
A Survey on using String Matching

Algorithms for Network Security

Sudheer Chelluboina

In this paper, we make a survey of String Matching Algorithms for network security.

It gives the summary of String Matching algorithms by focusing on network security and its

subjects that are mainly focused in the literature. In this context, this paper first provides the

introduction where it highlights some important aspects in the context of Network Security.

Second, it briefly describes some significant methods and finally in the third it makes the

analysis of the described methods.

Introduction:

The main problem of string matching algorithm is to find all occurrences of the

pattern (String) S in the text T. From [1][2][3] we formalize the string matching problem as

follows, let S (S[1..n]) be a string of length n, can be referred as pattern and T(T[1…..m]) be

the longer string of length m (where m>n), can be refereed as text. String-matching is a

subclass of pattern matching (searching a block of text to find the occurrence of a substring).

Generally string-matching algorithms search the string using sliding window mechanism.

That is the search of pattern will be done with the help of window with size equal n (which

is the size of the pattern). First, the left ends of the window is aligned with the text, then

compare the window characters with the text characters this is called an attempt. The

window slides from left to right of the text till it finds the whole match or till it reaches the

end of the text [1]. The three algorithms strategies only differ in the way in which the

window is shifted. They are classified as prefix searching, suffix searching and factor

PC
Typewriter
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 1, FEBRUARY 2014

searching. Every string-matching algorithms have two stages: preprocessing stage and

searching stage [8][9][10][11][13][15][16]. The other challenges of string-matching algorithms

are memory usage and speed. Many researchers are working on string-matching algorithms

to overcome these challenges. [1], provided nearly 35 string-matching algorithms with

description and code. String matching is one of the important problems that have been

investigated by many applications such as Text Processing, Virus Detection, Molecular

Biology, Intrusion Detection, Web Searching, Genetics, etc. There is another type of string-

matching technique called approximate string-matching algorithm, the problem of string-

matching that allows errors. This is more relevant issue in many applications such as

Information Retrieval and Computational Biology.

Now a days there is a rapid increase in using network applications through internet,

to support these applications there is a need to increase the network security to detect the

malicious behaviors such as hacks, worms and virus. Generally Intrusion Detection Systems

(IDS) are of two types: misuse detectors and anomaly detectors. Misuse type of IDS uses the

patterns of known or recorded attacks to match with packets content data and identify

intrusion, in other words signatures should be created before matching. For anomaly type of

IDS, the deviations from the created normal usage patterns are flagged as intrusions. To

detect the malicious behaviors IDS uses string-matching techniques on signatures, packet

payload and deep packet inspection. Signature based Intrusion detection systems have a

problem with the speed of the string matching algorithm because each packet has to

compare with hundreds of signatures, we summarized some fast string matching algorithm

to solve the above problem [4].

[5], there are three approaches to detect the deep packet inspection; automata based,

heuristic based and filtering based. Automata approach matches the patterns by state

transition of deterministic finite automata or non deterministic finite automata. It has linear

execution time and also consumes more memory if the data structure is not compressed.

Heuristic approach checks the block of characters in the window, it moves to the next

position if the match is not found. Filtering approach searches text for necessary patterns

and drops if the content does not contain the pattern. Heuristic and Filtering approaches are

memory efficient but suffers in worst case.

 [2], set-wise Boyer-Moore-Horspool is considered to be the first string matching

algorithm in network intrusion detection system; it is based on Boyer Moore (it is explained

later in this paper). [6], Aho-Corasick algorithm is used for matching the multiple strings

simultaneously to reduce the running time. This algorithm is based on the automata; it takes

one character at a time and searches for the patterns to match the input. ACMS [15] and

CIAC [16] algorithms are based on Aho-Corasick algorithm, used to serve the specific

requirement in network intrusion detection systems. MDH [11] can also be used for high

speed string-matching and also can be used to cut down memory usage. Now the

researchers are adopting some embedded systems to increase the speed. One of the memory

devices is ternary content addressable memory (TCAM)[7] it performs searching at high

speed by decreasing the accessing latency. That is it simultaneously compares the input

string against all the entries in its memory.

From literature we believe that a string-matching algorithm over the packet content

is an important issue to be reanalyzed to improve the efficiency and speed of string-

matching algorithms. Advanced string-matching algorithms should be evolved for network

intrusion detection systems to increase the network speed and traffic.

Algorithms:

Yuebin Bai and Hidetsune Kobayashi ‘s String Matching Algorithm

[8], presented a new string-matching algorithm based on Boyer-Moore-Horspool

algorithm. Boyer-Moore-Horspool is designed based on the bad character search, and

presented two searching procedures with simple BM as search for first character(SFC) and

scan for lowest frequency character(SLFC) to support the BM algorithm(which searching

procedure is used depending on the situation). [8], in preprocessing stage it will generate the

array NEXT which is used to decide the movement of slide to proper position for next

search. They claimed that the array NEXT is very important for algorithm to bring better

performance for whole string matching algorithm. In the algorithm the position of next

character of pattern string is assigned as the first reference point. To generate array NEXT

we have to follow the rules,

 For one character in pattern string, assign the difference of length of pattern string to

pointing position of pattern string to NEXT[c].

 For the characters that are not in the pattern string, assign the increment of length of

the pattern string to NEXT[c].

They presented the concept of reference point which is used as a precondition to generate

the array NEXT and also to perform the next shift in searching process. Search of pattern

string in text string can be from left to right or right to left. The advantage of searching from

right to left is that if the mismatch occurs it need not to start from the beginning position of

the substrings to present location that is it starts from the following substrings position, with

this procedure useless comparisons can be avoided. As the authors do not give any name to

the algorithm, so for reference we call as AN (Array Next) string matching algorithm.

Robust Quick String Matching Algorithm

[9], proposed a novel string matching algorithm RQS to achieve the efficiency in both

normal and worst cases. It combines two heuristics, improved bad character heuristic and

enhanced good suffix heuristic to improve the efficiency. In general bad character heuristic

works in this way, if mismatch occurs then the window is shifted right so that the

mismatching character is aligned with the pattern, and if the mismatching character is not in

the pattern then the window is shifted left to the position of first character of pattern. For

suffix heuristic, when mismatch occurs, and if suffix exists then the window is shifted to the

next occurrence of suffix in pattern. If there is no suffix then it acts same as the above

process. RQS improved bad character heuristic always uses the rightmost character of the

current window as the bad character, with this assumption it provides the large shift value

area. Normal good suffix heuristic will forgot the characters that are matched, if they are

remembered it can reduce the comparisons. In the algorithm both bad character heuristic

and good suffix heuristic is calculated at every checkpoint and goes with the heuristic which

has high shift value. If it is a good suffix heuristic and if the matched characters are

remembered we can avoid the comparisons for next check points by comparing only the

remaining characters in the patterns.

Contents Correction Signature Hashing String Matching Algorithm

[10], proposed a new string-matching algorithm, contents correction signature

hashing (CCSH) for large scale pattern sets in network to detect malicious packets in

network with high speed. To apply CCSH algorithm they configured hashing table for

signatures. This algorithm has two stages byte windowing and rule matching. In byte

windowing comparison will be done between the window and the inspected packet data

area. Author's executed window based on two byte reference value. A two byte reference

value is taken from the signature based on random position selection scheme. Random

position selection scheme was designed by considering the present network environments,

in which there are various warms and also a variety of worms, are emerging every day. Most

of them have strong similarity between them, which means the relationship between the

signatures will be very high; this increases the possibility of having an identical hashing

value based on fixed positioned two byte selection method. From that it is clear that each

hashing value may have longer list of signatures. With two bytes, 65,536 hashing values can

be generated, which can cover all the existing rules. The calculated hashing value through

byte windowing is compared with the values in signature hash table. If the window size is

increased, it will decrease the number of hash calculations and then it obviously increases

the searching data size required for string matching. Once the byte windowing completed,

rule matching will come up to find whether the packet assures the real rules or not. Before

rule matching some detailed information was prepared, that information will be compared

prior to the full matching between a signature and data area. Preparation of detail

information will reduce the number of matching numbers and also the false detections. This

process will continue till finding a matching value or by reaching to the end of the hash

table. Proposed algorithm can be used for improving efficiency and also guarantees the

scalability to the number of rules.

Multi-Phase Dynamic Hash String Matching Algorithm

[11], proposed a novel high speed string-matching algorithm called Multi-Phase

Dynamic Hash (MDH) for large scale pattern sets. New denial-of-service attacks, as sending

the text of extremely high matches and jamming the pattern matching modules, so it is

necessary to study the conditions like heavy load cases when there is lot of matches in the

text. [11], introduced the multi-phase hash to reduce the memory usage proposed the idea to

speed up the searching procedure by dynamic-cut heuristic. This algorithm was the

extension of Wu-Manber (WM) algorithm [12]. For better understanding first we describe

WM algorithm and then the MDH. [12], used the basic idea of Boyer-Moore (BM) String-

matching algorithm, but showed how to support the multiple patterns without sacrificing

speed. In the preprocessing stage three tables are build, SHIFT table, HASH table and

PREFIX table. BM looks at characters from text one by one, but in WM looks as block of size

B. SHIFT table is similar to BM, but not exactly same. Instead of shifting just one character,

WM shifts the last B characters. SHIFT table determines the size of characters to be shifted

when the text is searched. The selection of B depends on the number of patterns. To avoid

matching every pattern in the pattern list used the hashing technique to reduce the number

of pattern comparisons. Used the same index number for HASH table as SHIFT table, to

point the list of patterns whose B characters are hashed. While mapping the last B characters

of all the patterns, they also mapped the first B' characters into PREFIX table to avoid the

higher likelihood collisions (after finding the match it also compared with the respective

PREFIX table index to check the exact match). HASH and PREFIX tables are used to verify

the match. If pattern list increases, there will be high hash collision and will reduce the

average shift value, so there will be compromise in the matching. By increasing the block

size B can handle the high hash collision, but if B increases, SHIFT and HASH table will also

grow, which increases the memory requirement. To overcome this problem, MDH [11] will

be the solution. As we know that SHIFT and HASH table entries are one-to-one relation, but

MDH uses two compressed HASH table and PMT (possible matching patterns) table with

SHIFT table. First HASH table is same as the above HASH table and for second hash table,

MDH rehashes the SHIFT value and stores in the PMT table. In searching stage B size text

window will slide from leftmost position of text to right. For each B size text window

calculates the hash function and checks the related SHIFT table entry. If the SHIFT value in

not zero move the window to right and so on. Otherwise hash this text window characters

again using second hash function, now use the new hash value to identify the entry in PMT

table. In the last step verify every possible matching pattern linked in this entry and then

move the text window right to restart whole procedure again.

Exclusion based String Matching Algorithm

General purpose string-matching in network intrusion detection systems (NIDSec)

has the high cost of running for string matching computations. [13], designed a multiple

string-matching technique, E2xB to solve some specific characteristics of NIDSec and also to

increase the efficiency and capacity of NIDSec. Initially, proposed ExB [14] to find the quick

negatives when the search string does not exist in the packet. The major improvements are

removing overhead associated with initializing the occurrence map and faster preprocessing

stage. The basic idea of ExB is to check whether the input (data packet received) contains the

entire fixed size bit strings of the signature string, but not considering the bits are in

sequence or not as existing algorithms. ExB declares signature does not match, if one bit-

string of signature is not appeared in the packet. ExB creates occurrence bitmap, marking

each fixed size bit-string that exists in the packet. Occurrence bitmap strings are matched

against the bit-string of each signature. They defined the false matches or false positives as

follows, suppose s is small string and I be the input string, if s contains at least one character

that is not in I, then s is not a substring of I. The other case is where every character of s is in

I, but s is not the substring of I which is a false positive. The way of checking the given

character c belongs in I or not will make the method effective; this check is done with the

help of occurrence map. To reduce the false positives they are going with pair of characters,

i.e., instead of recording the occurrence of single character in string I, they are recording the

pair of consecutive characters in string I. In matching process also, instead of determining

the single character is present in I, E2xB checks the pair of characters present in I.

Aho-Corasick with Magic states String matching algorithm

[15], proposed a novel and effective string-matching algorithm named ACMS. It

reduces the memory requirement without sacrificing speed by using the characteristics of

magic states from deterministic finite state automata (DFA). From the name of algorithm we

can say that the algorithm is the combination of AC algorithm and Magic States of DFA.

Automata models has two stages, first stage searches for the next state in the state table by

composing the current state and input character and in second stage it identifies if the next

state is the output state or not, to get the respective matching pattern id. [15], thought that by

using the tiny data structure the running cost will be reduced. In general first stage is

represented as the state transition matrix, the element e(x,y) is the next state when the

current state y receives the input character x. [6], showed how to speed up the AC matching

machines by rearranging states, now ACMS just rearranges the state 0 to state t. This

rearranging process is called renumbering and that has two steps, in the first step it will find

the magic states and in the second step it will partition the transition matrix. If the state is

receiving the same input character, so that state will have same next state and they are

calling this state as magic state. The transition matrix is partitioned based on the threshold,

first matrix will have the state values that are smaller than the threshold and second matrix

is compressed by the process to generate the Bitmap Matrix B and State List Matrix S. The

size of second matrix and B are same and every state of second matrix has one state in S. The

process is described as, it identifies all the elements in the second matrix, if the element is

not a magic state then the corresponding location in B is set to 1 and the next state is inserted

to S, otherwise the corresponding location in B is set to 0. The entire algorithm is clearly

explained with example in [15]. By partitioning the transition matrix and the magic state

based search can reduce the running time. In worst case, the state transitions are more than

the threshold, that is if the input characters are supposed to find the next states from the

second matrix, then mappings will increase, this will have an impact on the performance of

algorithm.

Character Index Aho-Corasick string matching algorithm

[16], proposed a memory efficient string-matching algorithm for network intrusion

detection systems by examining the number of characters in a pattern set is less than the

total number of characters. This algorithm is also based on DFA model. DFA search is used

because its search speed is high when compared to NFA search. As routine string-matching

this algorithm also has two stages. First is the preprocessing stage, here AC DFA is

constructed which was explained in the previous algorithm. Then search the DFA to find the

columns that are equal to the zero matrixes. Transpose the matrix to the AC DFA, that

translates the state node into the character node and each character node has n next state

entries corresponding to all the states (please refer figure 5 and 6 of [16], which shows the

matrix transpose). By referring to the previously searched column numbers merge these

zero rows to one row. Now a character indexed table with pointers to all the character nodes.

Next is the searching stage, read one character to point out the CIAC DFA character node

from corresponding character index table. Then read the current state to go to the next state

value by checking the character node. Now set the previously found state as the current

state. Check the current state to decide the match is found, and continues the process till all

the input characters completed.

Analysis:

In our view RQS works well for worst case scenario (i.e., if the input string and search string

are same and shift value is always equal to one), because it remembers the matched

characters and avoids the comparison of next check point every time. Exclusion based string

matching algorithm can be improved by increasing the pair of sequence bits. This algorithm

works well for small packets and rule sets. A CCSH and MDH algorithm uses the hashing

scheme for fast and scalable string matching algorithm. These algorithms give adverse

results if many signatures have the same hashing value, for better performance hashing

value should have evenly distributed signatures. In general for automata models single

memory reference is needed for each input character but the time complexity is equal to the

number of input characters, i.e., the usage of memory is more. To reduce the usage of

memory ACMS [15] algorithm uses the magic states as discussed earlier. [15], they compared

the memory usage and throughput at different thresholds and observed that there is a high

throughput with more memory usage. We feel that the threshold plays a major role in

memory usage and performance. That is if threshold is small, than the mappings to the

transition matrix and magic states increases which will decrease the performance. As they

are considering bitmap matrices, so the usage of memory will be less when compared to the

traditional one. Other automata based model CIAC string matching algorithm; it indexes the

transition matrix based on characters, so it obviously allows the fast access to the matrix, and

because of data structure the space complexity also reduces.

All the above algorithms are compared with the base algorithms in the paper, but with

different datasets and with different methodology, so it not proper to do the quantitative

analysis. Every mentioned algorithm performed well in terms of space and speed with the

base algorithms mentioned in the papers. Discussed analysis are summarized in the

following table,

Algorithm Space Speed Algorithm complexity

AN (array NEXT) Fair Fast Simple (but necessary to

consider some rules)

RQS (Robust Quick

string matching

algorithm)

Good Fast (in worst

case also)

Simple

CCSH (Contents

Correction Signature

Hashing String

Matching Algorithm)

Good (depends

on the size

pattern list)

Fast Simple

MDH (Multi-Phase

Dynamic Hash String

Matching Algorithm)

Good (depends

on the size

pattern list)

Fast Complex

E2xB (Exclusion based

String Matching

Algorithm)

Good for small

sets and Poor for

large pattern sets

Fast (for small

packets)

Complex (need to take

care of search procedure)

ACMS (Aho-Corasick

with Magic states

String matching

algorithm)

Depends on the

threshold

Fast Complex

CIAC (Character Index

Aho-Corasick string

matching algorithm)

Good Fast Simple

References:

[1]. Charras, C. & Lecroq, T., Handbook of Exact String Matching Algorithms, King's

College Publications, 2004.

[2]. M. Fisk and G. Varghese., Applying fast string matching to intrusion detection,

Technical Report In preparation, successor to UCSD TR CS2001-0670, University of

California, San Diego.

[3]. Liuling Dai, An aggressive algorithm for multiple string matching, Information

Processing Letters, Elsevier North-Holland, Inc., 2009, 109, 553-559,

http://portal.acm.org/citation.cfm?id=1519558.1519953 .

[4]. James Joshi, Saurabh Bagchi, Bruce S. Davie, Adrian Farrel, Bingrui Foo, Vijay K.

Garg, Matthew W. Glause, Gaspar Modelo-Howard, Prashant Krishnamurthy, Pete

Loshin, James D. McCabe, Lionel M. Ni, Larry L. Peterson, Rajiv Ramaswami, Kumar

N. Sivarajan, Eugene H. Spafford, George Varghese, Yu-Sung Wu and Pei Zheng,

Network Security: Know It All, Elsevier Inc, 2008.

[5]. Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, Tsern-Huei Lee, Using String Matching

for Deep Packet Inspection, IEEE Computer Society, vol.41, pages 23-28, April 2008

[doi>10.1109/MC.2008.138].

[6]. Alfred V. Aho and Margaret J. Corasick. 1975. Efficient string matching: an aid to

bibliographic search. Commun. ACM 18, 6 (June 1975), 333-340.

DOI=10.1145/360825.360855 http://doi.acm.org/10.1145/360825.360855 .

[7]. M. Gao, K. Zhang, and J. Lu, “Efficient packet matching for gigabit network intrusion

detection using TCAMs,” in Proc. of 20th International Conference on Advanced

Information Networking and Applications (AINA’06), 2006, pp. 249–254.

[8]. Yuebin Bai; Kobayashi, H., “New string matching technology for network security,”

Advanced Information Networking and Applications, 2003. AINA 2003. 17th

International Conference, 27-29 March 2003, pp198 -201.

[9]. Jianming Yu and Yibo Xue, Robust Quick String Matching Algorithm for Network

Security, Journal of Computer Science & Network Security, pp180~184, Vol.6, No.7B,

July 2006.

[10]. J.S.Wang, H.K.Kwak, Y.J.Jung, H.U.Kwon, C.G.Kim and K.S.Chung, A Fast and

Scalable string matching algorithm using contents correction signature hashing for

network IDS, IEICE Electronic Press, vol 5, no 22, 949-953, 2008.

[11]. Zongwei Zhou, Yibo Xue, Junda Liu, Wei Zhang and Jun Li, MDH: A High Speed

Multi-phase Dynamic Hash String Matching Algorithm for Large-Scale Pattern Set,

ICICS 4861, pp. 201-215, 2007.

[12]. S. Wu, U. Manber," A fast algorithm for multi-pattern searching," Tech. R. TR-94-17,

Dept. of Comp. Science, Univ of Arizona, 1994.

[13]. Anagnostakis Antonatos Markatos, K. G. Anagnostakis, S. Antonatos, E. P. Markatos

and M. Polychronakis, A Domain-Specific String Matching Algorithm for Intrusion

Detection, In Proceedings of the 18th IFIP International Information Security

Conference, 2003.

[14]. E. P. Markatos, S. Antonatos, M. Polychronakis, and K. G. Anagnostakis. ExB:

Exclusion-based signature matching for intrusion detection. In Proceedings of the

IASTED International Conference on Communications and Computer Networks

(CCN), pages 146–152, November 2002.

http://portal.acm.org/citation.cfm?id=1519558.1519953
http://doi.acm.org/10.1145/360825.360855

[15]. Nen-Fu Huang; Yen-Ming Chu; Chen-Ying Hsieh; Chi-Hung Tsai; Yih-Jou Tzang; , "A

Deterministic Cost-effective String Matching Algorithm for Network Intrusion

Detection System," Communications, 2007. ICC '07. IEEE International Conference,

vol., no., pp.1292-1297, 24-28 June 2007, doi: 10.1109/ICC.2007.218 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4288889&isnumber=42886

71 .

[16]. Jianming, Y., Yibo, X., and Jun, L. 2006. Memory Efficient String Matching Algorithm

for Network Intrusion Management System, In Proceedings of Global

Telecommunications Conference, San Francisco, California, USA, pp. 1--5.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4288889&isnumber=4288671
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4288889&isnumber=4288671

