. In many
applications, additional constraints such as limited
resources or time windows make the problem
considerably harder.
In the theory of computational complexity, the decision
version of the TSP (where, given a length L, the task is
to decide whether any tour is shorter than L) belongs to
the class of NP-complete problems. Thus, it is likely
that the worst case running time for any algorithm for
the TSP increases exponentially with the number of
cities.

2. Ant Colony Optimization
Ant colony optimization (ACO) [6] is one of the most
popular meta-heuristics used for combinatorial
optimization (CO) in which an optimal solution is
sought over a discrete search space. The well-known
CO's example is the traveling salesman problem (TSP)
[1] where the search-space of candidate solutions grows
more than exponentially as the size of the problem
increase, which makes an exhaustive search for optimal
solution infeasible.

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

570

ISSN:2229-6093

mailto:mhanjouri@iugaza.edu.ps�

The first ACO algorithm –Ant System (AS)- has been
introduced by Marco Dorigo in the early 1990’s [2,3,4],
and since then several improvement of the AS have
been devised (Gambardella & Dorigo, 1995[5]; Stützle
& Hoos, 1997[6]). The ACO algorithm is based on a
computational paradigm inspired by real ant colonies
and the way they function. The underlying idea was to
use several constructive computational agents
(simulating real ants) [7].
Ant's behavior is governed by the goal of colony
survival rather than being focused on the survival of
individuals. The behavior that provided the inspiration
for ACO is the ants’ foraging behavior (see figure 1),
and in particular, how ants can find shortest paths
between food sources and their nest. When searching
for food, ants initially explore the area surrounding
their nest in a random manner. While moving, ants
leave a chemical pheromone trail on the ground. Ants
can smell pheromone.

Figure 1: Ants use pheromone as indirect
communication to build best tour

When choosing their way, they tend to choose, in
probability, paths marked by strong pheromone
concentrations. As soon as an ant finds a food source, it
evaluates the quantity and the quality of the food and
carries some of it back to the nest. During the return
trip, the quantity of pheromone that an ant leaves on the
ground may depend on the quantity and quality of the
food. The pheromone trails will guide other ants to the
food source. It has been shown in [8] that the indirect
communication between the ants via pheromone trails
enables them to find shortest paths between their nest
and food sources. In this paper I'll view the relations
between ACO parameters and how the number of
iterations is increased as the number of ants decreased
or as the evaporation coefficient increased.

2.1. Ant System (AS)
The first ACO algorithm was called the Ant system [5],
the objective of AS is to solve the travelling salesman
problem (TSP). A travelling salesman is required to
pass through a number of cities, each city is visited
once and he needs to find the shortest closed path –
tour- that link all cities. Thus, we have undirected graph
consists of V nodes -or cities- linked by undirected E
edges G = (V, E) the edge weights represent the
distances between the cities.

Figure 2: Undirected graph show nodes and the edges
between the nods, the figure show the four stages of
ACO to reach shortest closed path.

As shown in figure 2, the search space S consists of all
tours in G. The objective function value f(s) of a tour s
∈ S is defined as the sum of the edge-weights of the
edges that are in s. The TSP can be modeled in many
different ways as a discrete optimization problem.
Concerning the AS approach, the edges of the given
TSP graph can be considered solution components, ant
introduce a pheromone value τi,j for the edge ei,j. The
general algorithm is based on a set of ants, each making
one of the possible tours or round-trips along the cities.
Each tour considered as one solution s of search space
S, and the sum of the edges-weights is the objective
function f(s). Now we search for the best tour s at
which we have smallest f(s). The following steps
describe how each ant constructs a solution s:
 1- Each ant chose randomly one city as start node.
 2- The ant starts building the tour by moving from

one city to another unvisited city.
 3- The traversed edge is chose by probability P(ei,j).

𝒑𝒑�𝑒𝑒𝑖𝑖,𝑗𝑗 � = 𝝉𝝉𝒊𝒊,𝒋𝒋

∑ 𝝉𝝉𝒊𝒊,𝒌𝒌{𝑘𝑘∈{1,…,│𝑉𝑉│}│𝒗𝒗𝒌𝒌∉𝑻𝑻}
, ∀𝑗𝑗 ∈ {𝟏𝟏, … , |𝑽𝑽|},𝑣𝑣𝑖𝑖 ∉ 𝑻𝑻

(1)
 4- The traversed edge is added to the solution being

constructed.
 5- When all cites are visited the ant move to the start

node.
 6- Having completed its journey, the ant deposits

more pheromones on all edges it traversed.
Deposited pheromones is:

𝝉𝝉𝒊𝒊,𝒋𝒋 ← 𝝉𝝉𝒊𝒊,𝒋𝒋 + 𝑸𝑸
𝒇𝒇(𝒔𝒔)

 (2)

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

571

ISSN:2229-6093

 7- After each iteration, trails of pheromones
evaporate done as follows:

𝝉𝝉𝒊𝒊,𝒋𝒋 ← (𝟏𝟏 − 𝝆𝝆)𝝉𝝉𝒊𝒊,𝒋𝒋 , ∀𝝉𝝉𝒊𝒊,𝒋𝒋 ∈ T (3)

The previous steps is used to construct one tour, these
steps can be repeated more and more to obtain the
optimum solution. In each tour the more intense the
pheromone trail laid out on an edge between two cities,
the greater the probability that that edge will be chosen.

2.2. Methodology
There are several extensions and improvements of the
original AS algorithm were introduced. All of which
covered by the definition of the ACO meta-heuristic.
But in general the following algorithm is used:

2.2.1. ACO Algorithm
Algorithm 1: Ant colony optimization (ACO)

Algorithm 2. construct_solution(i);

In most ACO algorithms the respective probabilities—
also called the transition probabilities—are defined as
follows:
𝒑𝒑�𝐶𝐶𝑖𝑖│𝑆𝑆� = [𝝉𝝉𝒊𝒊]𝜶𝜶.[𝜼𝜼(𝑪𝑪𝒊𝒊)]𝜷𝜷

∑ �𝝉𝝉𝒋𝒋�
𝜶𝜶.�𝜼𝜼(𝑪𝑪𝒋𝒋)�

𝜷𝜷 𝐶𝐶𝑗𝑗 ∈𝑵𝑵(𝒔𝒔)
 , ∀𝐶𝐶𝑖𝑖 ∈ 𝑵𝑵(𝒔𝒔) (4)

Where η is an optional weighting function commonly
called the heuristic information, that it sometimes
depends on the current sequence s, the exponents α and
β are positive parameters whose values determine the
relation between pheromone information and heuristic.
N(s) is the set of all feasible solution component. For
TSP example, we chose not to use any weighting
function η, and we have set α to 1.

Algorithm 3. global_pheromone_update(i);

2.3. ACO Parameters
As mentioned before ACO algorithm is meta-heuristic
that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given
measure of quality. In general meta-heuristic doesn’t
guarantee an optimal solution is ever found. The most
asked question is: what is the best result can we obtain
in less iteration with minimum cost and time? Or when
to terminate?. This require to have good estimation for
parameters used with ACO algorithm, like α, β, the
number of ants (M), the maximum number of
iterations, and the most important parameters: The
pheromone trail decay coefficient (p) and pheromone
amount (Δτ(t)) which have an important impact on the
performance of ACO. The selection of the parameters
depends on the problem needed to be optimized. In this
paper the deposited pheromone (Δτ(t)) calculated using
Eq. (2) with Q=1. And p which simulates the
pheromone evaporation becomes more important for
more complex problems.
In this work we implement the algorithm and, by trial
and error, try to determine the best number of iteration
required to reach the optimal tour with different value
of M, and p. And repeat this method for different data
sets.

3. Introduction to genetic Algorithm
Genetic algorithms are a part of evolutionary
computing technique, which is a rapidly growing area
of artificial intelligence.
Genetic algorithms are inspired by Darwin’s theory
about evolution. Simply said, solution to a problem
solved by genetic algorithms is evolved.
I.Rechenberg introduced the idea of evolutionary
computing in the 1960s in his work “Evolution
strategies” (Evolutions strategy in original). Other
researchers then developed his idea. Genetic
Algorithms (Gas) wre invented by John Holland and
developed by him and his students and colleagues.[1]
In 1992 john koza has used genetic algoritm to evolve
programs to perform certain tasks. He called his
method “genetic programming” (GP) [5], LISP
programs were used; because programs in this language
can be expressed in the form of a “parse tree”, which is
the object the GA works on.

3.1. Basic Description of GA
Genetic algorithm is started with a set of solutions
(represented by chromosomes) called population.
Solutions from one population are taken and used to
form a new population. This is motivated by a hope,
that the new population will be better than the old one.

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

572

ISSN:2229-6093

Solutions which are selected to form new solutions
(offspring) are selected according to their fitness; the
more suitable they are the more chances they have to
reproduce. This is repeated until some condition (for
example number of populations or improvement of the
best solution) is satisfied.
It is well known that problem solving can be often
expressed as looking for the extreme of a function. This
is exactly the case with the following problem: some
function is given and GA tries to find the minimum of
the function.

3.2. Outline of the basic Genetic Algorithm
1- [Start] Generate random population of n

chromosomes (suitable solutions for the problem).
2- [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population.
3- [New population] Create a new population by

repeating the following steps until the new
population is complete.

a. [Selection] Select two parent chromosomes
from a population according to their fitness (the
better fitness, the bigger chance to be selected)

b. [Crossover] With a crossover probability cross
over the parents to form a new offspring
(children). If no crossover was performed,
offspring is an exact copy of parents.

c. [Mutation] With a mutation probability mutate
new offspring at each locus (position in
chromosome)

d. [Accepting] Place new offspring in a new
population.

4- [Replace] use new generated population for a
further run of algorithm

5- [Test] If the end condition is satisfied, stop, and
return the best solution in current population

6- [Loop] Go to step 2

The above outline of GA is very general. There are
many things that can be implemented differently in
various problems.
First question to be answered is how to create
chromosomes and what types of encoding to choose.
The next question is how to select parents (in hope that
the better parents will produce better offspring), that
making a new population only by new offspring can
cause loss of the best chromosome from the last
population. This is true, so a method called Elitism is
often used. This means that at least one best solution is
copied without changes to a new population, so the best
solution found can survive to the end of the run.

As we can see from the genetic algorithm outline, the
crossover and mutation are the most important part of
the genetic algorithm. The performance is influenced
mainly by these two operators. Then basic parameters
of GA are: Crossover Probability, Mutation Probability
and Population size.
Crossover probability says how often crossover will be
performed. If there is no crossover, offspring is an
exact copy of parents.
If there is a crossover, offspring is made from parts of
parent’s chromosome. If crossover probability is 100%
then all offspring is made by crossover. If it is 0 %,
whole new generation is made from exact copies of
chromosomes from old population (but this does not
mean that the new generation is the same).
Crossover is made in hope that new chromosomes will
have good parts than old chromosomes and they may
be better. However it is good to leave some parts of the
population to survive to the next generation.
Mutation probability shows how often parts of
chromosome will be mutated. If there is no mutation,
offspring is taken after crossover without any change. If
mutation is performed, part of chromosome is changed.
If mutation probability is 100%, whole chromosome is
changed, if it is 0%, nothing is changed. Mutation is
made to prevent falling GA into local extreme, but it
should not occur very often, because in this case GA
will in fact change to random search.
Population size says how many chromosomes are in
population (in one generation). If there are too few
chromosomes, GA has a few possibilities to perform
crossover and only a small part of search space is
explored. On the other hand, if there are too many
chromosomes, GA slows down. Research shows that
after some limit (which depends mainly on encoding
and the problem) it is not useful to increase population
size, because it does not make solving the problem
faster.
 As we already know from the GA outline,
chromosomes are selected from the population to be
parents to crossover. The problem is how to select these
chromosomes. According to Darwin’s evolution theory
the best ones should survive and create new offspring.
There are many methods how to select the best
chromosomes; for example, there is Roulette wheel
selection, Boltzman selection, Tournament selection,
Rank selection, Steady state selection, or some others.
Encoding of chromosomes is one of the problems,
when we are starting to solve problem with GA.
Encoding depends greatly on the problem; there are
many encoding style like as: Binary encoding,

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

573

ISSN:2229-6093

Permutation encoding, Value encoding, or Tree
encoding.
First, we need to decide how to represent a route of the
salesman. The most natural way of representing a route
is the path representation. Each city is given an
alphabetic or numerical name, the route through the
cities is represented as a chromosome, and appropriate
genetic operators are used to create new routes. For
travelling salesman problem, we use Permutation
encoding to ordering the problem. Every chromosome
is a string of numbers, which represents the numbers in
a sequence.
Permutation encoding is only useful for ordering
problems. Even for these problems for some types of
crossover and mutation corrections must be made to
leave the chromosome constant (i.e. have real sequence
in it). The travelling salesman problem (TSP) would be
a good example of permutation encoding.
Chromosomes says order of cities, in which salesman
will visit them.
The crossover and mutation operators depend on type
of encoding and also on the problem. For our encoding
and problem, we use single point crossover; as shown
in Figure (3), the permutation is copied from the first
parent until we reach this point, then the second parent
is scanned and if the number is not yet in the offspring
it is added. There are more ways to produce the rest
after crossover point (*)

Figure 3. Crossover and mutation for permutation

encoding

4. Experimental results of Ant Colony

Optimization
We perform several experiments on one synthetic
datasets of 14 dimension -14 nodes- and on three real-
life datasets [9] with different dimensions (16, 22 and
29 dimension), dataset's characteristics are illustrated in
Table 1. All our experiments use MATLAB version 7.6
R2008a on windows 7 on Intel core(TM) 2 Duo CPU
T8300 2.40 GHz computer with 4 gigabytes of
memory.

Table 1: Datasets characteristics
NAM
E

TYP
E

COMMENT DIMEN
SION

Best
f(s)

ulysse
s16

TSP Odyssey of
Ulysses
(Groetschel/Padbe
rg)

16 73.9
876

ulysse
s22

TSP Odyssey of
Ulysses
(Groetschel/Padbe
rg)

22 56.2
237

bays2
9

TSP COMMENT: 29
cities in Bavaria,
street distances
(Groetschel,Jueng
er,Reinelt)

29 ____

Node
14

synth
etic

8 2, 0 4, -1 6, 2 -1,
4 -2, 6 0.5, 3 0, 10
3.7, 2.5, 1.8, -5 1,
7 0, 9 4, 11 3, 13
2

14 45.5
62

Figures 4, 5, 6 and 7 shows the shortest path can be
obtained when we apply the algorithm 1 described in
section 3.1 on the ulysses16, ulysses22, bays29, and
node14 datasets respectively.

Figure 4. The best tour for ulysses16.tsp obtained by
ACO algorithm.

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

574

ISSN:2229-6093

Figure 5. The best tour for ulysses22.tsp obtained by
ACO algorithm.

Table 2 shows the best number of iterations required to
have the optimal solution at which we have minimum
value of objective function. the table uses '_' to mean
that the algorithm converged to suboptimal solutions,
the maximum iteration is 1400 iteration, this means
that, for each set of parameters the algorithm is run in
the range of 1 to 1400 iterations. If the algorithm
converged to the optimal value with N iterations, we
repeat the algorithm more and more with iterations N to
be ensured that N is the best number of iterations at
parameters p and M to have minimum f(s). Three
different values were used (0.1, 0.5, and 0.9) for
evaporation parameter p with three different values
(100, 250, and 500) for M which represent the number
of ants "agents". With these parameters values and by
using and apply the trial-and-error (by matlab code) we
obtain the results shown in table. It is clear that, if the
evaporation parameter p is small then the optimal
solution is obtained with the smallest number of
iteration. Also, the number of iterations proportional
with number of ants that used to solve the problem.

Figure 6. The best tour for bays29.tsp obtained by
ACO algorithm.

Figure 7. The best tour for node14.tsp obtained by

ACO algorithm.

Table 2: Best number of iteration required by the
algorithm to converge optimal f(s),

Dataset P=.9 P=.5 P=.1 P=.9 P=.5 P=.1 P=.9 P=.5 P=.1
 M=100 M=250 M=500
ulysses
16.tsp

_ 950 130 _ _ 500 _ _ 200

ulysses
22.tsp

_ _ 600 _ _ 800 _ _ 1100

bays29
.tsp

_ _ 1000 _ _ _ _ _ _

Node1
4.tsp

1400 820 100 600 250 35 450 200 20

An '_' means with maximum iteration 1400 the
algorithm converge to suboptimal value, M: number of
ants, p: evaporation coefficient.
By using large number of iterations (up to 3000
iterations) the table is competed but with extreme spent
time (in some cases up to 40 min.), and we forced some
problems to determine the suitable values of parameters
P, M, and No. of iterations, that effects on the results.

5. Experimental results of Genetic

Algorithms
By use MATLAB version 7.6 R2008a on windows 7 on
Intel core(TM) 2 Duo CPU T8300 2.40 GHz computer
with 4 gigabytes of memory, we perform several
experiment on GA that applied on synthetic datasets for
cities locations.
Figure 8 shows the shortest path of 20 cities by GA
with 300 of chromosome population, Crossover

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

575

ISSN:2229-6093

probability is 0.8, and mutation probability is 0.1. And
90 iterations are needed to achieve the best tour.

Figure 8 the best tour between 20 cities by GA

As shown in Figure 9, the best tour between the cities
in different cases: (a) for 15 cities, (b) for 10 cities, and
(c) for 5 cities. Experimentally the results obtained after
70, 60, and 48 iterations respectively, at the same
crossover, and mutation probabilities.

(a)

(b)

(c)

Figure 9 the best tour for different case number of cities

In case of 25 cities or more, we have challenges to
determine GA parameters because the results become
very sensitive for any variation with it. Figure 10
illustrate the results for different cases of Mutation
probability as example, in (a, b, and c) the best tour by
GA with mutation probability of 0.01, 0.009, and 0.008
respectively.

(a)

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 150 The total distance: 4.0772

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 150 The total distance: 3.5887

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 150 The total distance: 2.8567

1

2

34
5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Generation # 150 The total distance: 2.0781

1

2

34

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 250 The total distance: 4.7616

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 110 The total distance: 4.6149

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

576

ISSN:2229-6093

(c)

Figure 10 the best tour for 25 cities by GA with
different Mutation Probabilities (0.01, 0.009, and
0.008)

6. Comparison between GA and ACO for

TSP
Both techniques (Genetic Algorithm and Ant Colony
Optimization) are used to solve travelling salesman
problem with high acceptable performance, therefore
we here to compare between them and determine when
we can use one as better than other.
As in figure 11, we can see the best tour and distance
between 25 cities for the same data by using both GA
and ACO.

(a)

(b)

Figure 11 the best tour of 25 cities using both (a) ACO
and (b) GA.
For ACO, the result obtain by using 2500 iterations,
250 ants for each iteration, and 0.9 as an evaporation
coefficient to produce the best distance as 4.6245.
While for GA, the best distance is 4.6149 by using
crossover and mutation probability is 0.75 and 0.009
respectively, and after 110 iterations with 200
chromosomes. But the first advantage for GA is the
small spent time against to the large required time by
ACO.

7. Conclusions
As shown by the experiment, it is difficult to select the
best parameter for ACO, but we can observe the
dependency of the number of iterations on both the
evaporation coefficient p and the number of ants M.
that if p=0 that have no evaporation, the algorithm does
not converge. But when p is large enough (p=0.9), the
algorithm often converged to suboptimal solutions for
complex problem. This paper is the first step on
determining best number iteration for ACO to have the
optimal solution. It is necessary to evaluate the relation
between costs, alpha, and beta and how these
parameters effect on best number of iterations and
evaporations coefficient.
Also for GA, we need to select the best value for
chromosome population, crossover, and mutation
probabilities. But still at this time the GA is better than
ACO for TSP.

8. References
[1] Lawler E, Lenstra JK, Rinnooy Kan AHG, Shmoys

DB. The travelling Salesman problem. New York:
John Wiley & Sons; 1985.

[2] Dorigo M, Optimization, learning and natural
algorithms. PhD thesis, Dipartimento di Elettronica,
Politecnico di Milano, Italy, 1992.

[3] Dorigo M, Maniezzo V, Colorni A, Positive
feedback as a search strategy. Technical Report 91-
016, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1991.

[4] Dorigo M, Maniezzo V, Colorni A. Ant System:
Optimization by a colony of cooperating agents.
IEEE Trans Syst Man Cybernet Part B
1996;26(1):29–41.

[5] M. Dorigo et L.M. Gambardella, Ant Colony System
: A Cooperative Learning Approach to the
Traveling Salesman Problem, IEEE Transactions on
Evolutionary Computation, volume 1, numéro 1,
pages 53-66, 1997.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 110 The total distance: 4.6489

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Generation # 110 The total distance: 4.6149

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

577

ISSN:2229-6093

[6] Dorigo M, Stützle T. Ant Colony optimization.
Cambridge, MA: MIT Press; 2004.

[7]S. Camazine and J.L. Deneubourg. Self-organization
in biological systems. Princeton University Press,
Princeton, NJ, 2001.

[8] Deneubourg J-L, Aron S, Goss S, Pasteels J-M. The

self-organizing exploratory pattern of the Argentine
ant. J Insect Behaviour 1990;3:159–68.

[9] MP-TESTDATA - The TSPLIB Symmetric
Traveling Salesman Problem Instances. available at
(http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.
html) , Last update: June 1, 1995.

Mohammed AlhanjouriBelal Alfarra, Int. J. Comp. Tech. Appl., Vol 2 (3), 570-578

578

ISSN:2229-6093

http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.%20html�
http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.%20html�
http://elib.zib.de/pub/mptestdata/tsp/tsplib/tsp/index.%20html�

