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Abstract- This paper proposes an intelligent workplace parking
garage for plug-in hybrid electric vehicles (PHEVs). The system
involves the developed smart power charging controller, a 75kW
photovoltaic (PV) panel, a DC distribution bus and the AC utility
grid. Stochastic models of the power demanded by PHEVs in the
parking garage and output power of PV are presented. In order to
limit the impact of PHEVs' charging on the utility AC grid, a
fuzzy logic power flow controller is designed. Based on their
power requirements, PHEVs were classified into five charging
priorities with different rates according to the developed
controller. The charging rates depend on the predicted PV output
power, the power demand by the PHEVs and the price of energy
from the utility grid. The developed system can dramatically limit
the impacts of PHEVs on the utility grid and reduce the charging
cost. The system structure and the developed PHEVs smart
charging algorithm are described. Moreover, a comparison
between the impacts of the charging process of the PHEVs on the
grid with/without the developed smart charging technique is
presented and analyzed.

Index Terms-Charging priority levels, fuzzy logic, hybrid DC
distribution system, plug-in hybrid electric vehicles, solar energy,
impacts limitation.

I. INTRODUCTION

PLUG-IN hybrid electric vehicles (PREVs) are gaining
popularity due to several reasons; they are convenient,
sleek, quiet, and less polluting to the environment. PREYs

have the potential of reducing fossil energy consumption and
green- house gas emissions and increasing the penetration of
sustainable energy sources such as solar energy and wind
energy into our daily life [1]-[3]. Furthermore, most personal
vehicles in the US are parked more than 95% of the day and
generally follow a daily schedule [4]. Therefore PREYs can be
used as mobile energy storage in the future. More than 75% of
drivers in the U.S.A travel less than 45 miles round trip for their
daily commute, which is just right for PREVs. Many oftoday' s
PREVs can go up to 100 miles on a single charge. This is
because battery technology continues to advance and hence
batteries are becoming smaller while storing more energy. It is
forecasted that in North America PREVs will be on the roads in
large numbers in the very near future [5].

However, with the increasing of the number ofPREVs, huge
impacts on the utility take place if properly designed smart
charging techniques are not utilized. Uncoordinated and
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random charging activities could greatly stress the distribution
system causing several kinds of technical and economic issues,
such as suboptimal generation dispatch, huge voltage
fluctuations, degraded system efficiency and economy, as well
as increasing the likelihood of blackouts because of network
overloads. In order to maximize the usage of renewable energy
sources and limit the impacts ofPREVs' charging to the utility
AC grid, a smart power flow charging algorithm and controller
should be designed. Moreover, accurate PV output power and
PREVs power requirement forecasting models should be built.
PREYs need to participate in vehicle-to-grid (V2G) and
vehicle-to-vehicle (V2V) power transactions during the
charging process; accordingly fully controlled bi-directional
AC-DC/DC-AC and DC-DC converter are needed in this
system.

In [6], [7], load management solutions for coordinating the
charging process ofmultiple PREVs in smart grid system based
on real-time minimization of total cost of generating the energy
plus the associated grid energy losses were proposed and
developed. However, they did not consider the inclusion of a
renewable energy source in the system, which holds the
implementation of these algorithms back since we know that
the concept of PREVs is attached with obtaining the power to
charge them from renewable energy. In addition, the control
strategy did consider charging priority level, but the level is
based on how much the owner of the PEV is willing to pay, not
the state of charge (SOC) of the PREYs' batteries. So the
efficiency ofV2V and V2G service is low.

In [8], [9], an intelligent method for scheduling the usage of
available energy storage capacity from PREVs is proposed.
The batteries on these PREVs can either provide power to the
grid when parked, known as V2G concept or take power from
the grid to charge the batteries on the vehicles. However, the
detail about the energy dispatch during charging and V2G
process is not given. Also the sacs ofthe PREYs' batteries are
not considered during the process.

A fully controlled bi-directional AC-DC/DC-AC converter
has been designed and implemented in [10]. This converter has
the capability of controlling the amount of power flowing
between the AC and DC sides of the systems in both directions
while operating at unity power factor and within acceptable
limits of time harmonic distortion (THD) for the current drawn
from the grid. Hence, the amount of power flowing in either
direction can be set to a certain pre-set value while the
controlled rectifier working as a voltage rectifier maintains the
power balance as it is free to supply any power needed in the
DC grid. In addition, a controlled DC-DC boost converter and a
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TABLE I
PARAMETERS FOR PREVS IN DIFFERENT SIZE

PHEVs model Percentage Battery capacity Energy consumption
(kWh) permile (kWh/mile)

compact sedan 32.5% 10-20 0.2

full-size sedan 37.5% 20-30 0.3

mid-size SUV 20% 30-40 0.45orpickup

full-size SUV 10% 40-50 0.6orpickup

bi-directional DC-DC converter are proposed and tested in
[11]-[13].

In this work, a hybrid DC PREVs workspace parking garage
charging system is established and tested. A 318V
grid-connected DC power distribution network combined with
PV and PREVs parking garage is designed. Accurate PV and
PREVs power stochastic models based on statistics theory are
studied. Meanwhile a fuzzy logic power flow controller is
designed.

This paper is organized as follows, the system description
and problem formulations are given in section II, the stochastic
models of the PREYs parking system and PV are given in
section III, the details of the developed real-time fuzzy logical
power flow controller is given in section IV, a method to
classify PREVs into five priority levels and how to adjust their
charging rates is given in section V, results and discussion are
given in section VI and fmally, some concluding remarks are
provided in section VII.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a workplace parking garage DC hybrid power
system equipped with a PV panel and having certain parking
positions. Each workday some vehicles will park in the garage
during the working hours. Those vehicles have different sizes,
battery capacities and energy consumptions per mile. The
specific detail is shown in Table I. Whenever a PREV is
connected to the parking garage, the owner of it will set the
departure time, and the system will make a record. Usually at
the departure time, the SOC of the batteries is expected to be at
least 80%. In order to take the battery protection into
consideration, the PREYs' SOC of the batteries shouldn't go
below a certain limitation. After reaching this limitation,
instead of using electric energy, PREVs will consume gas by
using the combustion engine.

The schematic diagram ofthe system under study is shown in
Fig.l. As can be seen, the PREYs with their bi-directional
DC-DC chargers and the PV source with its DC-DC regulating
interface share a common DC bus. Hence, the charging park
acts as a DC micro-grid that has the ability to send or receive
power from the main grid. The amount of power transferred
between the AC and DC sides is determined according to the
decision ofthe developed energy management algorithm. Fig. 2
shows the response of this converter to a step change in the DC

current reference from -4 A to 1 A; this means that the current
will reverse its direction instead of sending power from the DC

Fig. 1 Schematic diagram oftheinvestigated system

Fig. 2 Bi-directional converter response toa step change intheDC current
reference from -4 to 1 A. (a)DC current, idee4 A/div, 10 ms);(b) DC voltage,
vde(1000 V/div, 10 ms); (c)AC phase voltage, eaC30 V/div, 10 ms); (d) AC
current, iaC5 A/div, 10 ms).

micro-grid to the AC side to receiving power. More simulation
and experimental results on this converter as well as the
controlled rectifier were illustrated in [1]-[2]. In addition, a
controlled DC-DC boost converter and a bi-directional DC-DC
converter are utilized to interface the PV source and the PREYs
to the DC bus as shown in Fig. 1.

In order to limit the impact ofPREVs' charging to the utility
AC grid mean while let the PREYs participate in the V2V and
V2G power transactions, the parking garage should have a
smart charging algorithm that can adjust the charging rates for
PREYs under different utility AC energy price (E 0 ) and

przce

different power flow estimation (p 0 ). Since the hourly E 0

grid przce

is assumed to be pre-known, the most essential point is to
estimate p 'd ? which is given by (1).

grt

p = p - p - P (1)grid PV total upcoming

where
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TABLE II
ARRIVAL AND DEPARTURE TIMES DISTRIBUTION PARAMETERS

Arrival Departure

Parameter Weekday

9

1.2

Weekend

11

1.5

Weekday Weekend

18 15

1.2 1.5

Fig. 3 The PDF ofthe daily parking duration.

p == M d X Em (2)
PHEV D

t
- At

If total energy consumption is equal or more than 70% ofthe
battery capacity:

mathematical models. The forecasting model used to predict
the PV output in this paper is regenerated from the model
derived in [14] using the historical PV data described in the
previous subsection.

B. PHEVs Power Requirement Forecasting Model
In order to develop an accurate PREYs parking system

model, it is essential to estimate the probability density function
(PDF: a function that describes the relative likelihood for this
random variable to take on a given value [15]) of the power
needed by each PREV when it is connected to the parking lot
P This variable is varying based on the PREVs models,PHEV·

parking duration times, daily travel distances.
For the purpose of protection, battery should not be over

discharged. Because PREVs can use both electric energy and
fossil energy, once the soc of the battery is below 10%,
PREVs stop using electric energy. Therefore, the electric
energy ofa PREV can be used before the next charge is 70% of
the total battery capacity. If the energy consumption is more
than this value, PREV will use gas. Therefore, if the total
energy consumption for a certain PREV before next charging is
less than 70% ofits battery capacity, the energy needed by it for
next time ofcharging is M x E . Otherwise, the energy needed

m

by it is 70% of its battery capacity. The constant charging
power needed by this PREV is given as below (2) and (3). In
order to find p we need firstly to get distribution of daily

PHEV'

travel distance, daily parking duration time.
If total energy consumption is less than 70% of the battery

capacity:

• p is estimated PV output power for next period T;PV

• p is the power needed by the PREVs that are
total

already parked in the parking garage;
• p 0 is the estimated power requirements by theupcomzng

upcoming PREVs which will connect to the parking
garage in the next period T.

In order to design the smart charging control algorithm, an
accurate power requirements forecasting model is needed to
estimate p 0d.

grt

For the power flow control for next period T, the charging
rates for different PREYs should be adjusted based on E 0

przce

andp 0 • Because the system is highly nonlinear, fuzzy logical
grzd

controller is a good choice for solving this issue.
Since at a certain time, the PREVs in the parking garage may

have different sacs and different departure time, their average
constant power requirements are different. On one hand, some
PREVs may need a huge amount of energy and the departure
time is close, then this kind of PREVs should be classified into
the high priority level. On the other hand, some PREYs' soc
are already high and their departure times are several hours
later, then this kind ofPREVs should be classified into the low
level. Therefore PREVs priorities classification should be
designed.

The objective of this paper is to design a grid-connected
workplace hybrid DC PREYs charging parking garage system,
with fuzzy logic power flow controller and PV. The goal is to
limit the impact ofPREVs' charging to the utility AC grid and
maximize the utilization ofpower generated from PV.

III. MODELING THE STOCHASTIC PHEVS PARKING SYSTEM

A. PV Output Power Forecasting Model
In order to manage the energy in the charging park in a real

time manner, the power available from the PV source should be
predicted and considered. Accuracy ofthe decision made by an
algorithm is affected by the accuracy of the predictive models
used to model the uncertainties in the system, i.e. PV power in
this case. Hence, we count on real data to forecast the PV output
power. The data forecasting process was based on PV data
collected over 15 years on an hourly basis for an example PV
system in the state of Texas. The output power data was used as
the output to be forecasted, whereas the day of the year (1-365)
and the hour of the day (1-24) were used as inputs. Different
model evaluation indices were used to validate the developed

p == _7_0_%_x_B....;;....c
PHEV D

t
- At

where
• M is the driver's daily travel distance;

d

• A is the PREY's arrival time;t

• D is the PREV's departure time;
t

(3)
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• Em is the PREY's energy consumption per mile;

• Be is the PREV's battery capacity.
In this work, the parking garage is located in some workplace

like a company whose office hours are from 9:00am to 18:00
pm. Based on the Central Limit Theorem (the conditions under
which the mean of a sufficiently large number of independent
random variables, each with fmite mean and variance, will be
approximately normally distributed [16]), the distribution of
the PREYs arrival and departure time is shown as the Table II.
With the PDFs of At and D, ' the joint probability density

function of D t - At can be founded, which is the daily parking
duration time. It's a normally distributed random variable with
f.1d and(J d == 1.92 a. The PDF of the daily parking duration is
shown in Fig. 3.

Based on the known driving pattern statistics, the average
yearly total miles driven ofU.S.A is 12,000 miles with 50% of
drivers drive 25 miles per day or less, and 80% of drivers drive
40 miles or less. So a log normal distribution with f.1 m == 3.37 ,

(Jm == 0.5 is selected to approximate the PDF ofM d ' which
shows that the total yearly driving distance average is 12,018
miles, 48% of the vehicles drive 25 miles or less each day, and
83% of the vehicles drive 45 miles or less each day, which
closely approximate the driving performance results from [1].
The distribution function for M d is given in (4).

f ( ) 1 exp{- (lnx-~mY} (4)
x x;/lm,(Jm = x(Jm.J2i 2(Jm

With the PDF of daily duration time, PDF of daily travel
distance, power consumptions of each class of PREVs, by
using the MATLAB statistic distribution fitting toolbox and
Monte Carlo simulation with 30000 samples, the PDF of
constant power needed by each PREV when it is connected to
the parking lot: PPHEV is finally found as an inverse Gaussian

distribution with II p == 1.573 andA
p

== 3.652 . The distribution

function for PPHEV is given in (5). The PDF of the M d ' PPHEV

are shown in Fig. 4 and Fig. 5, respectively.

~p -. 2 (5)fx (x, II r>Ap) == --3 exp{ - --2-(X - II p) }
2nx 2II p x

After getting the probability distribution function ofPPHEV '

the forecasting model of power needed by PREVs in the
parking system is built. Together with the forecasting model of
the power generated by renewable energy sources and hourly
price of the energy from utility grid, a real-time smart parking
system is established. For instance, at a certain time t, the SOC
ofthe PREVs already parked in the parking lot and their power
requirements are already know, in order to forecast the power
needed by the PREYs which will arrive during the upcoming
period T, we can use the following equation.

i -r /\

Pupcomiog = ffA, (x, /l A,'(JA,)dt x NP x P PHlW _ovg (6)
t

where

Page 4 of 8
4

Fig. 4 The PDF of the daily travel distance.

Fig. 5 Power needed by each PHEV when connected to the parking garage.

• NP is the total number ofPREVs that will park in the
parking lot this day;

• t: (x, II At' (J At) is the PDF of the arriving time At;

• PPHEV _ avg is the average constant power requirement
for all PREVs when they are connected to the parking
lot. PPHEV _avg can be calculated from the PDF of

PpHEV·

IV. REAL TIME Fuzzy LOGICAL POWER FLOW CONTROLLER

In the previous section, the model of the parking garage is
already built and the PDF of the PPHEV is already known.

Together with the stochastic model of PV and hourly energy
price from the AC utility grid, a smart charging algorithm with
fuzzy logical power flow controller is designed. The flowchart
is shown as Fig. 6.

The charging rates of PREVs in different priority levels for
next period is varying based on the forecasting of the power
generated by the PV, the forecasting ofthe power needed by the
upcoming PREVs, the price of the utility energy grid and the
power need by the current PREYs. Without V2V and V2G
service, the power flow for next period between the utility AC
grid and the hybrid parking system can be calculated using (1).
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Update each PREVs SOC,
battery capacity, staying duration

Charge/discharge PREVs and fulfill
V2G and V2V services.

Fig. 6 The flowchart of the developed real time fuzzy logical charging
controller.

The next period price of the energy E 0 and the next period
przce

forecasting power flow Pgrid are used as the two inputs of the
real time Mamdani-type fuzzy logic power flow controller to
determine the charging index 8 , which will determine the

p

charging rates ofPREVs in different priority levels. The power
flow between utility AC grid and DC hybrid system: Pgrid is
described as "negative", "positive small", "positive medium",
"positive" and "positive big". Similarly, the energy price Eprice

is described as "very cheap", "cheap", "normal", "expensive",
and "very expensive". The method implemented for
defuzzificationis centroid based. Within the model, minimum
and maximum are used for "AND" and "OR" operators,
respectively. The output of the fuzzy controller is the index 8

p

which is used for adjusting the charging rates for PREYs in
different priority levels. The parameter 6pis described as "NB",
"N", "Z", "P" and "PB", which stand for negative big, negative,
zero, positive and positive big. The Mamdani-type model based
fuzzy rules of the fuzzy logical power flow controller is given
in Table III. The surface of the fuzzy controller's rules and the
membership functions of p sd ? E 0 and 8 are shown in Fig.

grt przce p

7 and Fig. 8.
TABLE III

FuzzyLOGIC RULES

Pgrid Negative Positive Positive positive positive
«.: small medium big

very
Z P PB PB PBcheap

cheap Z P P PB PB

normal N Z P P PB

expensive N N Z P P
very NB N Z P Pexpensive

Fig. 7 Surface ofthefuzzy logic controller's rules.

Fig. 8 Membership functions. (a)Power flow; (b)Energy price; (c)Power
flow control index.

With the charging index S , which varies from -1.0 to 1.0,
p

the charging rates for PREVs in different priority levels will be
obtained.

V. CLASSIFICATION OFPREYs INTO FIVEPRIORITY LEVELS

The charging rates of different PREVs with different SOCs
and power requirements should apparently be charged with
different charging rates. For example, a PREV is connected to
the parking lot at 9:00am and the departure time is 6:00pm, the
SOC of charge is 65%, then the average constant power
required by this PREV is small. At the same time, another
PREV is connected to the parking lot also at 9:00am but will
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TABLE IV
CHARGING RATES FOR DIFFERENT CHARGING LEVELS

Priority level Power requirement Maximum Minimum
charging rate charging rate

Levell p ~ 15 kW l2kW l2kW

Level 2 10kW s p < 15kW l2kW 6kW
Level 3 5kWsp<10kW 8kW OkW

Level 4 2kW s p < 5kW 5kW -5kW
Level 5 p < 2kW 2kW -8kW

leave at 10:30am and the SOC is only 10%, then this PREY's
average constant power requirements is larger than the former
one, which means the charging situation of this PREV is more
emergent than the former one. So in order to reduce the impact
ofthe PREYs' charging to the utility AC grid, at a certain time,
different PREVs should be charged at different charging rates.
What's more, since the former PREV will stay in the parking
lot more than 8 hours, it can be viewed as energy storage during
this period. For instance, at a certain time the energy price is
below the daily average price, and PV generates more power
than the total PREVs requirements, then the extra power can be
saved in this PREV as backup energy, by doing this the priority
level ofthis PREV will keep decreasing. At another time during
this period, the price of utility grid energy is high also the
power generated by the PV can't meet the total PREYs power
requirement, instead of buying power with high price from the
utility grid, the parking system can get the backup extra energy
from this PREY, by doing this the priority of this PREV will
increase. So during the whole day, all PREVs priorities are
varying with their sacs, by doing this energy can be delivered
betweenV2G and V2V.The five charging priorities are shown
in Table IV.

PREYs' charging priority levels are just dependent on their
power requirements. Also because of bi-directional power
flow, PREVs can be charged and discharged, so their charging
priority levels are varying with time. PREVs in levels1, 2 and 3
can only be charged. Those PREVs either need a lot of energy
(such as soc is only 10% when connected to the parking
station) or will leave in a short time but still have not met the
owners charging requirement (such as soc is only 65% but
will leave in half an hour). PREVs in level 4 and 5 can be
discharged to fulfill the V2G and V2V service, those PREYs
will continue staying in the parking lot for a longer time, at the
same time their sacs are already high enough. But as the time
passes, the PREYs in low level may jump to higher levels and
vice versa. With the charging index 8 , the charging rates of

p

PREYs in levels 1-5 are given in (7)-(11).
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VI. RESULTS AND DISCUSSION

In this part, a 318V DC workplace parking garage hybrid
power system equipped with a 75kW photovoltaic (PV) panel
has 350 parking positions, and each workday around 300
vehicles will park in the garage during the work hour from
9AM to 6PM. In the 300 vehicles, around 60% of them are
PREYs. The battery capacities, energy consumptions per mile
of PREVs in different sizes are given in Table I. The parking
garage will upgrade all the information every 6 minutes, and
generate new charging index 8 to adjust the charging rates for

p

the PREYs parking in it. All the PREYs are assumed be only
charged at this workplace parking garage, and the state of
charge (SOC) of the batteries are expected to be over 80% at
their departure times. The PREYs' SOC of the batteries
shouldn't go below 10%.

Two experiments are done both in MATLAB simulation and
hardware test. The first one is the power flow between the
utility grid and the DC hybrid PREVs parking garage without
real-time charging optimal control and the second one contains
real-time fuzzy logic charging optimal control. Both
experiments are under same conditions: same number and types
of PREYs, same departure and arrive times, same hourly
energy price and same power generated by the PV.

The simulation of the power flow during the daytime and the
PREYs' sacs at departure time for parking garage without
optimal charging method is shown in Figs.9 and 10. Whenever

Fig. 9 Hourly power flow from AC grid without optimal controller.

Pch arg ing _ rate == 12,

Pcharging _rate == 9 + 3 X 8 r>

Pcharging _rate == 4 + 4 X 8 r>

Pcharging _rate == 0 + 5 X 8r>

Pcharging _rate == -3 + 5 X 8r:

(7)

(8)

(9)

(10)

(11)

Fig. 10 PHEVs' SOCs at their departure time without optimal controller.
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Fig. 11 Hourly power flow from AC grid with optimal controller

a PREV is connected to the parking garage, it will be charged
with a constant charging rate: 10kW, it will not stop charging
until the SOC of its battery reach 80%. From the simulation it is
clear the peak happens around 9AM, because most of the
PREYs arrive around this time every day. The peak is near
700kW, and the power flow above 300kW lasts from 7:30AM
to 11:20 AM, more than three and half hours. After 13:30 PM,
the charging stops, because all the PREVs that are parking in
the garage at that time already meet the charging requirement.
After 13:30PM, because no more new PREYs connect to the
parking garage, there is no power flow between the utility AC
grid and the parking garage. But at that time, the PV's output
power is still high, while the energy price at that time is cheap.
It's not a good time to sell power to the AC grid, but the parking
garage without optimal charging control doesn't have any other
options but selling power. From Fig. 10 it is clear all the PREVs
sacs are above 80% at their departure times, this make sense
because all of them are charged with the same high enough
charging rates.

The simulation of the power flow during the daytime and the
departure PREYs' soc for parking garage with optimal fuzzy
logic charging controller is shown in Figs 11 and 12. From
Fig.ll it is clear that the peak of the power flow from AC utility
grid to the smart parking garage is limited below 300kW, and
the power flow which is above 250kW only lasts from 9:30AM
to 11:20AM and partly in the afternoon around 16:00PM, all
together no more than two and halfhours.

What's more, when the energy price goes high, the power
flow from the AC side will decrease apparently, which happens
around 17:00PM. Also when the PV output power is above a
certain amount, power flow from AC grid to the smart charging
garage will decrease because more PREVs will be charged by
the power generated by the PV. From Fig. lOwe can see all the
PREYs' sacs are above 80% at their departure times, which
also meets the charging requirements.

Fig. 13 shows the variation of a randomly chosen PREYs'
soc during the charging process with optimal fuzzy logic
charging controller. This PREV is connected to the parking
garage at 8:18AM, and the departure time is 17:12PM. When
this PREV is connected to the parking garage, the soc is
around 28%, and the PREY's owner enters the departure time
17:30 PM. So the charging system can calculate the real time

Fig. 12 PHEVs' sacs at their departure time with optimal controller.

Fig. 13 Variation ofPHEV's SOC during the charging process.

average power requirement for this PREY. At the very
beginning from 8:00AM to 10:00AM, because the duration
time is long, this PREV's average power requirement is low,
and it is classified in to level 4 or level 5. And at that time the
energy price is high, so instead of buying power from AC grid,
the parking garage use the energy stored in this PREVs to
charge PREYs in the higher level. That's why the soc of this
PREV is decreasing during this period. From 10:00AM to
13:30PM, during this period the AC grid energy price is low, so
more power are bought from AC side. And because 8 is

p

positive, this PREY's charging rate is positive. However,
because the duration time is still long, the priority level is still
low, so the charging rate is small. After 14:00 PM, because the
departure time is near, the priority level is high, and the
charging rate is higher than before. This charging rate is kept
until 17:12PM, when the soc is already above 80% and the
departure time is very near. So this PREV doesn't participate in
V2G or V2V power transactions anymore and the soc is
constant for the rest of the time.

Fig. 14 shows the comparison of the voltage variation on the
AC bus corresponding to the PREYs' charging process
with/without optimal fuzzy logic charging controller. It is clear
during for the charging without optimal charging controller, the
voltage on the AC bus will drop to around 0.75P.U of the rated
voltage. Also, the voltage below 0.9P.U lasts more than three
hours. With the optimal charging controller, the voltage of the
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