
Future Generation Computer Systems 29 (2013) 273–286
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A tenant-based resource allocation model for scaling Software-as-a-Service
applications over cloud computing infrastructures
Javier Espadas a,∗, Arturo Molina b, Guillermo Jiménez a, Martín Molina b, Raúl Ramírez a, David Concha a

a Tecnológico de Monterrey, Campus Monterrey, Mexico
b Tecnológico de Monterrey, Campus México City, Mexico

a r t i c l e i n f o

Article history:
Received 2 November 2010
Received in revised form
17 October 2011
Accepted 24 October 2011
Available online 29 October 2011

Keywords:
Cloud computing
Software-as-a-Service
Multi-tenancy
Virtualized resources
Resource allocation

a b s t r a c t

Cloud computing provides on-demand access to computational resources which together with pay-per-
use business models, enable application providers seamlessly scaling their services. Cloud computing
infrastructures allow creating a variable number of virtual machine instances depending on the
application demands. An attractive capability for Software-as-a-Service (SaaS) providers is having the
potential to scale up or down application resources to only consume and pay for the resources that are
really required at some point in time; if done correctly, it will be less expensive than running on regular
hardware by traditional hosting. However, even when large-scale applications are deployed over pay-
per-use cloud high-performance infrastructures, cost-effective scalability is not achieved because idle
processes and resources (CPU, memory) are unused but charged to application providers. Over and under
provisioning of cloud resources are still unsolved issues. Even if peak loads can be successfully predicted,
without an effective elasticitymodel, costly resources arewasted during nonpeak times (underutilization)
or revenues from potential customers are lost after experiencing poor service (saturation). This work
attempts to establish formal measurements for under and over provisioning of virtualized resources
in cloud infrastructures, specifically for SaaS platform deployments and proposes a resource allocation
model to deploy SaaS applications over cloud computing platforms by taking into account their multi-
tenancy, thus creating a cost-effective scalable environment.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing refers to both the applications delivered as
services over Internet and the hardware and systems software in
the datacenters that provide those services commonly in a pay-
per-use pricing basis [1]. With cloud computing definition comes
the term of elasticity which is the ability to create a variable
number of virtual machine instances depending on the application
demands [1,2]. The cloud applications themselves have long been
known as Software-as-a-Service (SaaS). SaaS is a software delivery
paradigm where the software is hosted off-premises, developed
by service providers and delivered via Internet and the payment
mode follows a subscription model [3]. For SaaS providers, having
the power to scale up or down an application to only consume and
pay for the resources that are required at that point in time is an
attractive capability and if done correctly it will be less expensive
than running on regular hardware from traditional hosting [1].

∗ Correspondence to: Tecnológico de Monterrey, Campus Monterrey, 64849,
Monterrey, Nuevo Leon, Mexico. Tel.: +52 81 12343912.

E-mail address:mijail.espadas@itesm.mx (J. Espadas).

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.10.013
However, in spite of the advantages of using cloud computing to
create highly scalable applications, solving performance problems
through cloud computing is not a trivial decision if involved costs
are analyzed [4]. For example, Amazon Web Services charges by
the hour for the number of instances you occupy, even if your
machine is idle. In 2008, the image-processingAnimoto application
deployed over Amazon EC2 infrastructure [5] experienced a
demand surge that resulted in growing from 50 servers to 3500
servers in three days; after the peak subsided, traffic fell to a
level that was well below the peak. Hence, scale-up elasticity was
not a cost optimization strategy but an operational requirement,
and scale-down elasticity allowed the steady-state expenditure to
more closely match the steady-state workload. Indeed, Animoto’s
provider charge by 3500 virtual instances because a peak load
occurred at a certain time frame and when this peak disappeared,
it would pay for unused resources [4]. This effect is still a barrier
for SaaS providers, whose applications have different peak loads
and they are highly prone to suffer over and under provisioning of
resources [6,7].

Over and underutilization of resources are problems that are
presented because elasticity in pay-per-use cloud models has
not been achieved yet [8]. An over provisioning effect happens
by resource underutilization: even if peak loads are successfully

http://dx.doi.org/10.1016/j.future.2011.10.013
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mijail.espadas@itesm.mx
http://dx.doi.org/10.1016/j.future.2011.10.013


274 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
anticipated, resources are unused during nonpeak times. Armbrust
et al. [1] provide a calculation of this problem:

‘‘. . .a service has a predictable daily demand where the peak
requires 500 servers at a peak usage but it requires only 100 servers
most of the time. As long as the average utilization over a whole day is
300 servers, the actual utilization over the whole day is 300 × 24 =

7200 server-hours; but since we must provision to the peak of 500
servers, we will pay for 500 × 24 = 12 000 server-hours, a factor of
1.7 more than what is needed.’’

A second problem is overutilization, which occurs when
potential revenue from customers is lost by poor performance
(saturation) and customers stop using the application permanently
after experiencing poor service, resulting in a permanent loss of the
revenue stream [1]. Unfortunately, while current cloud platforms
allow for the instantiation of new virtual machines, their lack of
agility fails to provide users with the full potential of a real elastic
model.

Furthermore, current cloud virtualization mechanisms do
not provide cost-effective pay-per-use model for Software-as-a-
Service (SaaS) applications and just-in-time scalability is not
achieved by simply deploying SaaS applications to cloud plat-
forms [9]. By imposing per-hour costs, cloud computing encour-
ages SaaS architects extra attention to efficiency (i.e., releasing and
acquiring resources only when necessary) [1]. This is caused by the
traditional approach that consists in scaling applications based on
the number of users. As a result, with the current resource allo-
cation models, SaaS providers will be charged for global resource
usage without taking account of resources used by each tenant.
Consequently, there exists the need to create a true elastic ar-
chitecture to charge SaaS providers the actual resource usage [6].
To achieve cost-effective SaaS scalability, a level of automation is
necessary, which translates in a more intelligent environment. A
SaaS platform and its applications should be aware of how ten-
ants use its resources [10]. In this sense, SaaS applications have
an opportunity to improve this scenario by their multi-tenancy,
which is the ability to offer one single application instance to sev-
eral clients/providers (tenants). With the use of cloud computing
approaches such as on-demand resource allocation through SOAP
interfaces, it is possible to efficiently create virtualized resources
for SaaS applications which allows to allocate and charge only con-
sumed resources in a tenant-based environment.

This research work provides a twofold contribution: (1) es-
tablishes a formal measure for under and over provisioning of
virtualized resources (CPU and memory) in cloud infrastructures
specifically for SaaS platform deployments and (2) proposes new
resource allocation mechanisms based on tenant isolation, VM
instance allocation and load balancing in order to deploy SaaS
applications over cloud computing platforms by taking into ac-
count their multi-tenancy and create a cost-effective scalable
environment.

The rest of this paper is organized as follows. Section 2
introduces the background for multi-tenancy definition and
related projects. Section 3 describes the platforms used to deploy
test beds. It describes the architecture of a Software-as-a-Service
(SaaS) platform and explains the setup of Eucalyptus cloud
platform and how a Tomcat-based SaaS platform is deployed over
it. Section 4 defines over and under utilization of cloud resources
and how to generateworkload andmeasure resource consumption
of this Tomcat cluster. Section 4 also presents results obtained
when traditional scaling over cloud computing is performed.
Section 5 describes the proposed solution and Section 6 discusses
how multi-tenant patterns were designed and implemented
tenant isolation. Section 7 describes the mechanism to calculate
the number of virtual machines needed when the SaaS platform
is running and its tenants are consuming virtualized resources.
Section 8 presents the tenant-based load balancer architecture
and how this architecture implements the four components of a
dynamic load balancer: load measurement, information exchange,
initiation rule and load balancing operation. Section 9 describes the
components for monitoring and accessing the itesm-cloud private
infrastructure through SOAP interfaces. Section 10 outcomes the
results and performs a statistic analysis of these results. Section 11
discusses the conclusions and Section 12 outlines further research.

2. Background

2.1. Multi-tenancy: definition and support

An important requirement for SaaS applications is the support
of multiple tenants [11]. A tenant is a customer that uses or
provides a SaaS application. In order to exploit economies of
scale, i.e. allow SaaS providers to offer the one SaaS application
instance to multiple tenants, a SaaS application must be multi-
tenant aware [3,12,13].Multi-tenant awaremeans that each tenant
can interact with the application as if it were the only user of
the application. In particular, a tenant cannot access or view the
data of another tenant [12]. In a SaaS model, the multi-tenancy
support can be applied to four different software layers [14]:
the application, the middleware, the virtual machine (VM), and
the operating system layers. In a multi-tenancy enabled service
environment, user requests from different tenants are served
concurrently by one or more hosted application instances based
on the shared hardware and software infrastructure. There are
generally two kinds of multi-tenancy patterns [11,15]: multiple
instances and native multi-tenancy; the former supports each
tenant with its dedicated application instance over a shared
hardware, operating system or a middleware server in a hosting
environment whereas the latter can support all tenants by a single
shared application instance over various hosting resources. The
twokinds ofmulti-tenancy patterns scale quite differently in terms
of the number of tenants that they can support. Multi-instance is
adopted to support a small number to hundreds of tenants, while
native multi-tenancy is used to support a much larger number of
tenants, usually in the hundreds or even thousands. It is interesting
to note that the isolation level among tenants decreases as the
scalability level increases [15].

In [16], the authors present a framework to deal with the
issues of native multi-tenancy for SaaS applications. In [15], the
challenges of SaaS applications for application vendors and
providers are discussed, taking into account the need for cus-
tomization of SaaS applications [17]. At the storage level, the tradi-
tional technique for implementingmulti-tenancy is to add a tenant
ID column to each table and share tables among tenants [13,18].
Another work is presented in [19], where the M-store system is
proposed and developed which provides storage and indexing ser-
vices for a multi-tenant database system. These techniques try to
create an isolation environment for tenants by separating one ten-
ant context from another. This tenant context isolation can be im-
plemented from the data layer to an execution of a specific view.

2.2. Related projects

In [11], experts’ knowledge of scaling application servers
in the cloud is captured through profiles. Authors define a
profile as an embodiment of knowledge and best practices of a
commonly adopted computing environment with inherent just-
in-time scalability. In [20], the authors propose a toolkit based in
Java mechanisms that supports the fine granularity multi-tenancy
mechanism; they use tenant contexts, runtime context elements
that carries tenant-specific information. A TenantContext runtime
object is used to carry the tenant’s information within application
servers. This object is tied to the Java Virtual Machine (JVM)



J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 275
Fig. 1. SaaS platform architecture.
through the Java Instrumentation mechanism, which provides
services that allow Java language agents to instrument programs
running on the JVM. The basic idea of using JVM instrumentation
is to start an agent listener when JVM initiates and then
intercept values or fields that can be annotated as tenant-aware
(called isolation points), and load them, according to the tenant’s
configuration.

Another related work is presented in [21] which focuses on two
crucial problems: efficient VM image management and intelligent
resource mapping. VM image management includes image prepa-
ration and local imagemanagement of physical resources. Ref. [22]
presents iVIC, a platform for academic researchers to dynamically
create customized virtual computing environments to launch var-
ious scientific computing, simulations and analysis, by leveraging
VM technology. In iVIC, common resources (e.g., a set of worksta-
tions, PC servers and small clusters) are organized into a number of
physical resource pools. Each physical machine is treated as a VM
Container (VMC), which is responsible for providing VM environ-
ments. Each VMC exposes controlling and querying interfaces to
upper resource level manager via a collection of SOAP interfaces.
VM container interacting with SOAP interfaces is the mechanism
formonitoring andmeasuring virtualized resources, as the selected
cloud computing platform in this research, Eucalyptus, offers
SOAP interfaces and make possible on-demand deployment of VM
instances.

In [23] is proposed the use of a cloud computing mechanism
as a raw computational on-demand resource for a grid middle-
ware. In this work, authors use Eucalyptus tomanage resources for
a grid middleware implementation called DIET-Solve. In [24], the
authors describe three key components, effectively covering ‘‘mea-
surement, ‘‘modeling ’’ and ‘‘management ’’ (VM3) of shared resource
implications on individual virtual machine performance. Authors
also propose a decompositionmodel that allows estimating the po-
tential performance loss when a virtual machine is consolidated
with other virtual machines. Such a decomposition model consists
of three major components: (a) virtualization overheads, (b) core
contention overheads and (c) shared cache contention overheads.
A relevant commercial tool is Amazon Auto Scaling [25]. It is a
web service to automatically launch or terminate Amazon EC2 in-
stances based on user-defined triggers. It claims to enable appli-
cations to scale up instances seamlessly and automatically when
demand spikes and automatically shed unneeded instances when
demand subsides. It uses proprietary commands to create Auto
Scaling Groups, which is a representation of an application running
onmultiple instances. However, thismechanism is a closed propri-
etary mechanism which depends totally on Amazon EC2 platform.
Second, it is based only on resource utilization but it does not take
into account the nature of the applications. In this work, resource
utilization is compared against performance (throughput) of web
applications in order to determine whether or not a virtual ma-
chine is saturated.

3. Test bed platforms and architectures

The test bed deployment is composed of twomain components:
a Java-based SaaS platform and a private cloud platform, indepen-
dent of each other. The first step of test beds is to deploy the SaaS
platformover a cloud infrastructure in order to set a cluster of Tom-
cat servers over nodes of the cloud platform. The SaaS platform is
developed as part of the Rapid Product Realization for Developing
Markets Using Emerging Technologies research chair at Tecnológico
de Monterrey University, Campus Monterrey.

The SaaS platform is composed of several components that
allow the deployment of application as services (Fig. 1). Each
component is integrated in an Apache Tomcat container as a Web
application, a packaged library (.jar) or business services (Web
application + Web Services) is defined a service application as the
software application thatwill be delivered as a service. Each service
application is deployed as a common web application within the
Tomcat container and it manages its own resources, such as data
sources, libraries, and views. The main difference from common
web deployments is how the SaaS platform’ components manage
and interact with these web applications. The main interaction
point of the service application with the platform is done through
the SaaS SDK. The SaaS SDK provides the common libraries that
are used by applications to access the basic SaaS services, such
as authentication, account information, public resources and so
on. In the view layer, the platform offers components (SaaS Tag
Libraries) for an easy integration with the SaaS context (such as
public/private menus, templates, layouts).

The Deployment Manager is a listener component that config-
ures each application according to an XML configuration file. Every
time an application service is deployed within the Web applica-
tion container, the Deployment Manager reads the configuration
file and analyzes the application code to detect updated or new
modules, security roles or deployment changes. The access point



276 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
Table 1
Open SaaS platform technologies.

Requirement Technology

Language platform J2EE (Java 1.6)
Web container Apache Tomcat 6
Web framework Struts 2
Web services Apache Axis2
Dependency injection Spring 2
Dependency injection + Web
services

Spring 2 + WSO2

Multi-tenancy layer JoSQL + Java annotations
Persistence layer Hibernate 3 and Java Persistence API (JPA)

to the SaaS platform is the SaaS CoreWeb Application (SCWA). This
component is a web application that is used to access to all other
applications and components. The SCWA is in charge of loading
common resources and views, such as security context, authen-
ticated user, view filters, etc. At the bottom of the architecture,
we can find the Infrastructure Management and the physical data
source of the SaaS platform.

As Table 1 outlines, the core components of the SaaS imple-
mentation are open source technologies. Fig. 1 shows a set of busi-
ness components that are consumed by platform. These business
components were designed, developed and deployed by follow-
ing a Service Oriented Architecture (SOA) design in order to be
completely decoupled from the SaaS platform [26]. Each business
component is developed as a Web application, but it exposes a set
of Web services through WSO2 framework1 which integrates web
services deployed through Apache Axis2 and dependency injection
with Spring2. Each business component application implements its
own Web services and they are referenced in the applicationCon-
text.xml Spring file.

SaaS platform provides the App Metering Service which allows
automatic and non-intrusive support for metering applications,
tenant-basedmonitoring and virtual machine resource status. This
service uses Java Management Extension (JMX) technology to
provide information on performance and resource consumption
of applications running in the Java platform. It also uses SIGAR
(System InformationGatherer AndReporter) API2 whichprovides a
portable interface for gathering system information such as system
memory, CPU loads and so on. App Metering Service application
exposes aWeb service interface that can be consumed bymonitors
or any other component that requests information about VM
instance.

Eucalyptus Cloud Platform is used as Infrastructure-as-a-
Service (IaaS) platform in thiswork for deploying the SaaS platform
and run several tests. Eucalyptus is an open source platform
originally developed at the University of California to deploy and
run a cloudwithin commodity computing clusters [27]. Eucalyptus
uses common computational and storage infrastructure available
to academic research groups to provide a platform that is modular
and open to experimental instrumentation and study [28]. This
cloud platformwill allow create on-demand virtual machines over
a hardware infrastructure and deploy the SaaS platform presented
previously. The reason why a public cloud platform, such as
Amazon EC2, was not chosen is because we needed access to the
cloud platform detailed information, such as real used resources
(CPU, memory).

The SaaS platform is a Tomcat-based architecture, so it is
possible to distribute one Tomcat instance per virtualmachine thus

1 Mathew, T. (February, 2008). ‘‘Hello World with WSO2 WSF/Spring ’’. WSO2—the
Developer Portal for SOA. http://wso2.org/library/3208. Last access on June 2009.
2 Ryan Morgan, D. M. (2009, July). SIGAR-System Information Gatherer And

Reporter. Retrieved March 2010, from http://support.hyperic.com/display/SIGAR/
Home.
enabling scalability based on the number of users. The deployment
architecture is shown on the further Fig. 4 which depicts the
whole test bed architecture. The Eucalyptus private cloud called
itesm-cloudwas installed over a 4-node cluster within Tecnológico
de Monterrey university facilities. Through Eucalyptus platform
it is possible to create as many SaaS platform Tomcat-node
instances as required for a certain time period; however, creating
virtual machines is done manually through Eucalyptus interfaces
and tools. When running parallel clustered Tomcat servers, Web
balance loader (HTTP component) is required on top to distribute
theworkload over the underlying Tomcat instances. Thus, the SaaS
platform was configured for receiving requests from an Apache
Web Server with default round-robin workload balancing. Below
this HTTP component, Tomcat instances are distributed among
each virtual machine (see Fig. 4). Details about setting up clustered
Java applications are out of the scope of this work; however, it
will be described how SaaSwas deployed over an Eucalyptus cloud
installation. As mentioned before, it is necessary to create on-
demand virtual machines for each Tomcat instance we want to
deploy. Thus, it a VM image was created with the SaaS platform to
be deployedwithin each VM. This creationwas performed through
Eucalyptus tools set called euca2ools. As the cloud platform allows
to determine how many resources will be available for each VM
type (small, medium, large or extra large), in our test beds small
VM instances were set with the similar characteristics as small
Amazon Web Services instances [29]: 1 CPU core, 1 GB of memory
and 3 GB for storage running a 32-bit operating system (Ubuntu
9.10 Karmic). These small VM instanceswill run Tomcat containers
inside them. 800 MB of memory will be assigned to the Java
virtualmachine that contains the Tomcat server. A different virtual
machine is used for deploying the HTTP server and a different
physical server is used for deploying databases. Three different
SaaS applications were deployed over the SaaS platform: a sales
administration application, a bill control service and a contact
manager. Each application will receive a set of HTTP requests to
be executed in order to generate workload for the Tomcat-based
deployment.

4. Defining and measuring over and underutilization

4.1. Overutilization (saturation)

For overutilization definition, the term ‘‘point of exhaustion’’
is used. For conventional load testing, the point of exhaustion is
typically defined when a limiting resource (such as CPU, memory
or storage) has reached 100% utilization [30]. In contrast, the point
of exhaustion for cloud computing can be defined as themaximum
useful payload that could be placed on a single virtual machine
without adversely affecting the throughput [31]. Saturation or
overutilization occurs whenever resource utilization gets above
the point of exhaustion. The former means that at least one
virtual machine must be monitored on each physical tier of the
service being tested. In some cases, as workload begins to escalate,
so do operating system-level activities such as thread context-
switching, CPU consumption, virtual memory management and
so on. For experimentation purposes, it must suffice to note
that when resource utilization skyrockets, throughput (useful
work) generally declines [6,32]. The SaaS platform uses the HTTP
request throughput calculated by JMeter tool (explained later).
This throughput value is calculated as requests/unit of time
[30,33]. The time is calculated from the start of the first request
call to the end of the last request call. This includes any intervals
between requests, as it is supposed to represent the server’s load.
The formula is throughput = (number of requests)/(total time).
Previous works [30–32,34–36] use the throughput to define an

http://wso2.org/library/3208
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home
http://support.hyperic.com/display/SIGAR/Home


J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 277
Fig. 2. Detecting inflection points.

inflection point as the percentage of utilization that is achieved
when the throughput starts to decline.

Identifying those inflection points is the key for developing an
accurate measurement for resource overutilization. The data point
of greatest interest in this trend is the one that corresponds to the
point of maximum throughput. If superimposed, the throughput
trend on the utilization trend is possible to highlight this critical
turning point where throughput and utilization become inversely
related [30]. By correlating the percentage of resource utilization
at maximum throughput, it is possible to detect when resource
utilization is saturated by the workload [36]. This measurement
is used in combination with a Tomcat-based cluster in order to
determine the underutilization within virtual machines. Inflection
points are measured by each virtual machine within the cloud-
based Tomcat cluster.

Fig. 2 depicts the detection of an inflection point. Taking three
measurement points (M1,M2 and M3), three consecutive values
are gathered of certain resource utilization (i.e., CPU) (solid line,
R1, R2 and R3) and three consecutive values of the throughput
(dotted line, T1, T2 and T3). An inflection point occurs;when given
thesemeasurements, the following relationship is true:R1 < R2 <
R3 and T1 > T2 > T3. The resource showed in Fig. 2 is saturated at
time pointM2 because by increasing its utilization, the throughput
declines resulting in poor performance. During test execution,
thesemeasurements and inflection point detections are performed
for the CPU and heapmemory assigned to the Java virtualmachine.

4.2. Underutilization (resource wasting)

Resource underutilization occurs whenever some resources are
not being used by virtual machines within a cloud computing
infrastructure and an application is being executed [4,37].
Resource underutilization can be measured by the amount of
resources available to be used by potential virtual machines and
applications. In this sense, work [4,31,37,38] is used to state that
when resource utilization (CPU, memory or storage) of a single
VM (original) can be allocated in another VM (destination) without
exceeding the maximum quantity allowed for such resource, then
resource of the original VM is being wasted (underutilization) [4].
Fig. 3 depicts a scenario where the used heapmemory is measured
within four virtual machines.

According to Fig. 3, there are at least two VM instances that can
be released by reallocating their resources (VM1 and VM2 resource
utilization can be allocated in VM3). In this research, the number
of underused resources is obtained through a knapsack approach3

3 In the knapsack problem, we are given a set of objects where each object has
a weight and a value. We are given a container of a given capacity, imposing a
weight constraint. The problem is then to place as many objects as possible into
the container such that the weight constraint is not violated, and the sum of the
values of the objects in the container is maximum.
Fig. 3. Memory underutilization.

Fig. 4. Test bed architecture.

[8,39,40] by calculating the combination of VM instances that can
be allocated by another single VM, according to the measured
resource (CPU or heap memory) [41]. As it is not the aim of this
work to detail or solve the knapsack problem, this research uses a
simple tree-based Java program to calculate the allocation. Each
VM is evaluated against the rest at a certain point in time. An
algorithm has been developed, which takes the weights of the
knapsack as the used resources in a givenmeasurement. The values
or profits are taken from the available quantity of such resources
(maximum allowed minus used) of the rest of VM instances
[8,42]. By doing these weight and value vector assignations, the
knapsack implementation returns the maximum number of VM
instances that can be released by maximizing resource availability
and gives low weight to VM instances with low usage. Capacity of
the knapsack is the available resource of the evaluated VM.

4.3. Generating workload

The Apache JMeter tool was selected for creating workload to
the Tomcat cluster installed in a cloud environment and where
the SaaS platform has been deployed. Apache JMeter is an open
source software Java desktop application designed to load test
functional behavior and measure performance [43,44]. It can be
used to simulate a heavy concurrent load on a J2EE application and
to analyze overall performance under various load types, it also
allows graphical analysis of performance metrics (e.g. throughput,
response time) [45]. Simulating concurrent users by JMeter can be
employed in an independent computer; they can also be employed
in a distributed testing framework [35]. For this work, JMeter will
be configured to create distributed requests to simulate workload
usage.

Fig. 4 depicts the test bed architecture that is used in this work.
The distributed SaaS platform setup that was explained in the
previous section will be stressed with several requests through
different hosts running JMeter tests. The concept of Resource
Consumption State (RCS) is used to define the state of the CPU
and memory resources used by the Tomcat servers. Through a
similar mechanism proposed by [46], while the JMeter machines
run the tests, an RCS Monitor will be collecting information about



278 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
Fig. 5. Workload simulation.

Table 2
VM instances for workload simulation.

Season VM instances Maximum peak of users Simulation hours

Jan–Apr 2 200 48
May–Aug 4 400 48
Sept–Oct 8 800 24
Nov–Dec 16 1600 24

TOTAL 144 h

the resource utilization through Web services calls to the App
Metering Service (explained earlier) by accessing to the resource
status of each virtual machine. The amount of concurrent Tomcat
users will depend on the server hardware (processors, memory),
the types of resources being used within applications and what
the applications are actually doing [47]. In Tomcat version 6.0 or
newer, as used in the SaaS platform, a mechanism to configure
the number of threads the Tomcat supports is via the maxThreads
attribute of the Executor element in XML configuration files. The
default setting for this attribute is 200, which should be enough
to get most applications started, and according to [35,43,47], is
enough to support at least a thousand simultaneous users. As in
this research will be used small instances of virtual machines, it
is established that each Tomcat server can handle 100 users as
top [34]. Assuming different behaviors during twelve months, as
presented in [48], different types of workload peaks are stated for
SaaS requirements [1,15,30].

Two types of workload generation are as follows [8,15,34,47]:

– Incremental. For each time period, workload starts from the
peak of the previous time period and increases until reaching
the maximum peak of established users at the end of current
period (see solid line in Fig. 5).

– Peak-based. For each time period, workload starts from zero
users and increments until reaching the maximum peak of
users at the middle of the period. Then, the workload starts to
decrease until zero at the end of the period (see dotted line in
Fig. 5).

One limitation is the fact that is not possible to run the test
for the whole twelve months, due to time restrictions in this
research. In this sense, the tests will be configured to run tests
for 12 h (720 min) simulating an entire month (30 days) and
24 min will represent an entire day of execution (24 h) (see
Simulation hours column in Table 2). In this sense, RCS Monitor
will gather information every 10 s, simulating retrieve of resource
consumption every 10min in the presented scale (1 min= 1 h). As
stated, one virtual machine instance will be deployed for each 100
simulated user. Therefore, the number of small instances to scale
the workload depends on the maximum simultaneous users of the
period.
Fig. 6. Test plans flow.

Fig. 7. JMeter tool configuration for test beds.

Fig. 6 shows the whole workflow for a set of HTTP requests
that are defined within each test plan. Every test plan will execute
the same set of requests but with different workload behavior.
Each lane of the workflow diagram represents one different
SaaS application. The first step consists of login to the platform
through an e-mail/password mechanism which links to the user
with a specific subscriber (tenant). For simulation purposes, this
tenant assignation will be randomly performed by the platform
authentication mechanism.

Fig. 7 depicts the configuration screen of JMeter tool. At the left
panel (1) can be found the set of HTTP requests that were defined
in Fig. 6, by accessing different SaaS applications. At the right panel
(2) can be observed some parameters such as Number of threads
(users) and Ramp-Up Period that define the stress behavior of the
workload.

4.4. Test results

After running all the test plans all results were gathered. As
explained, RCS Monitor gathered information every 10 s result-
ing in a total of 4320 measurements spanned in 720 min (30 days
of simulated time, 1 month simulated). The following paragraphs
present the results of such metrics according to the definition of
RCS and eachworkload behavior. Underutilization and overutiliza-
tion were metered by using the mechanisms explained before. For
a certain simulated month, the underutilization will be the sum of
the total wasted virtual machines calculated in all measurements.
In the same way, the overutilization will represent the sum of all
inflection points detected in the measurements of such simulated
month.

Fig. 8 shows a chart of the throughput measurement results
during the incremental (top screen) and peak-load (bottom screen)
workload simulation. In order to calculate the throughput, JMeter



J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 279
Table 3
Results of CPU and memory monitoring in traditional scaling.

Simulated month VMs Server-hours Combined-incremental Combined-Peak-based
UU (%) OU (%) UU (%) OU (%)

Jan 2 1440 24.57 4.78 25.93 9.86
Feb 2 1440 13.09 12.52 13.10 14.24
Mar 2 1440 10.37 17.94 8.58 23.77
Apr 2 1440 8.15 33.88 34.85 7.44
May 4 2880 27.32 2.96 37.27 3.46
Jun 4 2880 16.76 9.43 16.91 21.34
Jul 4 2880 9.09 14.07 14.54 30.48
Aug 4 2880 7.59 22.09 42.92 8.73
Sept 8 5760 31.61 6.13 55.19 0.46
Oct 8 5760 11.57 14.18 26.07 10.03
Nov 16 11520 40.55 9.12 51.93 2.74
Dec 16 11520 20.30 11.96 22.17 14.10

Averages 18.42 13.26 29.12 12.22
Fig. 8. Throughput measurement.

tool generates a set of HTTP Samples during test execution and
evaluates the requests per minute that the Tomcat-cluster can
process. As shown in Fig. 8, the behavior of throughput during
simulation changes over time and it shows some declinations in
the efficiency of the Tomcat cluster.

Table 3 shows the results of the measurements during both
incremental and peak-based workload tests. The column labeled
as Combined outlines the number of measurements where both
CPU and memory are either saturated or underutilized. Last
two columns calculate a percentage value by adapting formulas
presented in [49]:
%UU(Underutilization)

= (Combined UU/Measurements per hour)/Server-hours. (1)
Formula (1) calculates the percentage of total available virtual
machines that were wasted or idle during such time period.
Combined UU is divided by Measurements per hour (6 in the
tests) because we want to obtain the average of wasted virtual
machines per hour. Then this average is divided by the total server-
hours available during the test, which in this case is obtained by
multiplying 720 h (30 days ∗ 24 h) with the number of virtual
machines. For overutilization percentage we used the following
calculation:

%OU(Overutilization) = Combined OU/(Measurements per
month * Number of virtual machines). (2)

Overutilization percentage (formula (2)) is the percentage of
the total measurements performed that have inflection points.
This value is calculated by dividing the combined overutilization
Combined OU by the total of measurements performed which is
obtained by multiplying the number of measurements per month
(4320 in the tests)with the number of available virtualmachines. It
can be observed that a total of 51840 server-hours were provided
for the whole time the SaaS platform was running over the cloud
infrastructure.

5. The proposed solution model and architecture

To tackle under and over utilization issues, this work proposes
a new model for allocating workload when deploying SaaS
platformand its applications over cloud infrastructures. Thismodel
comprises three approaches that take advantage of the multi-
tenancy nature of SaaS applications in order to improve workload
distribution and instantiate the number of cloud resources that are
really needed. The first approach is tenant-based isolation which
creates tenant-level granularity and separates execution contexts
for different tenants; isolation implementation is divided into
tenant-based persistence and tenant-based authentication. The
second approach is tenant-based VM allocationwhich implements
mechanisms to calculate the number of VM instances needed,
given a set of tenants and their weights in terms of active
users. The third approach is tenant-based load balancing, which
implements a distribution mechanism to process and dispatch
workload requests concerning each tenant.

Fig. 9 depicts the architecture of the tenant-based VM instance
creation model. The components of this architecture will be ex-
plained in the following sections. In addition to these compo-
nents, a Cloud Communication Layer was implemented in order
to get connected to the Eucalyptus private cloud and request VM
instances on demand.



280 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
Fig. 9. Tenant-based VM instance creation architecture.
6. Tenant-based isolation

6.1. Tenant-based persistence

The SaaS applications are deployed in the SaaS platform by
using Shared Database–Shared Schema mechanism [12,18], by
logically separating the data corresponding to each tenant with
a subscriber ID field in the database’s tables. This shared schema
approach has the lowest hardware and backup costs, because
it allows serving the largest number of tenants per server [50].
Each service application implements its own database, separating
the multitenant information with a tenant ID key as proposed
by [18]. SaaS platform uses an aspect-oriented mechanism for
multi-tenancy which is implemented in the application side and
it is called Multi-Tenant Persistence layer. This layer uses JoSQL4, a
technology for performing SQL-like queries over collections and
the ability of Struts2 for creating aspect-oriented interceptors
that allow separating the information of each tenant in a logical
way. The persistent layer is based on Object Relational Mapping
technologies (JPA + Hibernate). Supposing is needed to retrieve
the contacts from a given tenant, a simple object-oriented query
can be used to do that:
//JPA query in the persistence layer
String sql = ‘‘SELECT contact FROM Contact contact ’’
Query query = em.createQuery(sql);
return query.getResultList();

Simple as this, but it is important to notice that there is no filter
by tenant in the query sentence. The persistence layer will return
a set of ‘Contact’ objects. It is possible to pre-process these results
using the interceptor feature of Struts2 before they can be accessed
by another application layer. Within a Struts2 action it is possible
to declare an annotated property:
@Multitenant(attribute = ‘‘tenantId’’)
List ⟨Contact⟩ contacts;

Last code declares that this particular list of objects will
be filtered before they are accessible to another application
component (a Java Server Page view for example). This pre-
processing is achieved by setting a Struts2 interceptor in the call
stack. This interceptor can access the invocation action as follows:

4 Steven Haines. (2005, Sept) JoSQL–SQL for Java Objects. [Online].
http://www.informit.com/guides/content.aspx?g=java&seqNum=230.
Object action = invocation.getProxy().getAction();
//getting the subscriber ID from the SCWA
long subscriberId = Auth.getSubscriberId();
for (Field field: clazz.getDeclaredFields()){

if (field.isAnnotationPresent(Multitenant.class)){
Multitenant filter = (Multitenant)field.getAnnotation(Multitenant.class);
String attribute = filter.getAttribute();
String property = field.getName();

//obtains the list
Object objList = BeanUtils.getProperty(action, property);

//obtains the name of the class
String className = getClassName(objList);

// create and perform a query over the object list
Queryq = new Query ();
q.parse(‘‘SELECT * FROM ‘‘+className+’’WHERE

‘‘+attribute +’’ = ‘‘+subscriberId);
QueryResults qr = q.execute (list);
List newList = qr.getResults();

//setting back the filtered list by tenant
BeanUtils.setProperty(action,property,newList);
}

}

In the former example, the ‘Contacts’ list will be reduced to
only the objects which their ‘‘tenantId’’ property matches with the
authenticated tenant’s user. With this mechanism it is possible
to create multi-tenant pre-processing behavior within the SaaS
applications. In fact, it is feasible to create a transparent support for
multi-tenant persistence without affecting the legacy on-premise
applications.

6.2. Tenant-based authentication

The access point for SaaS platform and its deployed applications
is known as SaaS Core Web App (SCWA). This component is a
Web applicationwith specific characteristics for managing tenant-
based authentication, security and access list control. Each user
belongs to one or more subscriber or tenant (these terms are used
indistinctly). Once the user has been authenticated through an
email and password, SCWA links the user to its tenant ID [14]. If
the user belongs to two or more subscribers, a selection screen
is displayed to select which to work with. After that, SCWA
searches for the user within an Access Control List (ACL) to retrieve
permissions for that subscriber and for the SaaS applications that
the subscriber has contracted. Then SCWA creates a session cookie
with all this information and stores it within the user session

http://www.informit.com/guides/content.aspx?g%3Djava%26seqNum%3D230


J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 281
Fig. 10. Tenant-based authentication.

(Fig. 10). In this way, each user is linked to this tenant-based
information and all subsequent requests are identified through this
session cookie.

It is necessary to retrieve this information from several SaaS
applications, even when deployed among different machines over
a cluster. In order to achieve this, all Web applications should
have access to the SCWA context information and should retrieve
the cookies from it. The tenant-based information is stored in the
SCWA context session and the rest of the applications can access it
through the following mechanisms:
public static UserVO getAuthenticatedUser() throws NotAuthenticatedUserException {

HttpServletRequest request = ServletActionContext.getRequest();
String SAASADMIN_SESSIONID = getCookieValue(request,AuthConstants
.SIDEL_SESSION_ID);

ServletContext contextAuth = request.getSession().getServletContext();
UserVO authUser =getUserFromAdminContext(contextAuth,SAASADMIN
_SESSIONID);

if (authUser == null){throw new NotAuthenticatedUserException();}
return authUser; }

private static UserVO getUserFromAdminContext(ServletContext context, String
ssosessionid) {

ServletContext sidelcontext = context.getContext(SAAS_CORE_APP);
Hashtable<String, UserVO>shareddata = (Hashtable<String, UserVO>)
sidelcontext.getAttribute(AuthConstants.SAAS_USERS);

if (shareddata! = null&& ssosessionid! = null) {
//get the right User using the sessionid
return (UserVO)shareddata.get(ssosessionid);}

else return null;
}

The staticmethod getAuthenticatedUser() can be called fromany
application and it retrieves the session cookie of the authenticated
user from the SCWA context (represented by SAAS_CORE_APP
variable). UserVO is the value object that holds information about
the subscriber and the authenticated user.

Given this tenant-based isolation, a Tenant Context object is
been conceptualized as a part of the SCWAcomponent, as proposed
in [20]. This object is created or destroyed for each tenant that
is being accessed within the platform through user requests.
Each Tenant Context object holds information (see Fig. 11) about
tenant status such as active users, logged users, subscriber ID,
total of requests, etc. A Tenant Context Manager object holds
information about all Tenant Context objects that exist within the
running SaaS platform and it is in charge of their creation or
destruction. Both objects are creating by using the ability of Struts2
to create Aspect-Oriented interceptors that allows to separate in
a logical way the information of each tenant. A pre-processing
implementation is achieved by setting a Struts2 interceptor in the
call stack. Every request is then filtered and analyzed by a Tenant
Context Interceptor. When the interceptor is executed, it calls the
getAuthenticatedUser() method and updates the Tenant Context
Manager and its Tenant Context objects with the information about
user’s tenant.

7. Tenant-based VM allocation

In order to describe the topology and characteristics of the
deployed cloud and server cluster, a profile-based approach, as
Fig. 11. Tenant context.

proposed by [9], is implemented. For example, the profile of test
bed in this work is as follows: it uses small virtual machine
types (1 CPU core, 1 GB of memory) and 800 MB to the Java
heap memory for running Tomcat instances. Also, it was set in
Tomcat configuration that each server can handle 100 users by
setting its maxThreads configuration attribute to 200. Other server
deployments can represent different profiles depending on the
application provider needs. Based on the number of Tenant Context
objects, their number of current active users and the profile of the
deployed cluster, a number of virtual machines is calculated to
support the current workload. Each tenant has its own resource
requirements depending on the number of its active users and
the applications that are been accessed. In order to assign values
for VM allocation, each tenant context is given a weight that is
calculated by the Tenant Context Manager component as showed
in formula (3)

Tenant Contextweight = Active users

∗(heap size / maxThreads). (3)

Java memory heap size assigned to Tomcat is used as a profile
parameter for the calculation. Active users are thosewhose session
timeout has not expired. This number is multiplied by the average
memory size per thread. For example, if a Tenant Context contains
20 active users, and based on the profile information of the
deployed cluster we have a heap size of 1024 MB and amaxThread
value of 256, we get that the tenant context weight is 20 ∗

(1024/256) = 80. The VM capacity is calculated as described in
formula (4):

VMcapacity = Heap size

−((heap size/maxThreads) ∗ platform threads). (4)

The VM capacity is determined subtracting the amount of
memory used by the platform from the total Java memory heap
size. JavaManagement Extension (JMX) implementation of the App
Metering Service is used to calculate the number of threads used
by Tomcat server plus the platform. By using formulas (3) and
(4), a Tenant-BasedVMCalculator component performs calculations
to obtain certain number of VM instances. As most resource
allocation problems, VM instances allocation problem is related
to knapsack problem [8]. The problem to solve is to calculate the
minimum number of virtual machine instances with specific and



282 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
homogeneous capacity (same VM type) in order to allocate a set of
tenant context weights. This type of allocation problem is known
as multi-objective optimization (MO) problem [51]. The allocation
problem can be expressed as showed in formula (5) (adapted
from [8,51]):

f (x) =


�


max

w.length
j=1

Wj where
w.length

j=1

Wj ≤ VMcapacity


W ∈ Tenant context weight vector. (5)

The goal of formula (5) is not to obtain an assignation vector
as traditional allocation mechanisms do, but to determine the
minimum number of VM instances that are needed to allocate the
entire weight vector given homogeneous VM capacity. In order
to solve this calculation, authors propose a simplistic iterative
algorithm by using the same tree-based Java library presented
in Section 4.2 for solving simple knapsack allocations. Tenant-
based allocation uses a vector of tenant context weights retrieved
from Tenant Context Manager. The values to maximize are the
same than weights in such a way that knapsack function allocates
the maximum number of tenant context weights and maximizes
resource usage. The first iteration of the proposed algorithm will
allocate as many weights as it can within an initial VM. The
remaining weights that could not be allocated in the first iteration
will be used for a second iteration. Iterations continue until the
remaining tenant context weights vector has a length of zero. The
number of iterations represents the number of VM instances that
need to be running to allocate the whole tenant workload. The
following code snippet shows this recursive function from Tenant-
Based VM Calculator component:

int VMs = 0;
public int calculateVMs(int capacity,int []tenantWeights){

//STEP_1 Initial VMs for overweight tenants
VMs = preProcessWeights(capacity, tenantWeights);
//STEP_2 Eliminate overweight values
tenantWeights = processWeightArray(capacity,tenantWeights);
//STEP_3 Calculate VMs
calculateVmsAllocation(capacity, tenantWeights);
return VMs;

}//end of function
private void calculateVmsAllocation(int capacity,int []tenantWeights){

if (tenantWeights.length == 0) return;
else{
//EVERY ITERATION INCREMENTS VM INSTANCES NUMBER
VMs++;
//SOLVING KNAPSACK
Knapsack KS = new Knapsack(capacity, tenantWeights, tenantWeights);
KS.search(0,0,0);
int [] take = KS.getBestSolution();

//FILTERING NOT-TAKEN ELEMENTS
List<Integer>newWeightList = new ArrayList<Integer>();
for (intc = 0; c < take.length;c++){

if (take[c]==0){//not taken
newWeightList.add(tenantWeights[c]);

}
}
//REDUCING ARRAY
tenantWeights = convertToIntArray(newWeightList);
//RECURSIVE TO NEXT ITERATION
calculateVmsAllocation(capacity,tenantWeights);

}
} //end of function

In the last code snippet, there is a comment labeled as STEP_1;
in this step is calculated the number of VM instances that is
needed for those tenant contexts that exceed the VM capacity.
For example, assuming 3 tenant context weights as follows:
{254, 21, 434} and a VM capacity of 100, the mechanism in the
STEP_1will detect that first and thirdweight values are overweight
and it calculates how many VM instances are needed initially for
such tenant weights. This calculation is performed by adding all
the integer values obtained from the division exceeded_weight/
capacity. In the example, this calculation is performed as follows:
(integer)(254/100) + (integer)(434/100) = 2 + 4 = 6 initial
VM instances. Once the overweight is calculated, the next step,
labeled as STEP_2, is to process the weight vector in order to
eliminate such overweight of exceeded tenants. This calculation
is done by interchanging the exceeded weight by the modulo of
exceeded_weight/capacity. For instance, in the former example, 254
weight is changed by 54 (254%100) and 434 by 34 (434%100),
therefore the new weight vector will contain {54, 21, 34} values.
After these two calculations, the allocation algorithm performs the
VM allocation with the processed weight vector. Tenant-Based VM
Calculator performs all these calculations every determined time
and interacts with the Cloud Communication Layer in order to
request the VM instances as needed.

8. Tenant-based load balancing

Attention now turns to the design of a tenant-based load
balancer to distribute requests concerning each tenant. Tenant-
based load balancing is proposed to take advantage of isolation
parallelism inWeb applications, meaning that requests from users
are totally independent of each other. A load balancer allows
coordinating the operation of the multiple servers [52] and load
balancing strategies involve the adjustment of the distribution of
the work load among the participating servers if the distribution
is expected to result in a reduction of the total execution time
[49,53]. In this sense, instead of using traditional load balancers
on top of the Tomcat cluster, the design of a component that
receives, identifies, analyzes and dispatches requests received to
the SaaS platform is suggested. This kind of load balancing is known
as dynamic load balancing because it is not based on previous
knowledge of received workload [54].

Tenant-based load balancer is part of the SCWA component
and it uses Tenant Context Manager to retrieve information about
tenant statuses. This component allocates requests of the same
tenant to an unique virtual machine, depending on the capacity
obtained from the profile information (explained before). If the
capacity of a VM is saturated [53], the tenant-based load balancer
will allocate new tenant requests in different VMs if available, if
not, it will notify the Tenant-Based VM Calculator that a new VM is
needed.

Fig. 12 shows the modules and interactions of the tenant-based
load balancer. Previous research work has developed adaptive
models of load balancing [49,55,56] and this proposal is based on
such research. The tenant-based load balancer has the following
elements:

– Request Processor receives requests from HTTP or HTTPS ports
and interprets the request method (GET, POST, etc.).

– Server Preparer instantiates a new HTTP client, sets the request
headers and establishes timeouts.

– Cookie Manager copies cookie information into the request.
– Response Parser returns the server answer meta data to the

client.
– Tenant Request Scheduler communicates with Tenant Context

Managercomponent in order to determine to which VM the
request is dispatched.

The tenant-based load balancer retrieves the information of
the available VM instances from the Cloud Communication Layer.
This balancer implements the four elements described by [54] to
achieve dynamic load balancing when parallel nodes are used:
load measurement, information exchange, initiation rule and
load balancing operation. The following paragraphs describe the
general algorithm for scheduling and dispatching policy.



J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 283
Fig. 12. Tenant-based load balancing.
Load measurement. Dynamic load balancing algorithms rely on
the workload and capacity information of nodes. The workload
information is commonly quantified by a load index, a non-
negative variable taking zero value if the node is idle, and taking
on increasing positive values as the load increases [57], in SaaS
environment, the load index can be taken as the number of users of
each tenant. A load index should be a good estimate of the response
time of the resident processes within the node. Since the measure
of the load would occur frequently, its calculation must be highly
efficient [54]. Previous studies [57,58] have shown that the choice
of a load index has considerable effect on the performance of load
balancing and that simple load indices such as the number of ready
processes are particularly effective. Retrieving information about
the Tenant Context allows to determine the workload needed for a
certain tenant.When a new request arrives, load balancer reads the
information from the Tenant Context Manager (explained in the
previous section) and then invokes to Tenant Request Scheduler
class that calculates in which VM the incoming request will be
dispatched.

Information exchange. The information exchange rule specifies
how to collect and maintain the workload information of nodes
necessary for making the load balancing decisions. A desirable
information exchange rule should strike a balance between
incurring a low cost for the collection of system-wide load
information and maintaining an accurate view of the system
state. This tradeoff is better captured in the periodical information
exchange rule, where the nodes periodically are requested their
workload information from a load balancer component, regardless
ofwhether the information is useful to others or not [54]. Thiswork
proposes an alternative to distributed approaches, a centralized
rule in which a dedicated component collects and maintains the
system’s workload information [59,60]. Look up within tenant-
based map to get the IP address of the VM instance by using
tenant ID as key. If no value is returned from the map, load
balancer requests the Tenant-BasedVMCalculator aVM instance IP
address. This calculation is performedby Tenant Request Scheduler
component.

Initiation rule. An initiation rule dictates when to initiate a load
balancing operation. The execution of a load balancing operation
incurs non-negligible overhead; its invocation decision must
weigh its overhead cost against its expected performance benefit.
Generally, load balancing operations can be initiated either by an
overloaded node or an under loaded node [61]. Periodic remapping
is a common practice in distributed parallel computations. In this
proposal, the initiation rule is implemented by Server Preparer
component. ServerPreparer class creates a HttpClient object and
establishes a connection to the VM instance. Then, the request
headers are copied to the scheduled request.

Load balancing operation. A load balancing operation is defined
by three rules: location rule, distribution rule and selection
rule [54]. The location rule determines the partners of the
balancing operation such as the nodes to involve in the balancing
operation. The set of nodes that will participate in the operation
are known as balancing domain. The distribution rule determines
how to redistribute workload among nodes in the balancing
domain (VM for same tenant). The selection rule selects the
most suitable requests for transfer among nodes to realize the
distribution decision. In this work, location rule is performedwhen
the load balancer retrieves the tenant information and selection
rule is performedwhen the Tenant Request Scheduler calculates or
requests the VM IP address. The distribution rule is applied when
the load balancer dispatches the request through an HTTP client.

As mentioned, policy for scheduling and dispatching workload
is based on the tenant’s information and available VM instances
in the VM cluster. It basically holds a tenant-based map where
requests for each tenant or tenant group is been allocated
according to tenant ID field (key of the values map). This map
contains the statuses of current assignations for the tenants
and their corresponding VM instances. If dispatch fails, the load
balancerwill try again to process the scheduled request to the same
VM node. If it fails again, it will ask for other VM instance IP to the
Cloud Communication Layer. The load balancer will try to process
the scheduled requests until a MAX_RETRIES configuration value
has been achieved.

9. Cloud communication layer

The Cloud Communicator Layer contains the components for
monitoring and accessing the itesm-cloud private infrastructure
through SOAP interfaces. It uses jClouds5 library which is a Java
open source framework that implements portable abstractions to
get connected to public clouds such as Amazon, Azure, Rackspace
or private clouds like Eucalyptus. The jClouds API allows to re-
motely create and shutdown virtual machine instances and ob-
tain their status. Cloud Communicator Layer has two components:
(1) VM Status Handler, which holds and retrieves information about
virtual machine instances, their IP addresses and statuses (start-
ing, running, shutdown) and (2) VM Factory, the component that
communicates to the Eucalyptus API through SOAP requests. It im-
plements the mechanism for creating or releasing VM instances
according to the Tenant-Based VM Calculator component.
//initialize credentials
String accesskeyid = ‘‘. . . ’’;
String secretkey = ‘‘. . . ’’;

5 Adrian Cole. (October, 2010). ‘‘Introducing jclouds’’ [Online] http://code.google.
com/p/jclouds/.

http://code.google.com/p/jclouds/
http://code.google.com/p/jclouds/
http://code.google.com/p/jclouds/
http://code.google.com/p/jclouds/
http://code.google.com/p/jclouds/
http://code.google.com/p/jclouds/


284 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
Table 4
Results with tenant-based components.

Simulated month Server-hours Incremental Peak-based
UU OU UU OU

Jan 591 9.88% 5.18% 2.34% 5.23%
Feb 672 6.09% 13.02% 6.63% 8.34%
Mar 682 4.72% 11.93% 8.42% 18.78%
Apr 831 6.72% 19.31% 8.34% 8.92%
May 1243 9.93% 3.12% 9.43% 5.34%
Jun 1339 9.75% 8.17% 9.23% 13.44%
Jul 1 297 4.92% 12.12% 8.43% 22.11%
Aug 1479 6.22% 18.03% 9.34% 5.11%
Sept 3 256 9.21% 3.23% 9.44% 4.21%
Oct 4 015 7.82% 11.49% 9.43% 7.25%
Nov 9208 12.83% 7.26% 11.33% 8.89%
Dec 10789 10.43% 10.81% 12.89% 11.29%
Totals 35402 – – – –

Averages – 8.21% 13.25% 8.77% 9.9%
T student values 3.2437 1.0282 4.7208 0.7485

//connect to the Eucalyptus itesm-cloud
Properties overrides = new Properties();
overrides.setProperty(‘‘eucalyptus.endpoint’’,
‘‘http://itesm-cloud:8773/services/Eucalyptus’’);
ComputeServiceContext context = new ComputeServiceContext
Factory().createContext(‘‘eucalyptus’’, accesskeyid ,secretkey,
ImmutableSet.<Module> of(new Log4JLoggingModule(), new JschSsh-
ClientModule()), overrides);

//create a VM template with SaaS platform image and small VM type
Template template =

context.getComputeService().templateBuilder().hardwareId(‘‘m1.
small’’).imageId(‘‘Eucalyptus/emi-9ACB1363’’).build();

//set security params
template.getOptions().as(EC2TemplateOptions.class).
securityGroups(‘‘default’’);
template.getOptions().as(EC2TemplateOptions.class).noKeyPair();

//creating N instances
Set<? extends NodeMetadata> nodes = context.getComputeService().
runNodesWithTag(‘‘saasplatform’’, N , template);
. . .
//or shutdown an instance by ID
context.getComputeService().destroyNode(‘‘Eucalyptus/i-3FB706CB’’);

Last code snippet shows abstractions that are used in most
cloud infrastructures, such as authentication through key creden-
tials, creating templates that match with VM images and running
or destroying instances.

10. Results and analysis

After setting up the tenant-based components and deploying
them over the test bed, all the simulation and tests were run
again. Over and underutilization measurements where performed
against workload tests in traditional load balancing (incremental
and peak-based). Similar to Tables 3 and 4 shows the results of
combined percentages. A main difference among results is the
measurement of server-hours givenby thenumber of VM instances
that were created through tenant-based demand.

In Table 4, the server-hours were reduced from 51840 to
35402, a reduction of 32%. Also, it can be observed that averages
of over and underutilization has been reduced, but in order to
demonstrate a statistical significance improvement of previous
averages (Table 3, known as control group) against new values in
Table 4 (experimental group), a t-student test is carried out. The
t-student test allows to determine if two averages are significantly
different, in this case [62], if averages of Table 4 are statistically less
than those in Table 3.WithN as a number of months (samples), we
have (N1 + N2 − 2) = (12 + 12 − 2) = 22 degrees of freedom
and we set an accuracy of 99.5% (α = 0.005 of significance),
t-student distribution table produces a value of tα = 2.8188
as base parameter. Next step is to calculate t-student values for
each corresponding column pair (for example, underutilization for
incremental workload of Tables 3 and 4). t-student test dictates
that if calculated value is greater than tα parameter, we can
say with a 99.5% of certainty that second column (Table 4) is
statistically less than first column (Table 3). The calculation for t-
student test is represented in formula (6) [62].

t =
X̄1 − X̄2
S21
N1

+
S22
N2

(6)

where X1 is the average and S1 the standard deviation of columns
of Table 4 results. X2 and S2 is average and standard deviation,
respectively, when tenant-based components are used (Table 4).
The last row of Table 4 shows the calculated t values. For
example, taking the columns of the underutilization (UU) during
incremental workload of both tables, the calculated t-student
value is 3.2437. This value is greater than 2.8188 parameter,
meaning that averages for underutilization before tenant-based
components have been statistically improved. The t-student
value for underutilization (UU) during peak-based is higher than
tα (4.7208 > 2.8188) and we can say that this behavior
was, statistically speaking, improved as well. On the other hand,
both t-student values corresponding to overutilization (OU) are
not higher than tα; even if the averages were reduced, we
cannot conclude that there was a statistical improvement for such
behavior.

11. Conclusions

In spite of cloud computing advantages for offering on-
demand resources, there is still the need for certain automation
when specific platforms are deployed and scaled over virtualized
environments. This is the case of Software-as-a-Service (SaaS)
platforms and their applications, where over and underutilization
of resources occur due lower and higher workload pikes and
because the number of virtual machine instances deployed for
scaling applications are traditionally based on the maximum
simultaneous users. In this matter, a tenant-based model is
presented to tackle over and underutilizationwhen SaaS platforms
are deployed over cloud computing infrastructures. This model
contains three complementary approaches: (1) tenant-based
isolation which encapsulates the execution of each tenant, (2)
tenant-based load balancing which distributes requests according
to the tenant information, and (3) a tenant-based VM instance
allocation which determines the number of VM instances needed
for certain workload, based on VM capacity and tenant context
weight. After running all tests and simulations, the results were
gathered and averages were calculated. In general, over and
underutilization averages were reduced but only averages for
underutilization were statistically improved.

12. Future work

Resource allocation has a significant impact in cloud computing,
especially in pay-per-use deployments where the number of re-
sources are charged to application providers. As further research of
the tenant-based resource allocation model, authors recommend
somework to be done to improve and continue validating the pro-
posed solution. It is recommendable to deploy a different platform



J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286 285
over the cloud infrastructure, such as High-Performance Comput-
ing (HPC) or scenarios such as online transactional applications.
Moreover, other kind of resources can be defined to be metered
such as bandwidth, storage, transferred data or database connec-
tivity. In this way, new models and mechanisms for measuring
virtual machine statuses must be defined and implemented in or-
der to gather results for these resources. Additionally, test bed ar-
chitecture used in this work implements a single database that
SaaS applications access to persist data. An improved test bed ar-
chitecture can implement clustered database design in order to
distribute the information of applications. Two workload genera-
tion behaviors were used in this work: an incremental workload
and a peak-based workload. Different approaches can be tested
for different measurements. A non-deterministic workload can be
generated through different mechanisms. Finally, this work used
Eucalyptus to deploy a private cloud infrastructure over commod-
ity computers but is important to remark that any other cloud in-
frastructure such asMicrosoft Azure orAmazonEC2 canbe adapted
to be measured and tested in the similar way. The deployment of
the SaaS platform over different cloud environment might require
different configuration and test bed architecture.

Acknowledgments

The research presented in this document is a contribution
for the ‘‘Rapid Product Realization for Developing Markets
Using Emerging Technologies’’ Research Chair, ITESM, Campus
Monterrey, and for the ‘‘Technological Innovation’’ Research Chair,
ITESM, Campus Mexico City.

References

[1] M. Armbrust, et al. Above the clouds: a Berkeley view of cloud computing,
electrical engineering and computer sciences, Technical Report No. UCB/EECS-
2009-28, University of California at Berkeley, February 2009.

[2] R. Buyya, C. Shin Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599–616.

[3] J. Espadas, D. Concha, A. Molina, Application development over software-
as-a-service platforms, in: The Third International Conference on Software
Engineering Advances ICSEA, 2008, pp. 97–104.

[4] J. Napper, P. Bientinesi, R. Iakymchuk, Underutilizing resources for HPC on
clouds, Aachen Institute for Advanced Study in Computational Engineering
Science, 2010.

[5] Animoto Blog, Amazon CEO Jeff Befos on Animoto, April 2008. http://animoto.
com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/.

[6] J. Wong, G. Iszlai, M.L. Ye Hu, Resource provisioning for cloud computing, in:
Proceedings of the 2009 Conference of the Center for Advanced Studies on
Collaborative Research, November 2009.

[7] C. Isci, J. Kephart, L. Zhang, E. Bouillet, D. Pendarakis, X.Meng, Efficient resource
provisioning in compute clouds via VMmultiplexing, in: Proceeding of the 7th
International Conference on Autonomic Computing, June 2010.

[8] M. Stillwella, D. Schanzenbacha, F. Vivienb, H. Casanova, Resource allocation
algorithms for virtualized service hosting platforms, Journal of Parallel and
Distributed Computing 70 (9) (2010) 962–974.

[9] Y. Jie, Q. Jie, L. Ying, A profile-based approach to just-in-time scalability for
cloud applications, in: CLOUD’09, IEEE International Conference on Cloud
Computing, September 2009.

[10] G.V. Mc Evoy, B. Schulze, Using clouds to address grid limitations, in: MGC’08:
Proceedings of the 6th International Workshop on Middleware for Grid
Computing, December 2008.

[11] C.J. Guo, W. Sun, Y. Huang, W. Zhi Hu, B. Gao, A framework for native
multi-tenancy application development and management, in: The 9th
IEEE International Conference on E-Commerce Technology and the 4th
IEEE International Conference on Enterprise Computing, E-Commerce, and
E-Services, 2007, pp. 551–558.

[12] R. Mietzner, F. Leymann, M.P. Papazoglou, Defining composite configurable
saas application packages using SCA, variability descriptors andmulti-tenancy
patterns, in: ICIW ’08, Third International Conference on Internet and Web
Applications and Services, June 2008.

[13] W. Sun, X. Zhang, C. Jie Guo, P. Sun, H. Su, Software as a service: configuration
and customization perspectives, in: IEEE Congress on Services Part II,
September 2008.

[14] T. Kwok, T. Nguyen, L. Lam, A software as a service with multi-tenancy
support for an electronic contract management application, in: SCC’08 IEEE
International Conference on Services Computing, vol. 2, July 2008.
[15] G. Carraro, F. Chong, Architecture strategies for catching the long tail, April
2006. http://msdn.microsoft.com/en-us/library/aa479069.aspx.

[16] R. Badonnel, A. Keller, Automating the provisioning of application services
with the BPEL4WS workflow language, in: Proceedings of DSOM, 2004.

[17] R. Mietzner, A. Metzger, F. Leymann, K. Pohl, Variability modeling to support
customization and deployment of multi-tenant-aware software as a service
applications, in: PESOS ’09: Proceedings of the 2009 ICSE Workshop on
Principles of Engineering Service Oriented Systems, May 2009.

[18] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, J. Rittinger, Multi-tenant
databases for software as a service: schema-mapping techniques, in: SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, 2008.

[19] M. Hui, D. Jiang, G. Li, Y. Zhou, Supporting database applications as a service, in:
IEEE 25th International Conference on Data Engineering, 2009, pp. 832–843.

[20] H. Cai, et al. An end-to-end methodology and toolkit for fine granularity
saas-ization, in: IEEE International Conference on Cloud Computing, 2009,
pp. 101–108.

[21] Y. Chen, T. Wo, J. Li, An efficient resource management system for on-
line virtual cluster provision, in: IEEE International Conference on Cloud
Computing, 2009, pp. 72–79.

[22] J. Huai, Q. Li, C. Hu, CIVIC: a hypervisor based virtual computing environment,
in: International Conference on Parallel Processing Workshops, 2007, p. 51.

[23] E. Caron, F. Desprez, D. Loureiro, Cloud computing resource management
through a grid middleware: a case study with DIET and eucalyptus, in: IEEE
International Conference on Cloud Computing, 2009, pp. 151–154.

[24] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, D. Newell, VM3: measuring,
modeling and managing VM shared resources, The International Journal of
Computer and Telecommunications Networking (2009) 2873–2887.

[25] Amazon Web Services—auto scaling. 2010.
http://aws.amazon.com/autoscaling/.

[26] J. Sedayao, Implementing and operating an internet scale distributed appli-
cation using service oriented architecture principles and cloud computing in-
frastructure, in: iiWAS’08: Proceedings of the 10th International Conference
on Information Integration and Web-Based Applications & Services, Novem-
ber, 2008.

[27] C. Baun, M. Kunze, Building a private cloud with eucalyptus, in: 5th IEEE
International Conference on E-Science Workshops, 2009, pp. 33–38.

[28] D. Nurmi, et al. The eucalyptus open-source cloud-computing system, in:
CCGRID’09, 9th IEEE/ACM International SymposiumonCluster Computing and
the Grid, May 2009.

[29] Amazon Web Services, May 2010, http://aws.amazon.com/ec2/#pricing.
[30] C. Devlin, SaaS capacity planning: transaction cost analysis revisited, MSDN

Library, February 2008. http://msdn.microsoft.com/en-us/library/cc261632.
aspx.

[31] C. Isci, J. Kephart, L. Zhang, E. Bouillet, D. Pendarakis, X.Meng, Efficient resource
provisioning in compute clouds via VMmultiplexing, in: Proceeding of the 7th
International Conference on Autonomic Computing, June 2010.

[32] A.K. Mishra, J.L. Hellerstein, W. Cirne, C.R. Das, Towards characterizing cloud
backend workloads: insights from Google compute clusters, SIGMETRICS
Performance Evaluation Review 37 (4) (2010).

[33] Apache Software Foundation, Apache JMeter, 2010. http://jakarta.apache.org/
jmeter/usermanual/glossary.html.

[34] G. Paroux, B. Toursel, R. Olejnik, V. Feleax, A Java CPU calibration tool for
load balancing in distributed applications, in: Third International Symposium
on/Algorithms, Models and Tools for Parallel Computing on Parallel and
Distributed Computing, 2004, pp. 155–159.

[35] Q. Wu, Y. Wang, Performance testing and optimization of J2EE-based web
applications, in: Second InternationalWorkshop on Education Technology and
Computer Science, ETCS, vol. 2, 2010, pp. 681–683.

[36] S. Wee, H. Liu, Client-side load balancer using cloud, in: Proceedings of the
2010 ACM Symposium on Applied Computing, March 2010.

[37] D. Dyachuk, R. Deters, A solution to resource underutilization for web
services hosted in the cloud, in: Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009 on the Move to Meaningful
Internet Systems: Part I, November 2009.

[38] C. Matthews, Y. Coady, Virtualized recomposition: cloudy or clear? in:
Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges
of Cloud Computing, Washington, DC, USA, May 2009, pp. 38–43.

[39] O.C. Granmo, B.J. Oommen, S.A. Myrer, M.G. Olsen, Learning automata-based
solutions to the nonlinear fractional knapsack problem with applications
to optimal resource allocation, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 37 (2007) 166–175.

[40] D.C. Vanderster, Resource allocation and scheduling strategies using utility
and the knapsack problem on computational grids, Dept. of Electrical and
Computer Engineering, British Columbia Canada, 2008.

[41] D.C. Vanderster, N.J. Dimopoulos, R. Parra-Hernandez, R.J. Sobie, Resource
allocation on computational grids using a utility model and the knapsack
problem, Future Generation Computer Systems (2009) 35–50.

[42] R. Parra-Hernandez, D. Vanderster, N.J. Dimopoul, Resource management and
knapsack formulations on the grid, in: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, Washington, DC, USA, November
2004, pp. 94–101.

[43] B. Weis, A. Buchmann, S. Kounev, Performance tuning and optimization
of J2EE applications on the JBoss platform, Journal of Computer Resource
Management 113 (2004).

[44] A. Zaidman, B. Du Bois, S. Demeyer, How webmining and coupling
metrics improve early program comprehension, in: 14th IEEE International
Conference on Program Comprehension, ICPC, 2006, pp. 74–78.

http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://animoto.com/blog/company/amazon-com-ceo-jeff-bezos-on-animoto/
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/ec2/#pricing
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://msdn.microsoft.com/en-us/library/cc261632.aspx
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html
http://jakarta.apache.org/jmeter/usermanual/glossary.html


286 J. Espadas et al. / Future Generation Computer Systems 29 (2013) 273–286
[45] T. Parsons, L.M. Patcas, J. Murphy, A. Ufimtsev, Introducing performance
engineering by means of tools and practical exercises, in: Proceedings of the
2006 Conference of the Center for Advanced Studies on Collaborative research,
New York, NY, USA, 2006.

[46] Ruay-Shiung Chang, Wu-Chun Chung, A new mechanism for resource
monitoring in Grid computing, Future Generation Computer Systems 25 (1)
(2009) 1–7.

[47] Y. Zhang, G. Huang, X. Liu, H. Mei, Integrating resource consumption
and allocation for infrastructure resources on-demand, in: 2010 IEEE 3rd
International Conference on Cloud Computing, CLOUD, Miami, FL, 2010,
pp. 75–82.

[48] AmazonWeb Services, Deploying distributed J2EE spplications using Amazon
EC2, December 2007.
http://www.imaginea.com/docs/Scaling%20JEE%20apps%20on%20ec2.pdf.

[49] J. Caoa, D.P. Spooner, S.A. Jarvisb, G.R. Nuddb, Grid load balancing using
intelligent agents, Future Generation Computer Systems 21 (1) (2005)
135–149.

[50] G. Carraro, R. Wolter, F. Chong, Multi-tenant data architecture, MSDN Library,
June 2006. http://msdn.microsoft.com/en-us/library/aa479086.aspx.

[51] C.A. Correa, R.A. Bolaños, A. Molina, Multiobjective knapsack problem using
NSGA-II algorithm, Scientia et Technica, No. 39, September 2008.

[52] L. Harik, A. Kayssi, FPGA-based load balancer for Internet servers, in: The 14th
International Conference on Microelectronics 2002—ICM, 2002, pp. 190–193.

[53] C.C.Myint, K.M. Lar Tun, A framework of usingmobile agent to achieve efficient
load balancing in cluster, in: 6th Asia-Pacific Symposium on Information
and Telecommunication Technologies, 2005, APSITT 2005 Proceedings, 2005,
pp. 66–70.

[54] C. Xu, L.C.M. Francis, Load Balancing in Parallel Computers, Kluwer Academic
Publishers, 1997.

[55] G. Lodi, F. Panzieri, D. Rossi, E. Turrini, SLA-driven clustering of QoS-aware
application servers, IEEE Transactions on Software Engineering 33 (3) (2007)
186–197.

[56] Y. Liu, L. Wang, S. Li, Research on self-adaptive load balancing in EJB clustering
system, in: ISKE 2008, 3rd International Conference on Intelligent System and
Knowledge Engineering, Xiamen, 2008, pp. 1388–1392.

[57] D. Ferrari, S. Zhou, An empirical investigation of load indices for load balancing
applications, in: Proceedings of 12th Annual International Symposium
of Computer Performance Modeling, Measurement and Evaluation, 1987,
pp. 515–528.

[58] T. Kunz, The influence of different workload descriptions of a heuristic load
balancing scheme, IEEE Transactions on Software Engineering (1994) 60–79.

[59] F. Bonomi, A. Kumar, Adaptive optimal loadbalancing in a heterogeneous
multiserver system with a central job scheduling, IEEE Transactions on
Computers (1990) 1232–1250.

[60] W. Shu, M.Y. Wu, Runtime incremental parallel scheduling (RIPS) on
distributed memory computers, IEEE Transactions on Parallel and Distributed
Systems (1996) 637–649.

[61] F. Lin, R. Keller, The gradient model load balancing method, IEEE Transactions
on Software Engineering (1987) 32–38.

[62] M.R. Spiegel, L.J. Stephens, Estadística, 3rd ed., McGraw Hill, Mexico, 2002.

Javier Espadas is a Ph.D. graduate of the Information and
Communication Technologies Program at the Tecnológico
de Monterrey, Campus Monterrey. He is also a Researcher
and Software Architect at Center of Innovation in Design
and Technology of the same institute since April 2004.
He has worked in different national and international
projects regarding the development of IT-platforms based-
on state-of-the-art approaches such as service-oriented
architectures (SOA) and Software-as-a-Service (SaaS)
models in collaborative environments. He was awarded
by the Microsoft Latin American Internship Program 2009

with a 3-month internship at the Cloud Computing Futures Group at Microsoft
Research in Redmond, Washington.
Arturo Molina is the General Director of the Tecnológico
de Monterrey, Campus Mexico City. He received his Ph.D.
degree in Manufacturing Engineering at Loughborough
University of Technology, England (1995), his University
Doctor Degree in Mechanical Engineering at the Technical
University of Budapest, Hungary (1992), and his Master’s
Degree in Computer Science from Tecnológico de Monter-
rey, Campus Monterrey, Mexico (1992). He is member of
the National Researchers System of Mexico (SNI-Level II),
MexicanAcademyof Sciences, andmember of IFAC TC-WG
5.3 on Enterprise Integration and Enterprise Networking,

IFIP WG 5.12 on Enterprise Integration Architectures and IFIP WG 5.3 Cooperation
of Virtual Enterprises and Virtual Organizations.

Guillermo Jiménez receivedhis Ph.D. in Computer Science
from Tecnológico de Monterrey, where he is full professor
since 1993 at the Computer Science Department. His areas
of interest are Component Based Software Development,
Software Product Lines, Service Oriented Computing, and
Architectures for Enterprise Integration.

Martín Molina is the Chairman of the Computer Science
Graduate Programs Department at Tecnológico de Mon-
terrey, Campus Mexico City. He received his Ph.D. and
Master degrees in Computer and Telecommunications at
Institut National Polytechnique de Toulouse (INPT), France
(2003/1999). His research areas include coordination, co-
operation and communication on mobile and distributed
systems, SOA and cloud computing. Dr. Molina has par-
ticipated in several national and international research
projects.

Raúl Ramírez finished a Chemical & Industrial Engineer-
ing degree in May, 1988 at Instituto Tecnólogico y de
Estudios Superiores de Monterrey (ITESM), Campus Mon-
terrey, Mexico. He finished a Master Degree on Science
with specialty in Computer Science in July 1991. He has
been full time professor at ITESM since August de 1991.
He reached Associate Professor Level in 2003. He fin-
ished a doctorate degree at ITESM in February 2004 in
Information Technology with specialty in Multimedia Dis-
tributed Systems. He has done research in collaborative
distributed systems, information technology architecture

and infrastructure engineering, computer graphics and animation, and networked
multimedia.

David Concha is a Researcher and Programmer at Center
of Innovation in Design and Technology of the Tecnológico
de Monterrey, Campus Monterrey since April 2004. From
this institute, he also received hisMaster’s Degree in Infor-
mation Technologies (2006). As part of the research cen-
ter, he has worked in different national and international
projects related to on-demand databases, business process
management and IT-platforms development. He was an
invited researcher to the Hewlett-Packard (HP) Lab at Palo
Alto, California from April 2007 to April 2008.

http://www.imaginea.com/docs/Scaling%20JEE%20apps%20on%20ec2.pdf
http://msdn.microsoft.com/en-us/library/aa479086.aspx

	A tenant-based resource allocation model for scaling Software-as-a-Service applications over cloud computing infrastructures
	Introduction
	Background
	Multi-tenancy: definition and support
	Related projects

	Test bed platforms and architectures
	Defining and measuring over and underutilization
	Overutilization (saturation)
	Underutilization (resource wasting)
	Generating workload
	Test results

	The proposed solution model and architecture
	Tenant-based isolation
	Tenant-based persistence
	Tenant-based authentication

	Tenant-based VM allocation
	Tenant-based load balancing
	Cloud communication layer
	Results and analysis
	Conclusions
	Future work
	Acknowledgments
	References


