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The capacitated multi-facility location problem is a complex and imprecise decision-mak-
ing problem which contains both quantitative and qualitative factors. In the literature,
many objectives for optimizing many types of logistics networks are described: (i) minimi-
zation objectives such as cost, inventory, transportation time, environmental impact, finan-
cial risk and (ii) maximization objectives such as profit, customer satisfaction, and
flexibility and robustness. However, only a few papers have considered quantitative and
qualitative factors together with imprecise methodologies. Unlike traditional cost-based
optimization techniques, the approach proposed here evaluates these factors together
while considering various viewpoints. Decision-makers must deal both factors together
to model complex structure of real-world applications. In this paper, a two-phase possibi-
listic linear programming approach and a fuzzy analytical hierarchical process approach
have been combined to optimize two objective functions (‘‘minimum cost’’ and ‘‘maximum
qualitative factors benefit’’) in a four-stage (suppliers, plants, distribution centers, custom-
ers) supply chain network in the presence of vagueness. The results and findings of this
method are illustrated with a numerical example, and the advantages of this methodology
are discussed in the conclusion.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Today’s global market competition and high customer expectations have forced enterprises to consider their supply
chains (SC) more carefully. Supply chain decisions are important strategic decisions which affect every member of the chain
because the various functions performed by these members are integrated with each other. Among these functions are mar-
keting, distribution, planning, manufacturing, and purchasing.

The capacitated multi-facility location and SC network design problem is one of the most comprehensive strategic decision
problems that need to be optimized for long-term efficient operation of the whole supply chain. This problem determines the
number, location, capacity, and type of the plants, warehouses, and distribution centers to be used. It also establishes distri-
bution channels and the quantities of materials and items to consume, produce, and ship from suppliers to customers [1].

Location-allocation decisions involve substantial capital investment and result in long-term constraints on the production
and distribution of goods. These problems are complex and, like most real-world problems, depend on a number of tangible
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and intangible factors which are unique to each problem. The complexity of these systems arises from a multitude of quan-
titative and qualitative factors which influence location choices as well as from the intrinsic difficulty of making numerous
tradeoffs among those factors [5]. Over and above this complexity, global SC management is difficult because multiple
sources of uncertainty and complex interrelationships at various levels between diverse entities exist in the SC, and therefore
it is very difficult to determine simultaneously the supply chain configuration and the SC total cost. Fast-changing transpor-
tation and facilities costs, facility capacities, and customer demands are some of the SC parameters which are difficult to pre-
dict accurately because of imprecision in the environment.

Supply chain network (SCN) design problems reviewed in the literature have been examined for situations ranging from a
single product type to complex multi-product systems; the models developed range from linear deterministic models to
complex nonlinear stochastic ones. The number of objective functions also depends on the degree of complexity of the prob-
lem. Generally, these problems involve multiple and conflicting objectives such as cost, service level, and resource utiliza-
tion. To deal with multiple objectives and to enable the decision-maker to evaluate a greater number of alternative
solutions, various numbers of supply chain levels or stages and various solution approaches and methodologies have been
used. Supply chain network design levels are determined according to the components of the supply chain network problem
being considered. In this research, papers in the literature have been categorized based on the number of SCN levels. The
criteria considered in the objective functions and the solution methods and methodologies used in the literature are also
reviewed.

Vercellis [40] presented a capacitated master production planning and capacity allocation problem for a multi-plant man-
ufacturing system with two serial stages in each plant. The objective of the problem is to minimize the sum of the various
cost factors, namely the production cost in stages 1 and 2, inventory, lost demand, transportation, and overtime. The result-
ing mixed {0,1} linear programming model is solved by means of LP-based heuristic algorithms.

Zhou and Liu [47] proposed a mathematical model and an efficient solution procedure for a bi-criteria allocation problem
involving multiple warehouses with different capacities. They also considered two conflicting objectives, transit time and
shipping cost, with respect to the warehouse allocation problem. Their proposed solution procedure used a genetic algorithm
that is designed to find Pareto optimal solutions for this problem in a short period of time. Romeijn et al. [32] considered a
traditional deterministic single-DC multi-retailer (SDMR) model. They tried to minimize the location and transportation
costs and the two-level inventory costs. An additional cost term that represents costs related to safety stocks or capacity
issues was also proposed. They formulated the problem as a set covering model.

Cakravastia et al. [9] aimed to develop an analytical model for the supplier selection process when designing a supply
chain network. The assumed objective of the supply chain is to minimize the level of customer dissatisfaction, which is
evaluated by two performance criteria: (i) price and (ii) delivery lead time. The overall model operates at two levels of
decision-making: the operational level and the chain level. An optimal solution in terms of the models for the two levels
can be obtained using a mixed-integer programming technique. Syam [36] extended traditional facility location models
by introducing several logistical cost components such as holding, ordering, and transportation costs in a multi-commodity,
multi-location framework. Their paper provided an integrated model and sought to minimize total physical distribution
costs by simultaneously determining optimal locations, flows, shipment compositions, and shipment cycle times. Two
sophisticated heuristic methodologies, based on Lagrangean relaxation and simulated annealing respectively, were provided
and compared in an extensive computational experiment. Yan et al. [43] proposed a strategic production–distribution model
for supply chain design with consideration of bills of materials (BOM). Logical constraints were used to represent BOM and
the associated relationships among the main entities of a supply chain such as suppliers, producers, and distribution centers.
Moreover, these relationships were formulated as logical constraints in a mixed integer programming (MIP) model, thus
capturing the role of BOM in supplier selection in the strategic design of a supply chain. The total cost of the supply chain
included purchasing cost, production cost, transportation and distribution cost, and fixed costs such as the fixed ordering
cost, the fixed cost to open and operate a producer, and the fixed cost to open and operate a DC. Chen and Lee [11] proposed
a multi-product, multi-stage, and multi-period scheduling model to deal with multiple incommensurable goals for a multi-
echelon supply chain network with uncertain market demands and product prices. The supply chain scheduling model is
constructed as a mixed integer nonlinear programming problem to satisfy several conflicting objectives, including fair profit
distribution among all participants, safe inventory levels, maximum customer service levels, and robustness of decisions to
uncertain product demands. For the solution, a two-phase fuzzy decision-making method was presented.

Amiri [3] developed a mixed integer programming model and presented a Lagrangean-based solution procedure for the
problem. The model minimizes total costs, including the costs to serve the demands of customers from the warehouses, the
costs of shipments from the plants to the warehouses, and the costs associated with opening and operating the warehouses
and the plants. Yilmaz and Çatay [44] addressed a strategic planning problem for a three-stage production–distribution net-
work. The problem consisted of a single-item, multi-supplier, multi-producer, and multi-distributor production–distribution
network with deterministic demand. The objective was to minimize the costs associated with production, transportation,
and inventory as well as capacity expansion costs over a given time horizon. The problem was formulated as a 0–1 mixed
integer programming model. Efficient relaxation-based heuristics were considered to obtain a good feasible solution. Tsiakis
and Papageorgiou [39] proposed a mixed integer linear programming (MILP) model to assist senior operations management
in making decisions about production allocation, production capacity per site, purchase of raw materials, and network con-
figuration, while taking into account financial aspects (exchange rates, duties, etc.) and costs. The objective function included
fixed infrastructure costs, production costs, material-handling costs at distribution centers, transportation costs, and duties.
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Pirkul and Jayaraman [30] presented a Lagrangian relaxation of this model and developed a heuristic solution procedure
which uses the information provided by this relaxation to generate good feasible solutions. Their model minimized the sum
of the costs to distribute products from open warehouses to customers, the costs for transporting units of different commod-
ities from plants to warehouses, and the fixed costs associated with locating and operating manufacturing plants and
warehouses.

Jayaraman and Pirkul [18] studied an integrated logistics model for locating production and distribution facilities in a
multi-echelon environment. The objective function minimized the total cost of the supply chain, including the fixed costs
of operating and opening plants and warehouses, the variable costs of production and distribution, and the costs of trans-
portation of raw materials from vendors to plants and of transportation of the finished products from plants to customer
outlets through warehouses. A mixed integer programming approach was formulated, and a Lagrangean relaxation scheme
was applied to the resulting model.

Syarif et al. [37] considered a logistic chain network problem formulated by a 0–1 mixed integer linear programming
model. This problem involved the choice of facilities to be opened and the design of the distribution network to satisfy
the demand at minimum cost. To solve this problem, a spanning-tree-based genetic algorithm using a Prüfer number rep-
resentation was used. Results were compared with those from a traditional matrix-based genetic algorithm and from the
LINDO professional software package.

Braun et al. [8] first described a six-node network and a model predictive control (MPC)-based management policy. The
objective function for an MPC controller was constructed using three terms: penalized predicted setpoint tracking error, ex-
cess movement of the manipulated variable, and deviation of the manipulated variable from a target value. The optimization
problem can be readily solved using standard quadratic programming (QP) algorithms. Melo et al. [27] proposed a mathe-
matical modeling framework that captures many practical aspects of supply chains, such as dynamic planning horizon, gen-
eric supply chain network structure, external supply of materials, inventory opportunities for goods, distribution of
commodities, facility configuration, availability of capital for investments, and storage limitations. A mixed integer linear
programming model (MILP) for the dynamic relocation problem was formulated. Altiparmak et al. [1] considered three
objectives: (1) minimization of total cost, including fixed costs of plants and distribution centers and inbound and outbound
distribution costs, (2) maximization of customer services that can be rendered to customers in terms of acceptable delivery
time, and (3) maximization of capacity utilization balance for distribution centers. They used a new solution procedure based
on genetic algorithms to find the set of Pareto-optimal solutions for the multi-objective SCN design problem.

In recent years, many people have brought fuzzy theory into facility location and design to deal with the supply-chain
network problem. Zhou et al. [48] proposed three types of fuzzy programming models to model capacitated location-allo-
cation problem with fuzzy demands. Kahraman et al. [19] used fuzzy theory for the select a facility location among alterna-
tive locations. Bilgen [7] presented a fuzzy model consisting of multiple manufacturers, multiple production lines and
multiple distribution centers for application in the consumer goods industry. Liang [26] presented an interactive fuzzy mul-
ti-objective linear programming (f-MOLP) model for solving integrated production and transportation problem with multi-
ple fuzzy goals in fuzzy environments. Roghanian et al. [31] considered a ‘‘probabilistic bi-level linear multi-objective
programming problem’’ and its application to an enterprise-wide supply-chain planning problem. Sakawa et al. [34] are
introduced fuzzy goals into the formulated fuzzy random noncooperative bilevel linear program by taking into account
the vagueness of decision makers’ judgements. Selim and Ozkarahan [35] developed an interactive fuzzy goal program for
supply-chain distribution network design. Chen and Chang [13] developed an approach for deriving the membership func-
tion of the fuzzy minimum total cost in a multi-product, multi-echelon, multi-period supply chain with fuzzy parameters.
Ghatee and Hashemi [15] in their work dealt with fuzzy quantities and relations in multi-objective minimum-cost flow
problem in a supply-chain network. Torabi and Hassini [38] proposed a new multi-objective possibilistic mixed integer lin-
ear programming model (MOPMILP) for integrating procurement, production and distribution planning considering various
conflicting objectives simultaneously as well as the imprecise nature of certain critical parameters such as market demands,
cost/time coefficients and capacity levels.

According to the literature described above, few researchers have considered the inclusion of qualitative factors in
multi-objective problems. Although several effective techniques and models have been used to design the best supply chain
network and to optimize various objectives, little work has been done on incorporating vagueness and imprecision of infor-
mation into the capacitated multi-facility location problem. In this paper, an integrated approach using possibilistic linear
programming and fuzzy AHP is developed to consider both quantitative and qualitative factors. The major objective of this
study is to model the uncertainty problems faced by decision-makers and supply chain managers. A multi-objective linear
programming technique is first used to solve the problem. Fuzzy theory is used to deal with transportation costs between the
stages of the supply chain, fixed costs of facilities, and expert opinions in AHP. Consequently, possibilistic linear program-
ming (PLP) is proposed for solving the problem because it appears a convenient approach for incorporating the imprecise
nature of the real world [28]. Alternatively, bi-level programming can be used to describe model for decision-making
situations where a hierarchy exists. The bi-level programming model consists of two sub-models, which is defined as an
upper-level problem and the other as a lower-level problem. The choice of dominant level limits or strongly affects the
choice of strategy on the lower level.

The rest of the paper is organized as follows: in Section 2, the theoretical background of the possibilistic linear program-
ming and fuzzy AHP methodologies is given. In Section 3, the problem assumptions and the mathematical model are defined.
In Section 4, the model is developed as a crisp model with the aid of the discussions in Section 2. The proposed method is
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illustrated with an example in Section 5. The results and findings are also discussed in this section. Finally, Section 6 con-
cludes the study.

2. Possibilistic linear programming and fuzzy AHP approaches

2.1. Two-phase possibilistic linear programming

In this study, a two-phase multi-objective possibilistic linear programming (MOPLP) methodology is used. The theoretical
background of the two phases is explained below.

2.1.1. Phase 1
The first phase of the two-phase approach involves defining the possibilistic coefficients and structuring their triangular

distribution functions. An ambiguous datum is represented by a possibility distribution pij in possibilistic programming. A
possibility distribution pij is defined by a fuzzy set, with Aij representing a linguistic expression such as ‘‘approximately
aij’’ as pij = lAij, where lAij is a membership function of Aij. A variable aij restricted by a possibility distribution pij is called
a possibilistic variable [17]. Zadeh [45] proposed the concept of generalized constraints which classifies uncertainty situa-
tions as possibilistic, probabilistic, and veristic constraints. In the possibilistic programming approach, a vague aspiration
is represented by a fuzzy goal Gi. A possibilistic linear programming (PLP) problem with imprecise fuzzy coefficients can
be stated as:
max
Xn

i¼1

~cixi

s:t: x 2 X ¼ fxjAx 6 ~b and x P 0g;
ð1Þ
where ~ci ¼ ðcp
i ; c

m
i ; c

o
i Þ, for all i, are imprecise fuzzy coefficients and have triangular possibility distributions. Although various

distributions can be chosen, the triangular and trapezoidal distributions are the most commonly used in solving possibilistic
mathematical programming problems. In this study, only triangular fuzzy numbers will be used because it is simpler to do
so. Because real-world problems usually involve uncertain data, decision-makers should address this imprecise or fuzzy
environment. Hence, the possibility distributions estimated by the decision makers can be described more simply by trian-
gular fuzzy numbers. The most possible value is cm

i (possibility = 1, if normalized); cp
i (the most pessimistic value) and co

i (the
most optimistic value) are the least possible values. The possibility distributions (pi) can be expressed as the degree of occur-
rence of an event [22].

The imprecise objective function with a triangular possibility distribution can be written as:
max ðcmÞT x; ðcPÞT x; ðcoÞT x
� �

: ð2Þ
The auxiliary MOLP problem for solving Eq. (2) can be formulated as follows [25]:
min z1 ¼ ðcm � cpÞT x;

max z2 ¼ cmT
x;

max z3 ¼ ðco � cmÞT x;
s:t: x 2 X:

ð3Þ
The multi-objective programming problem can be solved using the concept of fuzzy set developed by Zimmermann [49]:
max Z ¼ ½c1x; c2x; . . . ; clx�T

min W ¼ ½c1x; c2x; . . . ; crx�T

s:t: Ax 6 b;

x P 0:

ð4Þ
The membership functions for the objective are defined as
lkðZkÞ ¼
ZkðxÞ � ZNIS

k

ZPIS
k � ZNIS

k

; k ¼ 1;2; . . . ; l;

lkðWsÞ ¼
WNIS

s �WsðxÞ
WNIS

s �WPIS
s

; s ¼ 1;2; . . . ; r;

ð5Þ
where ZPIS
k ;WPIS

s and ZNIS
k ;WNIS

s are the positive and negative ideal solutions. With the ‘‘max–min’’ operator and degree of sat-
isfaction k(1), the MOLP problem can be solved as a single-objective problem:
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max kð1Þ

s:t: kð1Þ 6 ZkðxÞ � ZNIS
k

� �
= ZPIS

k � ZNIS
k

� �
; k ¼ 1;2; . . . ; l;

kð1Þ 6 WNIS
s �WsðxÞ

� �
= WNIS

s �WPIS
s

� �
; s ¼ 1;2; . . . ; r;

x 2 X

k 2 ½0;1�

ð6Þ
The biggest disadvantage of Eq. (6) is that the results obtained by the ‘‘max–min’’ operator represent the worst situation and
cannot be compensated for by other members which have better outcomes. Obviously, it is much more desirable for a com-
pensatory operator to be used to obtain a compromise solution [24].

2.1.2. Phase 2 – two-phase approach
The two-phase method uses the max–min operator in its first phase. In the second phase, the solution is forced to improve

from that obtained by the max–min operator by adding the Phase 1 satisfaction degree, kð1Þ; to Phase 2 as a constraint. The
arithmetic average operator �kð2Þk;s is used to split kð1Þ to obtain new degrees of satisfaction that represent the degrees of sat-
isfaction of the MOLP objectives. The problem can be reformulated according to Eq. (6) as follows:
max �kð2Þk;s ¼
1

lþ r

Xlþr

i¼1

ki

s:t: kð1Þ 6 kð2Þk 6 ZkðxÞ � ZNIS
k

� �
= ZPIS

k � ZNIS
k

� �
; k ¼ 1;2; . . . ; l;

kð1Þ 6 kð2Þs 6 WNIS
s �WsðxÞ

� �
= WNIS

s �WPIS
s

� �
; s ¼ 1;2; . . . ; r;

x 2 X

k 2 ½0;1�:

ð7Þ
The optimal solution obtained in Phase 1 may not be an efficient solution; on the other hand, if �kð2Þk;s is improperly given in
Phase 2, it will make the interaction process more complicated. The steps for defining �kð2Þk;s properly are given by Li and Li [25]
as:

(1) Take the negative ideal solution as the initial solution of the max–min operator (6), i.e., O = ZNIS; solve model (6) to get
an optimal solution; then calculate the relative membership kð1Þ of each objective value’s degree of satisfaction.

(2) Set �kð2Þk;s ¼ kð1Þ and solve model (7) to obtain an optimal solution of the two-phase approach for solving the MOLP.

2.2. Fuzzy AHP

The analytic hierarchy process (AHP), first suggested by Saaty [33], is one of the most extensively used multiple-cri-
teria decision-making methods. AHP is a straightforward method with the ability to handle effectively both qualitative
and quantitative data. When using AHP, a hierarchical decision model is constructed by decomposing the decision prob-
lem into its decision criteria. The importance ratings or preference degrees of the decision criteria are compared using
pairwise comparisons the criterion preceding each in the hierarchy [14,20,21]. In the traditional AHP formulation, hu-
man judgments are represented as crisp values. However, in many practical cases, the human preference model is
uncertain, and decision-makers may be reluctant or unable to assign crisp values to the comparison judgments
[10,14] because human assessment of qualitative attributes is always subjective and therefore imprecise. Therefore, con-
ventional AHP seems inadequate to capture decision-makers’ requirements explicitly. To model this kind of uncertainty
in human preference, fuzzy sets can be used in the AHP approach to generate an extended version of AHP [4]. Pedrycz
[29] considered a granular generalization of AHP approach which helps endow existing modeling paradigms and
practice with new conceptual and algorithmic features, making the resulting models more reflective of complexities
of real-world phenomena.

This research uses the four-step fuzzy AHP procedure as given by Cheng and Mon [12] and Ayağ and Özdemir [4]. The
procedure presented in this paper contains a ‘‘calculation of geometric mean of weighted decision-makers’’ [42] step in addi-
tion. For details of the steps used, please see the papers mentioned above.

3. Problem formulation

3.1. Problem description and assumptions

Decision-making in such a complex supply-chain network requires consideration of conflicting objectives as well as
different constraints imposed by suppliers, manufacturers and distributors [37]. In this research a four-stage (suppliers,
plants, distribution centers, customers) supply-chain network is considered. A number of potential facilities with a certain
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capacity, such as service centers, plants, DCs are given and the problem is to assign facilities to locations in such way that the
objective functions (‘‘minimum cost’’ and ‘‘maximum qualitative factors benefit’’) are optimized. Moreover, in practical
situations, the environmental coefficients and related parameters are uncertain in a medium time horizon. Therefore, the
forecast demand and related operating costs are generally imprecise. Here possibility theory was used to model this impre-
cision. This theory uses possibility distributions to handle inherently ambiguous phenomena in the problem parameters
[28,37,40].

The main assumptions used in the problem are:

– The supply chain network has four stages; suppliers, plants, distribution centers, and customers.
– The numbers of suppliers and customers are known beforehand; there are three suppliers and four customers in the net-

work. The numbers of plants and DCs to be opened will be determined from among a maximum of five alternatives in
each phase.

– There is only one product in the network.
– Suppliers, capacities of alternative plants and DCs, and customer demands are known to follow imprecise triangular

distributions.
– Triangular distributions are used in the objective functions because of their simplicity and their widespread use in the

literature.
– The entire demand of customers is met. There is no backorder from DCs.
– In the first-phase objective function, total cost is the sum of transportation costs and fixed costs of alternative facilities.
– The qualitative factors used in the second-phase objective function can be changed depending on the business sector.

3.2. Notation

The following notation is used here:

Indices

I
 number of suppliers (i = 1,2, . . ., I)

J
 number of plants (j = 1,2, . . ., J)

K
 number of distribution centers (k = 1,2, . . .,K)

L
 number of customers (l = 1,2, . . .,L)

M
 number of qualitative factors for plant locations (m = 1,2, . . .,M)

N
 number of qualitative factors for DC locations (n = 1,2, . . .,N)
Parameters

~ai
 capacity of supplier i

~bj
capacity of plant j
~ck
 capacity of DC k

~dl
demand of customer l

~sij
 unit cost of production in plant j using material from supplier i

~tjk
 unit cost of transportation from plant j to DC k

~ukl
 unit cost of transportation from DC k to customer l

~f j
total of fixed costs for operating plant j
~gk
 total of fixed costs for operating DC k

V
 upper limit on the total number of plants that can be opened

R
 upper limit on the total number of DCs that can be opened
fW m FAHP pj
qualitative factor weight of m for plant j calculated using the fuzzy AHP
fW n FAHP dck

qualitative factor weight of n for DC k calculated using the fuzzy AHP
Variables

xij
 quantity produced at plant j using raw material from supplier i

yjk
 amount shipped from plant j to DC k

zkl
 amount shipped from DC k to customer l�
mj ¼
1 if plant j is opened;
0 otherwise�
rk ¼
1 if DC k is opened;
0 otherwise
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3.3. Possibilistic multiobjective programming model

3.3.1. Objective functions

Objective 1: Minimum Total Transportation and Facilities Costs
Most theoretical and practical decisions made to solve capacitated multi-facility location problems (CMFLP) usually con-

sider total supply-chain costs. To minimize total costs, the objective function used by Pirkul and Jayaraman [30], Syarif et al.
[37], and Altiparmak et al. [1] was used here. The total costs are the sum of the transportation costs between the members of
the SC network and the total fixed costs for all facilities. The objective function coefficients are imprecise because of fast-
changing market conditions. The modified version of the objective function is:
min
X

i

X
j

~sijxij þ
X

j

X
k

~tjkyjk þ
X

k

X
l

~uklzkl þ
X

j

~f jmj þ
X

k

~gkrk; ð8Þ
where ~sij;~tjk; ~ukl;
~f j; ~gk are imprecise coefficients with triangular possibility distributions. The transportation cost is made up

of three parts.
P

i

P
j~sijxij is the transportation costs between suppliers and plants,

P
j

P
k
~tjkyjk is the transportation costs be-

tween plants and distribution centers, and
P

k

P
l
~uklzkl is the transportation costs between distribution centers and custom-

ers.
P

k
~f jmj is the total fixed cost for a candidate plant if it will be opened, and a similar formulation can be written for

distribution centers as
P

k
~gkrk.

Objective 2: Maximum Total Qualitative Factor Benefits For Facility Location
The facility location decision is a more complex problem because of the uncertainty and volatility of distribution environ-

ments. The location decision process involves qualitative as well as quantitative factors. Decision-makers can no longer
ignore the influence of sensitive factors such as the worker status of a candidate region, transportation conditions, market
environment, and location properties. Moreover, the process can become highly judgmental if a wide variety of qualitative
factors are present. In such cases, the selection process may lack consistency and flexibility. The fuzzy analytic hierarchy pro-
cess (FAHP) methodology has been successfully used to provide consistent evaluation (weighting and ranking) of location
alternatives [23]. The qualitative factors used in the present paper are shown in Table 1. The list of these factors could be
expanded or changed depending on business field, location properties, or country. The maximization of FAHP weights has
been added to the multiobjective problem as follows:
max
X

j

fW FAHP pjyjk þ
X

k

fW FAHPdckzkl; 8j;8k;8l ð9Þ
where fW FAHP pj and fW FAHP dck are the fuzzy AHP weights for plants and distribution centers respectively.

3.3.2. Constraints
X
j

xij 6 ~ai; 8i; ð10Þ

X
k

yjk 6
~bjmj; 8j; ð11Þ

X
j

mj 6 P ð12Þ
Table 1
Main qualitative factors for facility location.

1 Proximity to markets
2 Transportation opportunities
3 Labor skills
4 Education and field schools
5 Energy alternatives
6 Water availability
7 Infrastructure availability (roads, sewer system, municipality services)
8 Security
9 Expand capability

10 Housing and residence availability for workers
11 Closeness health services facilities
12 Disaster risks
13 Climate
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X
l

zkl 6 ~ckzk; 8k; ð13Þ

X
k

rk 6 V ð14Þ

X
k

zkl P ~dl; 8l; ð15Þ

mj;zk ¼ f0;1g 8j;8k; ð16Þ

xij; yjk;zkl P 0; 8i;8j;8k;8l ð17Þ
where Eqs. (10), (11), and (13) denote capacity constraints for suppliers, plants, and distribution centers respectively. The
‘‘�’’ signs over ai, bj, and ck mean that these variables are imprecise. Plant and distribution locations are alternative locations,
and binary variables vj and zk will determine the open/close decisions.

P
mj and

P
zk cannot exceed the values of P and V

given in Eqs. (12) and (14). These values can be the maximum number of potential plant and distribution centers or a value
which is determined by the decision-maker.

4. Model development

Traditional mathematical programming techniques have used deterministic variables and coefficients for modeling. In
fact, most real systems are not deterministic. Traditional modeling techniques may sometimes disagree with real situations.
Zadeh [46] introduced fuzzy set theory to deal with the uncertainty and imprecision associated with information about var-
ious parameters. In possibilistic linear programming, possibilistic distributions are generally represented by triangular pos-
sibility distributions because of their simplicity and ease of use. Triangular possibilistic distributions have been used by
Ozgen et al. [28], Wang and Liang [41], and Torabi and Hassani [38] to represent imprecise coefficients for solving different
types of supply chain problems. The triangular possibility distribution of an imprecise number can be represented as
~a ¼ ðap; am; aoÞ, where ap denotes the smallest possible value (lower bound), am a midrange value, and ao the largest possible
value (upper bound) that describes a fuzzy event. The imprecise data for the first-phase objective function and constraints
can be modeled using triangular possibility distributions as follows (the optimistic values are the smallest possible values
and the pessimistic values are the largest values because the coefficients represent cost components):
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4.1. Converting imprecise objective-function and constraint coefficients into crisp numbers

The coefficients of the imprecise first-phase objective function of the multiobjective model have a triangular possibility
distribution. Geometrically, this imprecise objective function is fully defined by three prominent points: (zo, 0), (zm, 1), and
(zp, 0). Consequently, minimizing the imprecise objective function z requires minimizing zo, zm, and zp simultaneously. How-
ever, there may exist a conflict in the simultaneous minimization of these crisp objectives. Therefore, using Lai and Hwang’s
[22] approach which has also been adopted by other researchers [22,28,40], one can minimize zm, maximize (zm � zo), and
minimize (zp � zm) instead of minimizing zo, zm, and zo simultaneously. In this manner, the imprecise total cost of the supply
chain in the first-phase objective function can be converted into crisp objectives as follows:
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To solve the imprecise left sides of the imprecise constraint coefficients, the most likely values method as proposed by Lai
and Hwang [22] was used. If the minimum acceptable degree of feasibility, b, is given, then the equivalent auxiliary crisp
constraints (Eqs. (10), (11), (13), and (15)) can be represented as follows:
X

j
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and the most likely values are assumed to be w1 = 1/6, w2 = 4/6, w3 = 1/6, and b = 0.5 [22]. The midrange weight w2 is the
most possible value, and it indicates why more weight should be assigned to it.

4.2. Solving the auxiliary of the first-phase objective function using a two-phase PLP approach

To solve Eqs. (18)–(20), any MOLP technique, such as utility theory, goal programming, or fuzzy programming, may be
used. Zimmermann developed the first fuzzy approach for solving a MOLP, called the max–min approach [49], but the
max–min operator may not be unique. To remove this deficiency, a two-phase approach has been used by Lee and Li
[24], Guu and Wu [16], Lee and Li [24], Amid et al. [2], and Ozgen et al. [28]. In this paper, a two-phase PLP approach is used
to evaluate the degree of satisfaction of the objective functions. To solve the auxiliary objective functions and the AHP objec-
tive function together, it is necessary to combine the second-phase objective function with three auxiliary objective func-
tions. The crisp AHP solutions can be obtained using fuzzy AHP steps as described earlier. Consequently, before
converting these four objectives into a single-goal problem, it is necessary to determine the positive ideal solution (PIS)
and the negative ideal solution (NIS) for each objective function by solving the corresponding MILP model as follows:
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The linear membership function for each objective function can then be specified as follows:
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where lz3 is similar to lz1 and lz4 is similar to lz2.
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Using the fuzzy decision-making approach of Bellman and Zadeh [6] and Zimmermann’s [49] fuzzy programming meth-
od, the complete equivalent single-goal LP model (Phase 1) for solving the capacitated plant location problem [46] becomes:
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In the second phase (Phase 2), the degree of satisfaction of each objective function can be represented separately. After
obtaining an optimal solution from Phase 1 (Eq. (28)), this solution will be used in constraints as follows:
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After solving the problem in Phase 2, decision-makers can clearly see the tradeoffs among multiple objectives. An inter-
active solution set will help them to make appropriate decisions in response to fast-changing market conditions.

5. Numerical example

5.1. Objective 1 data

A simple but comprehensive model is used here to illustrate the effectiveness of the possibilistic linear programming pro-
cedure developed in this paper. For purposes of comparison, the numerical example data set presented by Syarif et al. [37] is
used. Their work used deterministic costs in the model. On the other hand, the present model is focused on fuzzifying the
parameters of decision variables by transforming them into triangular possibility distributions. The fuzzy sets are con-
structed with 10–20% right- and left-side tolerance bounds for midrange values. Table 2 shows the possibilistic capacities



Table 2
Imprecise capacities, demands and fixed costs.

Supplier Plant Distribution center Customer

i Capacity (~ai) j Capacity (~bj) Fixed cost (~f j) k Capacity (~ck) Fixed cost (~gk) l Demand (~dl)

1 (400, 500, 550) 1 (350, 400, 475) (1500, 1800, 2000) 1 (460, 530, 600) (800, 1000, 1250) 1 (350, 460, 550)
2 (550, 650, 800) 2 (425, 550, 625) (800, 900, 1200) 2 (500, 590, 650) (750, 900, 1100) 2 (250, 330, 420)
3 (320, 390, 450) 3 (440, 490, 570) (1700, 2100, 2300) 3 (350, 400, 460) (1400, 1600, 1800) 3 (375, 450, 500)

4 (275, 300, 345) (850, 1100, 1300) 4 (325, 370, 425) (1300, 1500, 1650) 4 (250, 300, 345)
5 (425, 500, 530) (750, 900, 1100) 5 (500, 580, 650) (1100, 1400, 1600)

Table 3
Imprecise transportation costs between each stage of SC.

Supplier Plant

~sij 1 2 3 4 5
1 (4, 5, 7) (4, 6, 8) (3, 4, 5) (5,7, 9) (4, 5, 7)
2 (4, 6, 8) (4, 5, 6) (4, 6, 8) (4, 6, 8) (5, 8, 10)
3 (5, 7, 9) (5, 6, 8) (2, 3, 4) (7, 9, 12) (5, 6, 8)

Plant Distribution center

~tjk 1 2 3 4 5

1 (4, 5, 6) (6, 8, 10) (4, 5, 7) (6, 8, 9) (4, 5, 7)
2 (6, 8, 10) (5, 7, 8) (6, 8, 10) (5,6, 8) (6, 8, 11)
3 (3, 4, 5) (5, 7, 9) (3, 4, 5) (4, 5, 7) (3, 4, 5)
4 (2, 3, 4) (4, 5, 7) (2, 3, 4) (4, 5, 7) (2, 3, 4)
5 (3, 5, 6) (4, 6, 7) (4, 6, 8) (7, 8, 9) (2, 3, 5)

Distribution center Customer

~ukl 1 2 3 4
1 (6, 7, 9) (3, 4, 5) (4, 5, 7) (5, 6, 8)
2 (4, 5, 7) (3, 4, 6) (4, 6, 7) (5, 7, 9)
3 (5, 7, 8) (4, 5, 6) (2, 3, 5) (5, 6, 8)
4 (2, 3, 4) (4, 5, 6) (5, 6, 8) (3, 4, 6)
5 (3, 4, 6) (5, 6, 8) (4, 5, 7) (6, 7, 9)
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of suppliers, plants, and distribution centers, the possibilistic fixed costs of alternative plants and distribution centers, and
the imprecise customer demands. Table 3 shows the imprecise transportation costs between the nodes of the SC network.

5.2. Objective 2 data

To facilitate the use of FAHP, the qualitative factors for plant and distribution centers can be summarized into a hierarchy
which shows the overall goal of the decision process, each decision criterion to be used, and the decision alternatives to be
considered as candidates for location. The most commonly used six criteria to be used in deciding on plant and distribution
center locations are shown in Tables 4 and 5 respectively. Information needed for application of the FAHP steps is given in
Table 6.

Before making pairwise comparisons, it is required to gather expert opinions using a FAHP scale. For this purpose, it is
advised to prepare a questionnaire which evaluates each comparison. First, plant and DC quantitative factors must be com-
pared, and then the location alternatives related to every factor for both plant and distribution center location alternatives.
The fuzzy comparison matrix of pairwise comparisons (from five experts) for plant qualitative factors using fuzzy numbers is
given in Table 7. The fuzzy comparison matrix of plant location (PL) alternatives with respect to the qualitative factor ‘‘prox-
imity to markets’’ (PLQF1) is shown in Table 8.

5.3. Solution steps

The solution steps for the possibilistic capacitated multi-commodity facility location problem can be described as follows:

Step 1: Formulate the multiobjective model for the facility location problem using Eqs. (8) and (9).
Step 2: Model the imprecise data using triangular possibility distributions. Tables 2 and 3 list the triangular possibility
distributions of the imprecise coefficients for objective function 1 and the right-hand sides of the constraints.
Step 3: Transform the imprecise objective functions into new crisp objective functions using Eqs. (18)–(20).
Step 4: Transform the imprecise constraints into new crisp constraints using Eqs. (21) and (24) with b ¼ 0:5.
Step 5: Determine qualitative factors and subfactors (if available) for objective 2 from Table 1.



Table 4
Qualitative factors for plant location (PLQF).

PLQF1 – Proximity to market
PLQF2 – Labor skills
PLQF3 – Education and field schools
PLQF4 – Transportation alternatives
PLQF5 – Infrastructure availability (roads, sewer system, municipality services)
PLQF6 – Housing and residence availability for workers

Table 5
Qualitative factors for distribution center location (DCLQF).

DCLQF1 – Proximity to market
DCLQF2 – Transportation alternatives
DCLQF3 – City planning
DCLQF4 – Security
DCLQF5 – Natural disaster
DCLQF6 – Climate

Table 6
AHP data entry.

Goal Best plant location
Number of

alternatives (m)
5

Names of alternatives PL1(m1), PL2(m2), PL3(m3), PL4(m4), PL5(m5)
Index of optimism (l) 0.5 (default value: 0.5, 0 < l < 1)
Confidence level (a) 0.5 (default value: 0.5, 0 < a < 1)

Matrix of paired comparisons for the attributes using triangular fuzzy numbers (n � n = 6 � 6)
Matrices of paired comparisons results for the alternatives (m1, m2, m3, m4, m5) with respect to each attribute using
triangular fuzzy numbers, respectively

Table 7
Fuzzy comparison matrix of the plants qualitative factors (with 5 experts opinions).

PLQF1 PLQF 2 PLQF 3 PLQF 4 PLQF 5 PLQF 6

PLQF 1 1 ~5; ~5; ~7; ~3; ~9 ~3; ~5; ~7; ~3; ~1 ~1; ~3; ~1; ~5; ~1 ~5; ~3; ~5; ~7; ~5 ~7; ~5; ~5; ~7; ~5
PLQF 2 ~5�1; ~5�1; ~7�1; ~3�1; ~9�1 1 ~1; ~1�1; ~1; ~5; ~1 ~3�1; ~7�1; ~1�1; ~3�1; ~5�1 ~3�1; ~9�1; ~1�1; ~3�1; ~5�1 ~5; ~7; ~5; ~5; ~1
PLQF 3 ~3�1; ~5�1; ~7�1; ~3�1; ~1�1 ~1�1; ~1; ~1�1; ~5�1; ~1�1 1 ~3�1; ~5�1; ~1�1; ~3�1; ~7�1 ~5�1; ~5�1; ~3�1; ~5�1; ~9�1 ~1; ~3; ~1; ~3; ~1
PLQF 4 ~1�1; ~3�1; ~1�1; ~5�1; ~1�1 ~3; ~7; ~1; ~3; ~5 ~3; ~5; ~1; ~3; ~7 1 ~3; ~5; ~3; ~5; ~7 ~7; ~9; ~5; ~7; ~9
PLQF 5 ~5�1; ~3�1; ~5�1; ~7�1; ~5�1 ~3; ~9; ~1; ~3; ~5 ~5; ~5; ~3; ~5; ~9 ~3�1; ~5�1; ~3�1; ~5�1; ~7�1 1 ~5; ~3; ~5; ~5; ~5
PLQF 6 ~7�1; ~5�1; ~5�1; ~7�1; ~5�1 ~5�1; ~7�1; ~5�1; ~5�1; ~1�1 ~1�1; ~3�1; ~1�1; ~3�1; ~1�1 ~7�1; ~9�1; ~5�1; ~7�1; ~9�1 ~5�1; ~3�1; ~5�1; ~5�1; ~5�1 1

Table 8
Fuzzy comparison matrix for plant location alternatives with respect to the first attribute; PLQF1 (proximity to markets).

PLQF 1 PL1 PL2 PL 3 PL 4 PL 5

PL1 1 ~5; ~3; ~5; ~7; ~5 ~3�1; ~3�1; ~5�1; ~1�1; ~5�1 ~3; ~3�1; ~3; ~3; ~1�1 ~7; ~7; ~5; ~7; ~5
PL2 ~5�1; ~3�1; ~5�1; ~7�1; ~5�1 1 ~5�1; ~3�1; ~5�1; ~3�1; ~7�1 ~3; ~3; ~5; ~1; ~3 ~5; ~7; ~5; ~3; ~5
PL3 ~3; ~3~5; ~1~5 ~5; ~3; ~5; ~3; ~7 1 ~7; ~5; ~7; ~7; ~5 ~9; ~7; ~9; ~9; ~5
PL4 ~3�1; ~1; ~3�1; ~3�1; ~1 ~3�1; ~3�1; ~5�1; ~1�1; ~3�1 ~7�1; ~5�1; ~7�1; ~7�1; ~5�1 1 ~3; ~5; ~5; ~5; ~1
PL5 ~7�1; ~7�1; ~5�1; ~7�1; ~5�1 ~5�1; ~7�1; ~5�1; ~3�1; ~5�1 ~9�1; ~7�1; ~9�1; ~9�1; ~5�1 ~3�1; ~5�1; ~5�1; ~5�1; ~1�1 1
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Step 6: Enter the values found in Table 6 into the FAHP steps. Create a similar table for distribution centers.
Step 7: Collect expert opinions for evaluating plant location qualitative factors using the FAHP scale (Table 6).
Step 8: Collect expert opinions for evaluating the plant location alternatives related to every qualitative factor (Table 7).
Step 9: Repeat Steps 7 and 8 for the pairwise matrix for distribution centers.
Step 10: Calculate the fW FAHP pj and fW FAHP dck weights according to the steps described in papers given in Section 2.2
(the overall e-vector calculations are shown in Tables 9 and 10).



Table 9
The FAHP final ranking of plant location alternatives.

Qualitative factors for plants Alternative plant locations

PL1 PL2 PL3 PL4 PL5 CR < 0.10

PLQF1 0.382 0.279 0.135 0.458 0.091 0.037 0.084
PLQF2 0.096 0.186 0.148 0.520 0.101 0.044 0.051
PLQF3 0.069 0.143 0.172 0.532 0.108 0.045 0.027
PLQF4 0.254 0.201 0.080 0.514 0.167 0.038 0.100
PLQF5 0.165 0.206 0.119 0.529 0.093 0.053 0.038
PLQF6 0.034 0.170 0.140 0.523 0.106 0.062 0.029

Overall e-vector 0.225 0.123 0.497 0.113 0.042

Table 10
The FAHP final ranking of distribution centers alternatives.

Qualitative factors for DC’s Alternative DC locations

DCL1 DCL2 DCL3 DCL4 DCL5 CR < 0.10

DCLQF1 0.339 0.077 0.046 0.506 0.227 0.144 0.056
DCLQF2 0.271 0.101 0.052 0.484 0.261 0.102 0.034
DCLQF3 0.209 0.409 0.257 0.051 0.095 0.188 0.068
DCLQF4 0.095 0.217 0.151 0.343 0.165 0.125 0.094
DCLQF5 0.050 0.516 0.233 0.058 0.094 0.100 0.030
DCLQF6 0.036 0.109 0.193 0.362 0.236 0.100 0.026

Overall e-vector 0.189 0.116 0.362 0.196 0.136

Table 11
Positive and negative ideal solutions of auxiliary objective functions.

PIS NIS

z1 Min zm
1 ¼ 29:323 Max zm

1 ¼ 43:414
z2 Max ðzm

1 � zo
1Þ ¼ 10:974 Min ðzm

1 � zo
1Þ ¼ 6:535

z3 Min ðzp
1 � zm

1 Þ ¼ 7:069 Max ðzp
1 � zm

1 Þ ¼ 11:825
z4 Max z4 = 763 Min z4 = 381
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Step 11: Calculate positive (PIS) and negative (NIS) ideal solutions of the auxiliary objective functions using
Eqs (25a)–(25d) (Table 11).
Step 12: Construct the single-objective model with the aid of the membership functions (Eqs. (26) and (27)) and calculate
the optimum degree of satisfaction ðk1Þ for Phase 1 (Eq. (28)).
Step 13: Take the optimum result of Step 12, find the satisfaction levels of the ðk1Þ results for every objective, and add in
the two-phase approach model as a constraint. Solve Phase 2 (Eq. (29)) and calculate the optimum degree of satisfaction
ðkð2ÞÞ for Phase 2.
Step 14: If a satisfactory result cannot be obtained, perform a tradeoff between kð2Þk;s satisfaction levels using a trial-and-
error method. First make a concession from the pessimistic and/or optimistic auxiliary objective functions and then
try to increase kð2Þk;s for the midrange objective functions (by assigning them more weight than the auxiliary objective
functions).

5.4. Results and findings

After implementing the steps described above, in Step 12, the Phase 1 degree of satisfaction was calculated as ðk1Þ ¼ 0:65.
In this solution, the values of the objective functions are: z1 = 9440, z2 = 34,195, z3 = 8664, and z4 = 631. However, this solu-
tion, which is found by the Zimmermann max–min method, is always inefficient and can be dominated by the Phase 2 ap-
proach and the trial-and-error method. Moreover, this level of satisfaction may not be enough to satisfy decision-makers
(DM) in terms of the net cost objective function. It is realistic in some cases that a poor performance on one criterion can
provide better results on other criteria.

In Phase 2, four degrees of satisfaction for each objective functions can be easily observed, (kð2Þ1 ;kð2Þ2 , kð2Þ3 , kð2Þ4 ). In accordance
with DM preferences, each objective function has equal weight. To start trading off among these degrees of satisfaction to
achieve better results, the kð2Þ2 , kð2Þ3 , kð2Þ4 satisfaction levels were increased to 0.7, 0.8, and 0.9 respectively by accepting poor
performance on kð2Þ1 . The results are given in Table 12.



Table 12
Trading off between satisfaction degrees of auxiliary objective functions with trial-and-error method in Phase 2.

Max 0.25 kð2Þ1 þ 0:25kð2Þ2 þ 0:25kð2Þ3 þ 0:25kð2Þ4 (all objective functions have equal weights)

kð2Þ1 kð2Þ2 kð2Þ3 kð2Þ4
z2 � z1 z2 z2 + z3 z4

Solution 1 0.595 0.7 0.7338 0.70 24,378 33,555 41,890 647

kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:7 Preferable Good Good Good

Solution 2 0.333 0.80 0.80 0.801 24,131 32,144 40,164 681

kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:8 Poor Very good Very good Very good

Solution 3 No feasible solution found

kð2Þ1 P 0:01

kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:9

Solution 4

kð2Þ1 P 0:01 0.219 0.833 0.833 0.833 24,167 31,678 39,542 693

kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:833 max Poor Very good Very good Very good

Solution 5

kð2Þ1 P 0:01 0.07 0.85 0.75 0.99 24,568 31,439 39,697 758

kð2Þ3 P 0:75 Very poor Very good Good Perfect

kð2Þ2 ; kð2Þ4 P 0:85

Solution 6 No feasible solution found

kð2Þ1 ; kð2Þ3 P 0:01

kð2Þ2 ; kð2Þ4 P 0:09

Solution 7

kð2Þ1 ; kð2Þ3 P 0:01; 0.16 0.893 0.573 0.90 23,576 30,832 39,929 727

kð2Þ2 ¼ 0:893; Very poor Perfect Preferable Perfect

kð2Þ4 ¼ 0:90

Fig. 1. Solution 5 SC network.
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In Solution 1, presented in Table 12, the three degrees of satisfaction are all greater than 0.7; however, kð2Þ1 can be at max-
imum 0.595. In Solution 2, to obtain kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:8, the DM must accept kð2Þ1 ¼ 0:33. In Solution 3, no feasible solution
was found for kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:9 even when the satisfaction level of kð2Þ1 ffi 0. In Solution 4, the maximum possible satisfaction



Fig. 2. Solution 7 SC network.

Table 13
Comparison of PLP and crisp LP.

Item LP1 LP2 LP3 LP4 PLP (PIS, NIS)

Objective function Min z1 Max z2 Min z3 Max z4

z1 29,323 – – – (29,323, 43,414)
z2 – 10,974 – – (10,974, 6535)
z3 – – 7069 – (7069, 11,825)
z4 – – – 763 (763, 381)
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level with a feasible solution was calculated. The result was kð2Þ2 ; kð2Þ3 ; kð2Þ4 P 0:83. In the next step, kð2Þ3 was also compensated,
because it is also an auxiliary objective function degree of satisfaction value. After finding the value of 0.83 in Solution 4, an
attempt was made to increase kð2Þ2 ; kð2Þ4 P 0:85 in Solution 5; with the other two satisfaction degrees kð2Þ1 ffi 0 and kð2Þ3 P 0:75,
this approach gives a feasible solution. In Solution 6, the final experiment was to see whether kð2Þ2 ; kð2Þ4 could be made greater
than 0.90, and this was found to be possible with kð2Þ1 ; kð2Þ3 P 0:01, but no feasible solution was found. The final solution (Solu-
tion 7) examined the maximum possible levels for kð2Þ2 ; kð2Þ4 , and the results were kð2Þ2 ¼ 0:89; kð2Þ4 ¼ 0:9 with the other satis-
faction-degree constraints kð2Þ1 ; kð2Þ3 P 0:01.

From Table 12, it is obvious that Solutions 5 and 7 provide the best results. Solution 5 satisfies the maximum qualitative
factors benefit objective function near its maximum level: 0.99 with 31,439 unit cost. However, many different solutions can
be reached at different degrees of satisfaction, corresponding to DM preferences. The DM can choose different results accord-
ing to his needs in different time periods. For example, the DM can think that spending less money will be better than sat-
isfying kð2Þ4 at a 0.99 level. In such a situation, Solution 7 is better than Solution 5. Because the level of satisfaction for kð2Þ4 was
0.90 with a higher value of kð2Þ2 which is 0.89 (ffi0.90), two important objective functions have been perfectly satisfied. Figs. 1
and 2 show the results for Solutions 5 and 7 for the SC network. Routes, quantity of units shipped over the routes, and facil-
ities opened or closed can be seen in these figures.

The proposed PLP approach outputs more wide-ranging decision information than other models. Notably, the optimal
goal values using the proposed approach should be imprecise because the related transportation costs and capacity are al-
ways imprecise in nature. In practice, dealing with crisp LP models could be much easier because of the advantage of acquir-
ing a solution interval. The model proposed here can generate better decisions and also warns decision-makers and
managers about the possibility of pessimistic and optimistic solutions. The crisp LP and PLP approach solutions are summa-
rized in Table 13.
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6. Conclusions

The multi-facility location problem is one of the most important strategic decision problems which can affect the future
of companies. This importance is increased even more when the supply chain is considered globally. Multi-facility location
problems are multi-criteria decision-making problems which contain both imprecise quantitative and qualitative factors.

Estimating the customer requirements and expert opinions for facility location problems is not easy due to the scarcity
and volatility of data. To cope with ambiguity and vaguness problems, fuzzy set theory has been used in this research. In this
paper, interactive integrated ‘‘two-phase PLP’’ and ‘‘fuzzy AHP’’ approaches were used for solving the multi-objective multi-
facility location problem. Combining two approaches can effectively handle the imprecision of input data. The auxiliary mul-
tiple-objective linear programming model attempts to minimize total SC transportation and facilities costs and maximize the
qualitative-factor benefits. The proposed model tries to minimize as much as possible the imprecise total cost, to maximize
the possibility of obtaining lower total cost, to minimize the risk of obtaining higher total cost, and to maximize qualitative-
factor benefits.

It must be noted that this study also used a two-phase approach to MOPLP. The two-phase approach provides some
advantages to DMs. First, the degree of satisfaction can be improved with the use of MOPLP. Moreover, various types of inter-
active solutions achieved by use of this approach could help decision-makers to formulate decisions under variable
conditions.
References

[1] F. Altiparmak, M. Gen, L. Lin, T. Paksoy, A genetic algorithm approach for multi-objective optimization of the supply chain, Netw. Comput. Ind. Eng. 51
(2006) 197–216.

[2] A. Amid, S.H. Ghodsypour, C. O’Brien, Fuzzy multiobjective linear model for supplier selection in a supply chain, Int. J. Prod. Econ. 104 (2) (2006) 394–
407.

[3] A. Amiri, Designing a distribution network in a supply chain system: formulation and efficient solution procedure, Eur. J. Oper. Res. 171 (2006) 567–
576.
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