

CSE Department

M. M. Engineering College,
M. M. University,

Mullana, Ambala, Haryana, India-133207
rohit_vaid1@rediffmail.com

CSE Department

M. M. Engineering College,
M. M. University,

Mullana, Ambala, Haryana, India-133207
dean.acadaffairs@mmumullana.org

Abstract— Designing an energy efficient key management scheme
to secure Wireless Sensor Networks is a challenging task because
sensor nodes in the network are resource constrained. If an initial
key is used in the network lifetime, a key stolen by an
unauthorized node will results in data compromised that is
generated in the network. So a re-keying is necessary after a
specified number of rounds to avoid the side effect of stale key in
the network. In clustering environment, a number of keys are
needed for every sensor. If the role of sensor is cluster head, then
one key is required to collect data from all cluster members. This
key is shared between the cluster head sensor and all the sensors
which are members of that cluster. The different key is required
to transfer the aggregated data to base station this key is only
shared between the sensor node which is cluster head and the
base station. But if the role of cluster head is changed from one
sensor to different sensor randomly, a new key will be require
that is share between sensor node and new cluster head and also
a new key will be required that is shared between this new cluster
head and the base station. If the scheme is followed then re-
keying after every round is a bottleneck of the network as more
than one re-keying is require for every sensor. In this paper, we
have presented a new virtual location based key management
scheme (VLKM). This scheme used virtual location to generate a
round key for every sensor. Simulation results show that
proposed scheme performs better than other comparable
schemes in the literature without increasing the communication
overheads.

Keywords- Backward Secracy, KMS, Security, key distribution,
Forward Secracy, Clustring, rekeying, WSNs

I. INTRODUCTION TO WSNS
Wireless sensor network (WSN) consists of large number

of battery-operated sensor nodes. These sensors are very small
in size. They have also a built-in processor that is used for the
computing functions. In case of wireless sensor network,
communication among the sensors is done using wireless
transceivers. So every sensor is equipped with a built in
antenna that will help them in communication to other sensors
in their limited communication range. Each sensor consist of
four subsystems: Power Supply subsystem, sensing
subsystems, processing sub systems and communication
Subsystems. So with the help of these subsystems, sensors are
able to sense the environment, compute simple tasks and
exchange data among each other. But all the sensors are
resource constrained in terms of memory, energy, processing
power and communication bandwidth. Every subsystem uses
energy for their working. Once the battery is drained, sensor
nodes are useless. The situation of network disconnection is

also arises if battery is drained in few of the nodes. So energy
consumption by a node is a critical aspect, in order to increase
the lifetime of the network. In most of the cases it is very
difficult to recharge or replace the battery. Thus it is necessary
that a protocol in WSN must be energy efficient. Sensor nodes
are usually deployed in harsh or hostile environments such as
battlefield, environmental monitoring or disaster area where
they are operated without any attendance. Thus unattended
operation makes the secure data aggregation even harder.

A. Key Management Requirements in WSNs
The basic goal of key management scheme in WSNs is to

protect the information communicated over the network from
attacks and misbehavior. The key management requirements in
WSNs include:

1) Memory Storage (MS): A sensor node is usually
resource constrained in terms of memory. Therefore, it is
important that the amount of memory needed by a key
management scheme is minimum. In general, the simpler the
protocol is, the more memory space should be made available
for storing the security credentials.

2) Communication Overhead (CO): In most key
management scheme (KMS), the nodes must exchange control
messages with their group members through communication
channels in order to establish a group key. Some protocols
may require the exchange of a small amount of control
messages to share a group key wehile other protocols may
need to undergo a complex negotiation among them.

3) Resource overhead (RO): Sensor nodes are resource
constrained in terms of processing and storage. So it is
important to determine the amount of resources (such as time
and storage) necessary to execute the encryption algorithm to
implement the security in the existing protocol. Fortunately,
there are many KMS that are not very computationally
efficient.

4) Key Security (KS): It should be necessary that the key
distribution or key updation process must be secure by itself.
So the protocols do not need to exchange sensitive information
(e.g. Key, node ID, etc) for this purpose.

5) Forward secrecy: This ensures that a compromised
current secrets or keys should not be able to compromise any
secret or key used in future.

2014 International Conference on Parallel, Distributed and Grid Computing

978-1-4799-7683-6/14/$31.00©2014 IEEE 53

6) Backward secrecy: This ensures that a compromised
current secrets or key should not be able to compromise any
earlier secret or key.

B. Type of Key Management Schemes
There are two fundamental key management schemes that

are used in WSNs, i.e. static and dynamic. In static key
management scheme, the sensors have a fixed number of keys
loaded prior to network deployment but in dynamic key
management schemes, the key is redistributed periodically or
on demand as needed by the network. One significant
disadvantage of this scheme is that it will increase the
communication overhead due to keys redistribution to each
and every node in the network. But proposed scheme
calculates dynamic key by running a key generation function
periodically or on demand as needed by the network. This
function generates a dynamic key for each sensor with the help
of its virtual location. There are many reasons for key
refreshment that includes: updating keys after a key revocation
has occurred, refreshing key such that it does not become stale
or changing keys due to dynamic changes in the topology.

Since a sensor node will be either forwarding the
aggregated data by collecting it from all cluster members if it
is a cluster head or injecting its own data to the cluster head if
it is not a cluster head. In case if it is a cluster head, it will
needed two different keys, one that is shared between this
sensor and the base station only and second key that is shared
between this sensor and all the cluster members of the same
cluster. But in other case when it is not a cluster head then it
needs a single key that is shared between this sensor and the
cluster head.

II. LITERATURE REVIEW

Recently, many schemes were proposed to secure the
communication in WSNs. In this section, we present a brief
overview of the related works that are used to enhance the
security in wireless sensor networks.

In [2] the author analyzed basic issues related to security in
WSNs. Two new kind of attacks (Forward and backward
secrecy) identified in [2], are very serious threats in any type
of dynamic key management scheme. So these attacks must be
considered when design a key management scheme.

In [5] the author introduces an energy-efficient Virtual
Energy-Based Encryption and Keying (VEBEK) scheme for
WSNs. The proposed scheme reduces the number of
transmissions needed for rekeying to avoid stale keys. The key
used in the encryption process dynamically changes as a
function of the residual virtual energy of the sensor. Thus, a
one-time dynamic key is employed for one packet only and
different keys are used for the successive packets of the
stream. The intermediate nodes along the path to the sink are
able to verify the authenticity and integrity of the incoming
packets using a predicted value of the key generated by the
sender’s virtual energy, thus requiring no need for specific
rekeying messages. But synchronization is a big issue in this
scheme. Once virtual energy is unsynchronized, the packets
will never decrypt. The result of not decrypting the packet is

that it is completely impossible to differentiate between
authenticated and malicious nodes.

In [6] author addresses pair-wise and triple key
establishment problems in wireless sensor networks (WSN).
The scheme presented in [6] is highly resilient against node
capture attacks and is applicable for mobile sensor networks
while preserving low storage, computation and
communication requirements. Author proposed a novel
concept of triple key distribution, in which three nodes share
common keys to secure forwarding, detecting malicious nodes
and key management in clustered sensor networks. The
scheme is based on polynomial and a combinatorial approach
(using trades) for triple key distribution.

In [7] the author presented an efficient key distribution
scheme. The proposed scheme is useful to secure data-centric
routing protocols in Wireless Sensor Networks. The proposed
scheme bootstraps secure key distribution with a centralized
process which gives a multi-level hierarchical organization to
WSNs. The scheme permits to use local key distribution
process to establish Group Key and Pair-wise Key. These two
types of keys are useful to secure respectively data request
diffusion and data forwarding through multi-hop routing paths.
The scheme is very suitable in dynamic topology.

In [8] the author propose a lightweight implementation of
public key infrastructure known as cluster based public
infrastructure (CBPKI), CBPKI is based on the security and
the authenticity of the base station for executing a set of
handshakes intended to establish session keys between the
base station and sensors over the network used for ensuring
data confidentiality and integrity.

III. SYSTEM MODEL
In this section, we present virtual location based dynamic

key management scheme (VLKM). We first give an overview
of the technique and then present the details of the protocol.

A. Division of Network into Clusters
Proposed scheme uses the concept of physical clustering,

i.e. every cluster is identified by its physical boundary. The
boundary of each cluster is similar in size. Number of clusters
into horizontal and vertical directions is decided in the setup
phase. All the clusters are equal in size. Each cluster is
indentified by its cluster ID.

There are two type of clustering scheme that is used in
wireless sensor networks, i.e. static and dynamic. In static
clustering scheme, clusters are fixed and there is no update
into size and member of the cluster after formation. But in
dynamic clustering scheme, the size and members of every
cluster are changed in every phase of cluster formation. The
members of every cluster are increases or decreased in every
cluster formation, thus the size of cluster grows or shrink
accordingly. Proposed model uses the concept of static
clustering. Any model is used for clustering. But once the
cluster is decided for any sensor, it is fixed and permanent for
every round throughout the network lifetime. In proposed
model, the cluster for any sensor is decided by its physical
location in the network as shown in Figure 1.

2014 International Conference on Parallel, Distributed and Grid Computing

54

B. Random Locations
All sensors in the network are deployed randomly as

shown in Figure 1. Every sensor is provided with a virtual
location. Virtual location is a random X and Y coordinates.
This virtual location is used to generate a key that is used in
the network. This location is given to every sensor within its
cluster boundary. Similarly every cluster has also provided a
random cluster virtual location. This virtual location is also a
random location within cluster boundary. This location is also
saved in the memory of all the cluster members of the same
cluster. Virtual location of all the clusters is shown in Figure
1.

Figure 1. Random Sensor Deployment and Virtual locationing

C. Virtual Origins
A virtual origin is used for the virtual locations, i.e. a

random virtual origin is provided to the network and all
clusters will map their virtual locations on this virtual origin of
the network. Similarly virtual origin is also provided to every
cluster and this origin is any location within the cluster
boundary as shown in Figure 2.

This model is used in the networks where more than one
key is required for any type of sensor. One key that is shared
between sensor node and base station and other key is shared
between all the group members, i.e. member of the same
cluster. The types of keys used in wireless sensor networks are
given below:-

Figure 2. Cluster Virtual Location Mapping

1) Cluster key (KCj): This key is shared between all the
sensors of jth cluster. Where the value of j is between one and
number of clusters (NOC) in the network, i.e. 1 j NOC.
This cluster key is shared between more than two sensors and
is only known to all the members of jth cluster and also to the
base station. If a normal sensor node ‘A’ which is not a cluster
head, wants to transfer the sensed data to the cluster head
sensor ‘B’ (head of the same cluster) then ‘A’ will use its
cluster key to transfer the data to ‘B’.

a) Every cluster has an initial virtual location, virtual
boundary, and virtual speed of movement, virtual angle of
movement and virtual direction of movement. These
parameters are only known to all the members of that cluster.

b) The network is provided a virtual origin and all the
clusters map their virtual locations on this virtual origin as
shown in Figure 2. The coordinates of this virtual origin is not
(0, 0). For example if virtual location of any cluster is (5, 2)
and the coordinates of virtual origin is (3, 2) then the virtual
location of this cluster after mapping is (8, 4).

c) All the sensor of same cluster will move virtually in
same direction, with same speed and angle of movement.

d) Current location of any cluster is updated, every time
when the members of that cluster are moved. This current
location is used to generate a key.

e) All the sensors will calculate current virtual location
for current round. This loction contains ‘X’ and ‘Y’
coordinates (decimal value upto two digit decimal place). This
current location is same for all the members of same cluster.

f) All the sensors will apply one way hash function on
current virtual location to produce the cluster key used in
current round.

g) Whenever all the sensors of a cluster are elected as a
cluster head, all sensors will update their virtual location thus
current virtual location is updated that results in updation of
cluster key.

h) To change the cluster key for any clusters, only virtual
location of that cluster is updated.

i) Virtual origin of the network is updated when all the
sensors of entire network are elected as a cluster head.

2) Sensor key (Ki): This key is shared only between the
sensor node ‘i’ and base station. This key is different for all
the sensors in the network. Where the value of i is between
one and number of sensors (N) in the network, i.e. 1 i N. If
some sensor node ‘A’ is elected as a cluster head then ‘A’ will
use its sensor key to transfer the information to the base
station.

a) Every sensor has an initial virtual location, boundary,
speed, angle and direction of movement, only known to the
sensor and the base station only. This location and other
parameters are different and independent than the parameters
of a cluster.

b) All the sensors will map their virtual locations on
virtual origin of the cluster as shown in Figure 3.

2014 International Conference on Parallel, Distributed and Grid Computing

55

c) Every sensor will move virtually in its virtual
boundary with a specified direction, speed and angle of
movement.

d) Sensors will calculate its current virtual location for
current round. This loction contains ‘X’ and ‘Y’ coordinates
(decimal value upto two decimal places). This current location
is different and independent for all the members in a network.

e) Sensors will apply one way hash function on its initial
virtual location and current virtual location to produce the
sensor key used in current round.

f) Whenever all the sensors of the cluster are elected as a
cluster head, all sensors will update their virtual location thus
current virtual location is updated that results in updation of
sensor key.

g) To change the sensor key for a particular sensor, only
virtual location of that sensor is updated.

h) Virtual origin of the network is updated when all the
sensors of entire network are elected as a cluster head.

Figure 3. Sensor Virtual Location Mapping

D. Virtual Movements
Every sensor has a unique virtual boundary. This virtual

boundary is a surrounding area around the sensor where the
senor is free to move with a specific angle in a particular
direction with a constant speed. When sensor hits to its virtual
boundary by moving virtually, its direction of movement is
changed accordingly, i.e. from Bottom Right (BR) to Right
Top (RT) similarly from RT to Top Left (TL) and from TL to
Left Bottom (LB) and from LB to BR. Whenever any sensor
moves, its current virtual location is changed accordingly as
shown in Figure 4.

All the Sensors initially mapped its virtual locations to the
virtual origin, i.e. to generate the sensor key it will map its
virtual location over virtual origin of the cluster but if it
generates a cluster key then it will map its virtual cluster
location over virtual origin of the network. With this
movement speed, angle and virtual boundary, the sensor can
generate any number of keys. There is no need to update the
keys manually. The key is dynamic, that is updated every time
when the sensor changes its virtual location by its virtual

movement. When all the sensors of a cluster are elected as a
cluster head, there is a need to update the cluster key. So all
the sensor of that cluster updates there virtual location by
moving themselves to a new location with a given virtual
angle, speed and boundary. This will generate a new cluster
key for next phase, till all the sensors in a cluster are not
elected as a cluster head once again. Similarly when there is a
need to update the sensor key which is shared between a
particular sensor and the base station, the sensor updates its
virtual location by moving itself to a new location with a given
virtual angle, speed and boundary. This will generate a new
sensor key for next phase. The sensor will generate dynamic
key by applying a one way hash function on its initial virtual
location and current virtual locations. To generate a next
dynamic key, it will change its current virtual location by
moving itself to a new virtual location again with same angle
and direction with a constant speed.

Figure 4. Sensor movement within virtual boundary

Its initial virtual location, angle of movement speed of
movement and virtual boundary are already known to base
station so base station easily calculates dynamic key of all the
sensors of network. Normal sensors will transmit the sensed
data to the cluster head sensor with cluster key. Similarly,
cluster head will receive data from normal sensors with the
help of a cluster key. Cluster head will transmit the aggregate
data to the base station so it will use its sensor key (shared
between cluster head and base station only). As base station
will receive data from cluster heads only so it will calculate
keys only for cluster head sensors. To balance the power
consumption between all the nodes in the cluster it is
necessary to rotate the role of cluster head. This time base
station needs a different key that is shared between base
station and new cluster head.

If all the sensors in a network has same size virtual
boundary, the virtual locations of two different sensors is
different irrespective of their boundary because their boundary
surrounds to their virtual location which is different for each
sensor and only known to that sensor. Otherwise there are
several other methods to produce this difference, i.e. with
different size of virtual boundary, with different angle of
virtual movement or with different speed of virtual movement
etc. Compute Virtual Location (CVL) is an algorithm that

2014 International Conference on Parallel, Distributed and Grid Computing

56

specifies how the sensor is moving into its virtual boundary.
The abbreviations used in this algorithm are shown in Table 1.

Table 1: CVL Notations
Notation Description

IVL Iinitial virtual location (IVX, IVY) mapped onto network virtual
origin

Cr Current round
VLCr-1 Virtual location (VX Cr-1, VY Cr-1) in previous round
VLCr Virtual location (VX, VY) for current round
VB Virtual Boundary
VA Virtual angle of movment in degree
VS Virtual speed (distance covered by a sensor in moving a single

round)
VD Current virtual direction of movment, i.e left to right (LR), right

to top (RT), top to left (TL) or from left to bottom (LB).

Algorithm 1: Compute Current Virtual Location (VX, VY) for
current round (Cr).

Input: Virtual Location in previous round VLCr-1, Virtual Boundary
(VB), Virtual angle of movement in degree (VA), Virtual speed of
movement (VS) and current virtual direction of movement (VD);
Output: Virtual location (VLcr);
Procedure: CVDL (VLCr-1; VB;; VA; VS; VD)
1. Begin
2. Set previous location as a start location

a. X1=VX Cr-1;
b. y1=VY Cr-1;

i. opposite= VS*sin(ang);
ii. adjacent= VS*cos(ang);

3. Switch(VD)
a. case(BR)then

i. if((x1+adjacent)>Vmax_x) then
a) VX=Vmax_x
b) Direction=RT

ii. elseif((y1+ opposite)>Vmax_y) then
a) VY=Vmax_y
b) Direction=TR

iii. Else
a) VX=x1+adjacent
b) VY=y1+opposite

 Endcase (3.a)
b. case(RT)then

i. if((x1-adjacent)<Vmin_x) then
a) VX=Vmin_x
b) Direction=RL

ii. elseif((y1+ opposite)>Vmax_y) then
a) VY=Vmax_y;
b) Direction=TL

iii. Else
a) VX=x1-adjacent
b) VY=y1+opposite

 Endcase (3.b)
c. case(TL)then

i. if((x1-adjacent)<Vmin_x) then
a) VX=Vmin_x
b) Direction=LB

ii. elseif((y1- opposite) < Vmin_y) then
a) VY=Vmin_y;
b) Direction=BR

iii. Else
a) VX=x1 - adjacent
b) VY=y1 - opposite

 Endcase (3.c)
d. case(LR)then

i. if((x1 + adjacent) > Vmax_x) then
a) VX=Vmax_x
b) Direction=BR

ii. elseif((y1- opposite) < Vmin_y) then
a) VY=Vmin_y;
b) Direction=RT

iii. Else
a) VX=x1+ adjacent
b) VY=y1 - opposite

 Endcase (3.d)
4. End

E. Key Generation
The virtual dynamic Keying module will generate dynamic

key by applying one way hash function on initial and current
virtual locations.

The location function produces a current virtual location
that is calculated when this function runs or when the sensor
changes its virtual location by moving virtually within virtual
boundary to calculate the key that is used in the encryption
process. This module takes old virtual location (VL) that is
used in the previous round, Virtual direction of movement
(VD) that is used or updated in the previous round, Virtual
boundary (VB) that is virtual surrounding rectangular area
around the sensor and virtual angle of movement. This module
calculates current virtual location (CVL). This location is used
by the keying module to generate the dynamic key used in the
encryption process.

1) Cluster key (CKj) is calculated by applying a one way
hash function on cluster initial virtual location (CIVLi) and
current virtual location (CVLi).
So Cluster key (KCi) =fH (CIVLi, CVLi)
Where CIVL is the cluster initial virtual X and Y locations and
CVLi is cluster current virtual X and Y locations. Both these X
and Y location are decimal numbers upto two digits. Figure 5
shows different virtual locations of different clusters with
same boundary size, same angle of movement and same
direction of movement.

Figure 5. Sensor movement within cluster virtual boundary
2) Sensor key (Ki) is calculated by applying a one way

hash function on sensor initial virtual location (IVLk) and
current virtual location (VLk).
Sensor key (KSk) = fk (IVLk, VLk)

2014 International Conference on Parallel, Distributed and Grid Computing

57

Where IVL is the sensor initial virtual X and Y locations and
VL is sensor current virtual X and Y locations. Both X and Y
locations are represented by a decimal number upto two digit.
Figure 6 shows different virtual locations of different sensors
in same cluster with same boundary size, same angle of
movement and same direction of movement.

Figure 6. Two different Sensors moving in same clusters

Whenever any sensor is elected as a cluster head, all the
sensor will send data to cluster head by encrypting the data
with the help of a cluster key and when cluster head will
receive the data from any sensor then it will decrypt the data
with the same key and calculate aggregate value by mixing the
data of all the sensors and send this aggregated data to base
station by encrypting this data with the help of a sensor key
that is only share between the sensor node and the base station.
Compute Dynamic Key (CDK) is an algorithm that specifies
how the sensor will generate a key used for current round with
the help of initial and current virtual locations. The
abbreviations used in this algorithm are shown in Table 1.

Table 2: CDK Notations

Notations Description

IVL Initial Virtual Location, i.e. IVX, IVY
CVL Current virtual location, i.e. CVX, CVY

FIX Folding Addition of Integer parts (three digits) in ‘X’
coordinates of initial and current virtual locations.

FIY Folding Addition of Integer parts (three digits) in ‘Y’
coordinates of initial and current virtual locations.

FIZ=FIX+FIY Folding Addition of Folded Integers parts in initial and
current virtual locations.

FDX Folding Addition of decimal parts (two digits) for ‘X’
locations in initial and ith Virtual movement

FDY Folding Addition of decimal parts (two digits) for ‘Y’
locations in initial and ith Virtual movement

FDZ=FDX+FDY Folding Addition of Folded decimal parts in initial and
current virtual location.

KEY Key of sensor node in current round (cr)

F. Virtual Location-Based Keying Module
The virtual location-based keying module (VLKM) is one

of the primary contributions of this paper. It is method that
produces a dynamic key that is then used by the crypto module
to encrypt the packet sense by a node.

After deployment, all the sensor nodes traverse virtually
thus change its virtual location. The current value of the
virtual location (CVX, CVY), along with the initial virtual

location after origin mapping (IVX, IVY) is used as the input
to the key generation function, F. the keying module uses the
concept of Folding Addition (FA) instead of using the simple
addition. Folding addition is a one way function which is non-
inversible, i.e. input will produce an output but the output will
never produce an input. The method of folding addition is
given in algorithm 2.

In folding addition method, if integer two numbers (three
digits in each number) are added and the result is more then
three digit then LSB is added after extraction to MSB in the
result. The process is repeated till the result is not a number
that has three or less number of digits as given in example:

A=995, B=994, C A B= + where ‘ + ’ is a folding
addition, i.e. C=995+994=1989
Algorithm 2: Folding Addition

While (C>999)// Folding Addition
a. LSB=mod(C,10)

ii. C=floor(C/10)
iii. C=C+(LSB*100)

End while
C=909

So it is completely impossible to generate two input values
A=995 and B=994 from output value C=909.

The process of key generation is initiated when sensor
changes its current virtual location, after data is sensed; thus,
no separate mechanism is needed to update or refresh the key.
Moreover, the dynamic nature of the keys makes it difficult
for an intruder to intercept any packets to break the security
parameters. As described earlier, in the proposed scheme all X
and Y locations are in three digit numbers upto two digit
decimal place. The hierarchy can be increased upto any label.
The detail of algorithm is; Separate integer parts from initial
(IVX, IVY) and current virtual locations (CVX, CVY). Then
separate decimal parts from both initial (IVX, IVY) and
current virtual locations (CVX, CVY). After that add both
integer parts of X locations by folding method, i.e. if we add
two three digit numbers and result is in four digit then extract
least significant bit (LSB) from the result and add this LSB in
most significant bit (MSB) and repeat the process till the result
is not in number that has three or less digits. Similarly add
both integer parts of Y locations using folding method. Then
add both the results using folding method. In the similar
manner, add both decimal parts of X Locations using folding
method, both decimal parts of Y Locations using folding
method. Then add these two results separately. Concatenate
both the result to prepare the dynamic key. The details of the
algorithm are given in Algorithm 3.

Algorithm 3: Compute Dynamic Key for current round by initial
virtual location (IVX, IVY) and current virtual movement (CVX,
CVY)).
Input: Initial virtual location (IVX, IVY); Current virtual location
(CVX, CVY));
Output: KEYcr;
Procedure: ComputeDynamicKey (IVX, IVY, CVX, CVY)
1. Begin
2. Seprate integer parts from initial (IVX, IVY) and current

virtual locations (CVX, CVY)
a. IX1=floor(IVX)

2014 International Conference on Parallel, Distributed and Grid Computing

58

b. CX1=floor(CVX)
c. IY1=floor(IVY)
d. CY1=floor(CVY)

3. Seprate Decimal parts from initial (IVX, IVY) and current
virtual locations (CVX, CVY)
a. IX2=10^2*(IVX-IX1)
b. CX2=10^2*(CVX-CX1)
c. IY2=10^2*(IVY-IY1)
d. CY2=10^2*(CVY-CY1)

4. Add both integer parts of X Locations in folding method
a. I1=IX1+CX1
b. While (I1>999)

i. LSB=mod(I1,10)
ii. I1=floor(I1/10)

iii. I1=I1+LSB*100
End While 4.b

5. Add both integer parts of Y Locations in folding method
a. I2=IY1+CY1
b. While (I2>999)

i. LSB=mod(I2,10)
ii. I2=floor(I2/10)

iii. I2=I2+LSB*100
End While 5.b

6. Add both integer part of folded X and Y locations using
folding method
a. I3=I1+I2
b. While (I3>999)

i. LSB=mod(I3,10)
ii. I3=floor(I3/10)

iii. I3=I3+LSB*100
End While 6.b

7. Add both Decimal parts of X Locations using folding method
a. D1=IX2+CX2
b. While (D1>99)

i. LSB=mod(D3,10)
ii. D1=floor(D1/10)

iii. D1=D1+LSB*10
End While 7.b

8. Add both Decimal parts of Y Locations using folding method
a. D2=IY2+CY2
b. While (D2>99)

i. LSB=mod(D2,10)
ii. D2=floor(D2/10)

iii. D2=D2+LSB*10
End While 8.b

9. Add both Decimal part of folded X and Y locations using
folding method
a. D3=D1+D2
b. While (D3>99)

i. LSB=mod(D3,10)
ii. D3=floor(D3/10)

iii. D3=D3+LSB*10
End While 9.b

10. KEY=str2num(strcat(num2str(D3),num2str(I3)))
11. Return KEY
12. End

G. Example:
The sensor is moving into its virtual boundary. Virtual

boundary of sensor is represented with bottom left X (minx),
bottom left Y (miny), Top right X (maxx) and Top Right Y
(maxy). The initial virtual location of sensor is (VX, VY). And
this location is mapped over virtual origin (VOX=15,
VOY=5). The initial direction of movement is BR. The virtual

speed of movement (VS) is 20 (meter). And finally the virtual
angle (VA) of movement is 40 degree. Network parameters to
produce different keys for different virtual movement are
given below:-
Virtual Boundary: minx=900, maxx=1000, miny=900, maxy=1000
Virtual Origin: NVOX=15, NVOY=5
Initial Virtual location: VX= 927.00, VY=927.00
Virtual location over virtual origin (IVL): VXN=942.00,
VYN=932.00
Virtual Direction: VD='BR'
Virtual Angle of movement: VA= °40
Virtual speed of movement: VS=20 meter
Current Virtual location (CVL): CVX= 957.32, CVY= 944.86
FIX=588, FIY=287, FIZ=875, FDX=32, FDY=86, FDZ=91
KEY=91875
KEY in binary format: 10110011011100011

IV. RESULT AND DISCUSSIONS

A. Key Duplication
In every round a new dynamic key is provided to each and

every sensor in the network. Key duplication is the process
when a key is similar between two or more sensors in same
round. In previous schemes, dynamic key is provided to each
and every sensor in every round from a fixed key pool. To
check the behavior of network, the proposed scheme is
compared with the traditional scheme. There are total 54
sensors in the network. The network is assumed to run for 50
rounds. So to provide a new key in each round the size of fix
keypool is enhanced from a keypool of single key to a keypool
with length 100 keys. A random key is chosen from the key
pool and compared with the proposed scheme. Simulation
results in Figure 7 shows that key duplication is 100% in case
of keypool with length 1, i.e. in every round the key of every
sensor is matched with all other sensors in the network. When
the length of keypool is increased from 1 to 100, key
duplication is decreased from 100% to 20%. In proposed key
management scheme, the key duplication % is between 0 to
1%.

Figure 7. Key Duplication

In Figure 8, when different parameters (virtual movement,
virtual angle of movement and virtual boundary) to calculate
the key of any sensor are matched. Figure 8-A shows key
duplication when random movement and random boundary
(RMRB) is provided to each and every sensor in the network.
Figure 8-B shows key duplication when same movement but

2014 International Conference on Parallel, Distributed and Grid Computing

59

random boundary (SMRB) is provided to every sensor. Figure
8-C shows key duplication when random movement but same
boundary (RMSB) is provided to every sensor. Figure 8-D
shows the behavior of network when same movement and
same boundary (SMSB) is provided to every sensor in the
network.

Figure 8. key duplication for different key parameters

B. Key Uniqueness
Total number of unique keys that are used by any sensor

for all rounds is known as key uniqueness. Simulation results
in Figure 9 shows that key uniqueness is 1% in case of
keypool with length 1, i.e. in every round the same key is
provided to every sensor in the network. When the length of
keypool is increased from 1 to 100, key uniqueness is
increased from 1% to 85%. But in proposed key management
scheme, key uniqueness is 100%.

Figure 9. Keys uniqueness

In Figure 10, when different parameters (virtual movement,
virtual angle of movement and virtual boundary) to calculate
the key of any sensor are changed. Figure 10-A shows key
uniqueness when random movement and random boundary
(RMRB) is provided to each and every sensor in the network.
Figure 10-B shows key uniqueness when same movement but
random boundary (SMRB) is provided to every sensor. Figure
10-C shows key uniqueness when random movement but same
boundary (RMSB) is provided to every sensor. Figure 10-D
shows the behavior of network when same movement and
same boundary (SMSB) is provided to every sensor in the
network.

Figure 10. key uniqueness for different key parameters

C. Key Chain Duplication
Key chain duplication is the process when a sensor has the

common key in consecutive two or more rounds. Simulation
results in Figure 11 shows that key chain duplication is 100%
in case of keypool with length 1, i.e. in every two consecutive
rounds the same key is provided to every sensor in the
network. When the length of keypool is increased from 1 to
15, key chain duplication is decreased from 100% to 4%. But
in proposed key management scheme, key chain duplication is
.1%.

Figure 11. Number of two or more keys match in series between any two
consecutive rounds

In Figure 12, when different parameters (virtual movement,
virtual angle of movement and virtual boundary) to calculate
the key of any sensor are changed. Figure 12-A shows key
chain duplication when random movement and random
boundary (RMRB) is provided to each and every sensor in the
network. Figure 12-B shows key chain duplication when same
movement but random boundary (SMRB) is provided to every
sensor. Figure 12-C shows key chain duplication when
random movement but same boundary (RMSB) is provided to
every sensor. Figure 12-D shows the behavior of network
when same movement and same boundary (SMSB) is
provided to every sensor in the network.

2014 International Conference on Parallel, Distributed and Grid Computing

60

Figure 12. key chain duplication for different key parameters

V. PERFORMANCE EVALUATION
1. Forward secrecy: This secrecy ensures that a

compromised key of current round should not be able to
compromise any secret or key in future.

2. Backward secrecy: This secrecy ensures that a
compromised key of current round should not be able to
compromise any earlier keys or secrets of previous
rounds.

The effect of compromising several key generation
parameters is given below:-

a) Key compromise: Suppose that a key of current round
is compromised. Keying module in VLKM uses the concept of
Folding Addition (FA) which is already a one way function.
So it is completely impossible to generate a virtual location
with the help of a key.

b) Current virtual location compromise: Suppose the
virtual location of current round is compromised. To generate
the next virtual location, several other parameters are
necessary, i.e. virtual boundary, virtual angle of movement
and virtual speed of movement which is never being
communicated over the network. So with the help of only
current virtual location, it is impossible to generate virtual
locations for next round or previous round.

c) Virtual location compromise: Suppose the virtual
location that is used in keying module is compromised. Now
to generate the key, several other parameters are also
necessary, i.e. initial virtual location that is mapped onto
virtual origin of cluster (if sensor key is generated) or virtual
origin of network (if cluster key is generated). So again with
the help of a virtual location, it is impossible to generate a key.

d) All Key parameters of a sensor are compromised:
Suppose all the key generation parameters used to generate a
key are compromised. Now the parameters of one sensor are
different than other sensor in the network and similarly the
parameters of one cluster are different than other cluster. So
parameters of a one sensor will not estimate the parameters of
other sensor or cluster. The key of that sensor is also
compromised till a new virtual location is not allocated to that
sensor. Once a new virtual location is allocated to that sensor

or the virtual origin is updated, compromised key parameters
are changed, thus old parameters are useless.

VI. CONCLUSIONS

In this paper, we proposed an energy-efficient Virtual
location based key management (VLKM) scheme for WSNs
that significantly reduces the number of transmissions needed
for rekeying. This scheme is very suitable for clustering
environment where more than one key is required for every
sensor for the functioning of the network. Simulation results
show that the proposed scheme performs better in terms of
forward and backward secrecy without increasing the
communication overheads. For the sake of clarity, we describe
the protocol in a two-dimensional plane. However, our
approach can be applied to higher-dimensional spaces as well.

REFERENCES
[1] Rohit Vaid, Vijay Kumar, “Pairing based Encoding Schemes (PBES) for

Secure Wireless Sensor Networks”, in International Journal of Computer
Applications, Volume 70, No.17, pp. 43-49, ISSN (Online): (0975 –
8887), May 2013.

[2] Rohit Vaid, Vijay Kumar, “Security Issues and Remedies in Wireless
Sensor Networks- A Survey”, in International Journal of Computer
Applications, Volume 79, No. 4, pp. 31-39, ISSN (Online): 0975 –
8887, October 2013.

[3] Chan, Haowen, Adrian Perrig, and Dawn Song. "Random key
predistribution schemes for sensor networks." In Security and Privacy,
2003. Proceedings. 2003 Symposium on, pp. 197-213. IEEE, 2003.

[4] Eschenauer, Laurent and Virgil D. Gligor. “A key-management scheme
for distributed sensor networks”, in Proceedings of the 9th ACM
conference on Computer and communications security, pp. 41-47. ACM,
2002.

[5] Arif Selcuk Uluagac, Raheem A. Beyah, Yingshu Li and John A.
Copeland, “VEBEK: Virtual Energy-Based Encryption and Keying for
Wireless Sensor Networks” in IEEE Transactions on Mobile Computing,
Vol. 9, No. 7, July 2010.

[6] Ruj, Sushmita, Amiya Nayak, and Ivan Stojmenovic, “Pairwise and
triple key distribution in wireless sensor networks with applications”, in
Computers, IEEE Transactions, pp. 2224-2237, Vol. 62, No. 11,
November 2013.

[7] Guermazi, Abderrahmen and Mohamed Abid, “An Efficient Key
Distribution Scheme to Secure Data-Centric Routing Protocols in
Hierarchical Wireless Sensor Networks”, in 2nd International
Conference on Ambient Systems, Networks and Technologies (ANT)
Procedia Computer Science pp. 208-215, Vol. 5, 2011.

[8] Kadri, Benamar, Djilalli Moussaoui, Mohammed Feham, and Abdellah
Mhammed. "An Efficient Key Management Scheme for Hierarchical
Wireless Sensor Networks." Wireless Sensor Network, pp. 155-161,
Vol. 4, No. 6, June 2012.

2014 International Conference on Parallel, Distributed and Grid Computing

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

