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a b s t r a c t

The model studied in this paper presents an extension of previous work for a shear wall on a semi-
circular rigid foundation in an isotropic homogeneous and elastic half-space. The objective is to develop
a soil-structure interaction model that can later be applied to the case of a flexible foundation. As shown
in the Introduction below, Luco considered the case of a rigid foundation subjected to vertical incident
plane SH waves, and Trifunac extended the solution for the same rigid foundation subjected to SH waves
but for arbitrary angles of the incidence. In this paper, a new approach and model are presented for the
same semi-circular rigid foundation with a tapered-shape (instead of rectangular) superstructure. The
analytical expression for the deformation of the semi-circular rigid foundation below this tapered shear
wall with soil-structure interaction in an isotropic homogeneous and elastic half-space is thus derived.
Results are then compared with those of Trifunac discussed in the section below. This problem
formulation can and will later be extended in the case of a flexible foundation that is semi-circular or
arbitrarily shaped.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Brief history

Soil-structure interaction (SSI) is a process in which the effects
of wave propagation in the half space are modified by the response
characteristic of a structure and vice versa. SSI continues to be an
active area of research especially at the interface of soil and
structural dynamics. During the first half of the 20th century,
engineered structures were designed with the assumption that a
foundation was fixed to a rigid underlying medium; soil inertia
was not considered and at best the soil was modeled as a spring
element in structural models.

Reissner [3] studied the soil inertia and discovered that the
material damping in the soil could modify to the response of the
structure. In 1969, Luco [1] took up the topic and solved a two-
dimensional (2D) interaction of a shear wall for an incident plane
SH. Trifunac [2] generalized Luco's solution for arbitrary incidence
of SH waves. Trifunac and Wong [4] then presented solutions for
shallow and deep elliptical-rigid foundations, as well as multiple
buildings and foundations (Wong and Trifunac [5]). Wong and
Trifunac [6] also studied the effects of nearby canyons on soil-
structure interaction and Abdel-Ghaffar and Trifunac [7]

investigated the interaction of a simple 2D bridge excited by SH
waves. Lee [8] presented the first three-dimensional (3D) analy-
tical solution of interaction for a single degree-of-freedom oscil-
lator resting on a semi-spherical foundation for the incidence of
harmonic P, SV, and SH waves. Todorovska [9,10] described in-
plane foundation-soil interaction for an embedded circular foun-
dation and the effect of wave passage and embedment depth for
in-plane building-soil interaction.

The purpose of this investigation is to develop new tools to
solve more realistic models. The model studied in this paper
presents an extension of the elastic shear wall with a circular
rigid foundation studied by Luco [1] and by Trifunac [2]. However,
our work will continue to be limited to plane-wave representation
of incident waves, which was recently shown to be a good
approximation Kara and Trifunac [11] and to the homogeneous
half space – hence, any effects of the local soil layers will be
neglected Liang et al. [12]. Finally, the structure and soil will be
assumed to be linear and the only energy loss in the systemwill be
associated with radiation of scattered waves into the half space.
It is known that the nonlinear soil response can be a powerful sink
of incident seismic energy Gicev and Trifunac [13,14]; Gicev et al.
[15]; Trifunac and Todorovska [16–19]. We will study the related
energy loss when we generalize the analysis presented here to the
case of flexible foundation.

In practice, buildings are supported by concrete footings, piles
and grade beams or mat foundation, and do not behave as rigid
bodies when excited by seismic waves Trifunac et al. [20]. These
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foundations are not rigid; thus the ideal objective would be to solve
for the soil-structure interaction of a shear wall with a flexible
foundation. The methodology of Trifunac [2] cannot be modified to
the case of a flexible or semi-rigid foundation, thus a new
approach and model are developed in this paper to solve the
soil-structure interaction of a tapered shear wall (structure) for
rigid, flexible, and semi-rigid foundations using a “big arc approx-
imation.” Further, it is not uncommon for high-rise buildings to
gradually taper from the bottom to the top so that the top of the
building is slightly narrower than the bottom.

1.2. Review of Trifunac [2] paper

The model studied in the Trifunac [2] paper is a 2D, infinitely long
elastic shear wall resting on a semi-circular rigid foundation of radius
a embedded in a half-space. It is subjected to plane incident SH
waves with harmonic frequency ω. All materials here are homo-
geneous, elastic, and isotropic. Contact between the soil, the founda-
tion, and the shear wall is assumed to be welded and no slippage
exists. The material constants, namely the shear modulus and wave
speed of the half-space soils and shear wall, are denoted by μ;Cβ and
μb;Cβb

, respectively. Since Trifunac's model used exp ðþ iωtÞ as the
time-dependent term and a polar- coordinate system that measured
the angle with respect to the vertical y-axis, and our model uses
exp ð� iωtÞ as the time-dependent term and a polar-coordinate
system that measures the angle with respect to the horizontal x-axis
(Fig. 1), we will first re-derive the Trifunac [2] result with respect to
the notation used in this paper. For the coordinate system shown in
Fig. 1, the analytical expression for the out-of-plane (SH) deformation
of the rigid foundation, Δ, will now take the form

Δ¼
J1ðkaÞ� JoðkaÞ

Hð1Þ
o ðkaÞ

� �
Hð1Þ

1 ðkaÞ
� �

ao

ka
2

Mf

Ms
þMb

Ms

tan ðkbHÞ
kbH

� �h i
�Hð1Þ

1 ðkaÞ
Hð1Þ

o ðkaÞ

; ð1Þ

which is independent of the angle of incidence SH waves. Here Ms is
the mass per unit length of soil to be replaced by the rigid foundation
and Mf is the mass per unit length of the rigid foundation.

A train of plane harmonic incident SH waves impinges on
the model from deep earth with an incidence angle γ with respect
to the horizontal axis. A Cartesian coordinate system ðx; yÞ and
a corresponding polar coordinate system ðr;θÞ have been defined
with the origin at the center of the semi-circular foundation.

The incident wave field consists of a train of plane SH waves of
unit amplitude with harmonic frequency ω, wave speed Cβ , shear
wave number k¼ kβ ¼ω=Cβ , and incidence angle γ. The incident
wðiÞ and reflected wðrÞ waves can be expressed together as follows:

wiþ rðx; yÞ ¼wðiÞ þwðrÞ ¼ eikðx cos γ−ysinγÞ−iωt þ eikðx cos γþysinγÞ−iωt

wiþ rðr; θÞ ¼wðiÞ þwðrÞ ¼ ðeikr cos ðγþθÞ þ eikr cos ðγ−θÞÞe−iωt ; ð2Þ

where the out-of-plane motions are all in the z direction, perpen-
dicular to the x, y plane (Fig. 1). Eq. (2) represents waves, which
propagate in the positive x direction with phase velocity
c¼ Cβ= cos γ. From here on, the harmonic term exp ð� iωtÞ will be
understood and omitted in all subsequent equations.

The free-field incident and reflected waves wiþ r given by
Eq. (2) can be expanded into a Fourier–Bessel series as

wiþ rðr; θÞ ¼ ∑
1

n ¼ 0
2εni

nJnðkrÞ cosnγ cosnθ¼ ∑
1

n ¼ 0
anJnðkrÞ cosnθ; ð3Þ

where for n¼ 0;1;2…,JnðkrÞ is the Bessel function of the first kind
with argument kr and order n , and an ¼ 2εni

n cosnγ. For n¼0, 1, 2,
3….an are the coefficients of the free-field waves: εo ¼ 1 and εn ¼ 2
for n40, so that ao ¼ 2. The scattered and diffracted wave from the
foundation wR must satisfy the Helmholz wave equation for
harmonic waves with frequency ω:

∂2w
∂r2

þ1
r
∂w
∂r

þ 1
r2

∂2w

∂θ2 þk2w¼ 0; ð4Þ

for rZa and θ
�� ��Zπ=2 , it must satisfy the boundary conditions

given by

σθz ¼
1
r
∂wz

∂θ
¼ 0 at θ¼ 0;π and rZa ð5Þ

and

wiþ rþwR ¼Δ at 0rθrπ and r¼ a ð6Þ
Here Δ is the unknown movement of the rigid foundation. The

motion wR represents an outgoing wave from the cylindrical
foundation. It must also satisfy Eq. (4) and boundary condition
(6). This wave can be represented as follows:

wRðr; θÞ ¼ ∑
1

n ¼ 0
AnH

ð1Þ
n ðkrÞ cosnθ; ð7Þ

Where An are the unknown complex numbers to be determined by
boundary conditions and the wave functions and Hð1Þ

p ðkrÞ are the
Hankel functions of the first kind with argument kr and orderp.

The displacement of the shear wall, also in the z-direction (out-
of-plane), has the same harmonic frequency ω, and wb and must
satisfy the Helmholtz wave equation with y the axis pointing
vertically down (Fig. 1):

∂2wb

∂y2
þk2bw

b ¼ 0 for �Hryr0; ð8Þ

with kb ¼ω=Cβb
being the building shear wave number, and Cβb

the wave speed in the shear wall. The shear wall must satisfy the
boundary conditions of

σyz ¼ μb
∂wb

∂y ¼ 0 at y¼ �H; top of shear wall

wb ¼Δe� iωt at y¼ 0: ð9Þ

Dependence on x in the shear wall is eliminated in Eq. (10)
by the assumption that the foundation is rigid. The solution ofFig. 1. Shear wall, foundation, and soil Trifunac [2].
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Eqs. (8) and (9) is then given by

wb ¼Δe−iωt cos kby− tan kbH sin kby
	 


: ð10Þ

The base shear force per unit length of the shear wall f bz can be
expressed as

f bz ¼ −ω2Mb
tan kbH
kbH

� �
Δe−iωt ; ð11Þ

where Mb ¼ ρb2aH is the mass of the shear wall per unit length
and the natural frequencies of the shear wall on the fixed
foundation are

kbH¼ ð2nþ1Þπ
2

ð12Þ

To find the displacement Δ in terms of uz , it is necessary to
write the dynamic equilibrium equation for the rigid foundation.
This equation, assuming there is no slippage between the soil and
the foundation, is

−ωMfΔe−iωt ¼ ðf szþ f bz Þ; ð13Þ

WhereMf is the mass per unit length of the foundation. The f bz , the
action force per unit length of the shear wall on the foundation, is
given by Eq. (11) as shown above. The f sz , the action force of the soil
on the foundation, is obtained by integrating the forces due to
stresses of the waves in the half-space at the surface of the rigid
foundation. From Eqs. (2) and (5), we obtain the following:

f sz ¼−a
Z π=2

−π=2
σrz r ¼ adθ μaπ kanJ1ðkaÞþkAnH

ð1Þ
1 ðkaÞ

n oh i
e−iωt

��� ð14Þ

The movement of the rigid foundation can then be expressed
using Eqs. (11), (13), and (14) Trifunac [2]:

Δ¼
J1ðkaÞ− JoðkaÞ

HoðkaÞ

� �
Hð1Þ

1 ðkaÞ
h i

ao

ka
2

Mf

Ms
þMb

Ms

tan ðkbHÞ
kbH

� �h i
−Hð1Þ

1 ðkaÞ
Hð1Þ

o ðkaÞ

; ð15Þ

where Ms is the mass per unit length of soil to be replaced by the
rigid foundation, and Mf is the mass per unit length of the rigid
foundation.

2. The new model: tapered shear wall

2.1. The model

The model studied in this paper is a 2D, elastic tapered
shear wall supported by a semi-circular rigid foundation of radius
a attached to the elastic half-space, as illustrated in Fig. 2.
All materials are homogeneous, elastic, and isotropic. The
material constants—i.e., shear modulus and wave speed of the
elastic half-space soil and shear wall—are denoted by μ;Cβ and
μb;Cβb

, respectively. Contact between the soil-to-foundation and
foundation-to-shear wall is assumed to be bonded so that no
slippage can occur between the contact surfaces. The structure on
top of the foundation is an elastic shear wall of which a section is a
circular sector 0rθrνπ of large radius R. The center of the
circular sector is at O0, a point high above the structure, so that the
base of the shear wall in contact with the foundation is at a radius
R and of width 2a. The shear wall has height H above the
foundation, so that the top of the shear wall is a circular arc with
radius R¼ R1�H. Here the radius R is assumed to be very large
compared with its half width, R⪢a, so that the full width of the
shear wall, which is also the diameter of the semi-circular
foundation, 2a� νπR or R� 2a=νπ.

2.2. Free-field waves in the half-space

The excitation consists of a series of plane SH waves incident
onto the rigid foundation from a half-space at an incidence angle γ
with respect to the horizontal axis. A Cartesian coordinate system
ðx; yÞ and a corresponding polar-coordinate system ðr;θÞ have been
defined with the origin at the center of the semi-circular foundation.
These waves are identical to the free-field waves expressed in the
last section, and are now considered in more detail. The incident
free-field wave consists of plane waves with unit ampl, wave speed
Cβ , and wave number k¼ kβ ¼ω=Cβ . The incident waves can be
expressed in both the rectangular and polar coordinates as follows:

wðiÞðx;yÞ ¼ e ikðx cos γ−y sin γÞ

¼wðiÞðr;θÞ ¼ e ikrð cos γ cos θ− sin γ sin θÞ ¼ e ikrcosðγþθÞ;
ð16Þ

and the reflected plane waves can be written as

wðrÞðx;yÞ ¼ eikðx cos γþy sin γÞ

¼wðrÞðr;θÞ ¼ eikrð cos γ cos θþ sin γ sin θÞ ¼ eikr cos ðγ−θÞ;
ð17Þ

where γ is the angle of incidence or reflection with respect to the
horizontal axis; kx ¼ k cos γ and ky ¼ k sin γ represent the compo-
nents of the SH wave number along the x- and y-axes, respectively.
The e� iωt harmonic time factor is understood and omitted from all
wave equations. Applying the Jacobi-Anger Expansion (Pao and
Mow 1973) [21], we have

e7 ikr cos θ ¼ ∑
1

n ¼ 0
εn ð7 iÞnJn ðkrÞ cos nθ

eikrcosðγ7 θÞ ¼ ∑
1

n ¼ 0
εni

nJn ðkrÞ cos nðγ7θÞ½ �

¼ ∑
1

n ¼ 0
εni

nJnðkrÞ ð cosnγ cos nθ7 sinnγ sinnθÞ;

ð18Þ

Fig. 2. The mathematical model of the tapered shear wall with a semi-circular rigid
foundation.
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Where i¼
ffiffiffiffiffiffiffiffi
�1

p
is the imaginary complex unit, Jnð:Þ is the Bessel

function of the first kind with order n, and the two expressions in polar
coordinateðr;θÞ of Eqs. (16) and (17) can be expanded into an infinite
series. The free-field wave field is then given by their sum as follows:

wðffÞðr;θÞ ¼wðiÞ þwðrÞ ¼ eikrcosðγþ θÞ þeikrcosðγ−θÞ

¼ ∑
1

n ¼ 0
2εni

nJnðkrÞ cosnγ cosnθ¼ ∑
1

n ¼ 0
anJnðkrÞ cos nθ; ð19Þ

where an ¼ 2εni
n cos nγ, exactly as in Eq. (3) above, which

represents the free-field waves that are finite everywhere in the
half-space. For n¼0, 1, 2, 3….an are the coefficients of the free-field
waves;εo ¼ 1 and εn ¼ 2 for n40, so thatao ¼ 2.

The free-field waves will arrive towards the foundation, result-
ing in scattered and diffracted waves in the half-space. The wave
field in the half-space scattered from the rigid foundation for rZa
and 0rθrπ is given (as in the last section) by:

wðSÞðr;θÞ ¼ ∑
1

n ¼ 0
AnH

ð1Þ
n ðkrÞ cosnθ; ð20Þ

Where An are the unknown complex numbers to be determined by
boundary conditions and the wave functions and Hð1Þ

n ð:Þe� iωt repre-
sent outgoing waves satisfying Summerfield's radiation condition.
The foundation is assumed to be rigid and thus the particles anywhere
on and inside the foundation must have the same out-of-plane
motion.

2.3. The wave field within the structure

Since the building structure on top is a shear wall that is
defined as a circular sector with center at O0, a point above the
structure (Fig. 1), the building waves will be defined using the
polar-coordinate system ðr;θÞ with an origin at O0. The out-of-
plane motion is independent of coordinate x and can be repre-
sented as, for R�HrrrR and 0rθrνπ:

wðBÞ ¼wðBÞðr;θÞ ¼ ∑
1

n ¼ 0
Bð1Þ
n Hð1Þ

n=ν ðkbrÞþBð2Þ
n Hð2Þ

n=ν ðkbrÞ
h i

cos
nθ
ν

 !
;

ð21Þ
where Hð1Þ

n=ν ðkbrÞ and Hð2Þ
n=ν ðkbrÞ are the Hankel functions of the first

or second kind with argument kbr and order n=ν;Bð1Þ
n and Bð2Þ

n are
the unknown complex numbers to be determined by boundary
conditions and the wave functions.

3. The boundary conditions

The boundary conditions on the flat ground surface are auto-
matically satisfied by the free-field waves wðf f Þ and the scattered
waves wðSÞ. The stress and displacement continuity equations
along the semi-circular interface of the rim and 0rθrπ will be
expressed as in the following.

3.1. Displacement continuity

ðwðffÞ þwðSÞÞ
���
r ¼ a

¼Δ f or 0rθrπ; ð22Þ

is the displacement continuity requirement, where Δ is the
amplitude of the rigid foundation displacement.

The substitution of Eqs. (19) and (20) with Eq. (22) leads to the
following two boundary conditions:

an JnðkaÞþAn H
ð1Þ
n ðkaÞ ¼

Δ f or n¼ 0
0 f or n¼ 1; 2; 3; :::

(

An ¼1
Δ�ao JoðkaÞ

Hð1Þ
o ðkaÞ for n¼ 0

�an JnðkaÞ
Hð1Þ

n ðkaÞ for n¼ 1; 2; 3; :::

8><
>: ð23Þ

3.2. The stress-free and stress-continuity equations in the building

The stress at the top of the building for n¼ 1; 2; 3; ::: is

τzr r ¼ R1
¼ μb

∂wðBÞ
∂r r ¼ R1

¼ μbkb Bð1Þ
n Hð1Þ

n=n
0 ðkbR1ÞþBð2Þ

n Hð2Þ
n=n

0 ðkbR1Þ
h i

¼ 0
������

Bð1Þ
n Hð1Þ

n=n
0 ðkbR1ÞþBð2Þ

n Hð2Þ
n=n

0 ðkbR1Þ ¼ 0

Bð2Þ
n ¼−

Hð1Þ
n=n

0ðkbR1Þ
Hð2Þ

n=n
0ðkbR1Þ

6664
7775Bð1Þ

n for n¼ 0; 1; 2; 3::: ð24Þ

Substituting Eq. (24) with (21), the out-of-plane motion of the
shear wall is simplified to the following:

wðBÞ ¼ ∑
1

n ¼ 0
Bð1Þ
n Hð1Þ

n=n ðkb rÞ−
Hð1Þ

n=n
0 ðkbR1ÞHð2Þ

n=nðkbrÞ
Hð2Þ

n=n
0ðkbR1Þ

2
4

3
5cos n

n
θ

� �

wðBÞ ¼ ∑
1

n ¼ 0
Bð1Þ
n

Hð1Þ
n=nðkbrÞH

ð2Þ
n=n

0ðkbR1Þ−Hð1Þ
n=n

0ðkbR1ÞHð2Þ
n=nðkbrÞ

H 2ð Þ
n=n'ðkbR1Þ

2
4

3
5cos n

n
θ

� �

wðBÞ ¼ ∑
1

n ¼ 0
Bð1Þ
n H∧

n=nðkbR1;kbrÞcos
n
n
θ

� �
ð25Þ

where H∧
n=nðkbrÞ ¼H∧

n=nðkbR1;kbrÞ ¼Hð1Þ
n=nðkbrÞH

ð2Þ
n=n

0ðkbR1Þ−Hð1Þ
n=n

0ðkbR1Þ
Hð2Þ

n=nðkbrÞ=Hð2Þ
n=n

0ðkbR1Þ is a “scaled” Hankel function defined as a linear

combination of Hankel functions of the first and second kind. The
boundary condition at the interface of shear wall and rigid foundation
wðBÞ��

r ¼ R ¼Δ, gives

Bn H
∧
n=nðkb R1; kb RÞ ¼

Δ for n¼ 0
0 for n¼ 1; 2; 3; :::

(
ð26aÞ

resulting in Bo ¼Δ=H4
o ðkb R1; kb RÞ and Bn ¼ 0 for n40, so that

the building wave

wðBÞ ¼wðBÞðkbrÞ ¼
H∧

o ðkb R1;kb rÞ
H∧

o ðkb R1;kb RÞ
Δ; ð26bÞ

becomes a one-term expression.

3.3. The dynamic equation for the rigid foundation, wf ¼Δe�iωt

As pointed out by Luco [1] and Trifunac [2], the displacement of
the foundation Δ can be determined by applying the dynamic
equilibrium equation for the rigid foundation as follows:

Mf €w
f ¼−Mf Δω2e�iωt ¼ ðf sþ f bÞe�iωt

−Mfω
2Δ¼ f sþ f b;

ð27Þ

where Mf ¼ 1=2 ρf πa2 is the mass of the rigid foundation per
unit length in the z-axis, ρf is the mass density of the foundation;
f b is the force of the shear wall acting on the foundation per unit
length at r¼ R and 0rθrνπ, and f S denotes the force due to total
(free–fieldþscattered) waves at r¼ a and 0rθrπ.

f b ¼
R nπ
o μb

∂wðBÞ
∂r r ¼ RRdθ¼ μbkbRnπ BoH

∧
o
0ðkbR1;kbRÞ

	 
���
f b ¼−μbkbRnπ

H∧
1 ðkbR1;kbRÞ

H∧
o ðkbR1;kbRÞ

� �
Δ; ð28aÞ

and

f s ¼
R π
o τrz r ¼ aadθ

��
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f s ¼ μka ∑
1

n ¼ 0
an Jn

0 ðkaÞþAn H
ð1Þ
n

0ðkaÞ
h i Z π

0
cosnθdθ

f s ¼ μk πa ∑
1

n ¼ 0
ao Jo

0ðkaÞþAo H
ð1Þ
o

0ðkaÞ
h i

f s ¼−μk πa ao J1 ðkaÞþAo H
ð1Þ
1 ðkaÞ

h i
; ð28bÞ

where the integral:
R π
0 cosnθdθ¼

π for n¼ 0
0 for n≠0

:

(

The displacement of the rigid foundation can be determined by
solving Eqs. (28a), (28b) and (27) for n¼ 0.

Δ¼
J1ðkaÞ− JoðkaÞ

Hð1Þ
o ðkaÞ

� �
Hð1Þ

1 ðkaÞ
� �

ao

Mf ω2

μk πa þ
μb kbRnπ
μk πa

� �
−H∧

1 ðkb R1 ; kb RÞ
H∧

o ðkb R1 ; kb RÞ

� �
−Hð1Þ

1 ðkaÞ
Hð1Þ

o ðkaÞ

: ð29aÞ

LetMs ¼ 1=2 ρπa2 again (as in Section 1 above) be defined as the
mass per unit length of the soil to be replaced by the rigid foundation,
ρ, the mass density of the soil. For R¼ R1þH44a; Rnπ � 2a; so
MB � ρB2aH is again the mass of the building per unit length, where
ρB here is the mass density of the building (with the tapered shear
wall approaching the shape of a rectangular shear wall with width 2a
and height H). Thus μbkbR2nπ=μkπa� ðka=2Þ ðMb=MsÞ ð1=kbHÞ, Eq.

(29a) can further be simplified to

Δ¼
J1ðkaÞ− JoðkaÞ

Hð1Þ
o ðkaÞ

� �
Hð1Þ

1 ðkaÞ
� �

ao

ka
2

Mf

Ms
þMb

Ms

1
kbH

� �
−H∧

1kbR1 ;kbR
H∧

o kbR1 ;kbR

� �h i
−Hð1Þ

1 ðkaÞ
Hð1Þ

o ðkaÞ

: ð29bÞ

Using the asymptotic approximation H∧
1 ðkbR1;kbR Þ=

H∧
o ðkbR1;kbRÞ � − tan ðkbHÞ as Rca; R→1 (see Eq. (A16),

Appendix A), the displacement of the rigid foundation Eq. (29b)
will be identical to Eq. (1) above in Trifunac [2]:

Δ¼
J1ðkaÞ� JoðkaÞ

H 1ð Þ
o ðkaÞ

� �
Hð1Þ

1 ðkaÞ
� �

ao

ka
2

Mf

Ms
þMb

Ms

tan ðkbHÞ
kbH

� �h i
�Hð1Þ

1 ðkaÞ
Hð1Þ

o ðkaÞ

: ð30Þ

4. Numerical analysis of the displacements

As pointed out by Trifunac [2], the envelope of the rigid
foundation displacement Δ is given by

Δe ¼ J1ðkaÞ−
JoðkaÞ
Hð1Þ

o ðkaÞ
Hð1Þ

1 ðkaÞ
" #

J2oðkaÞþY2
oðkaÞ

YoðkaÞJ1ðkaÞ−Y1ðkaÞJoðkaÞ

" #
ao ð31Þ

The backbone curve of Δ could be understood as the displace-
ment of the rigid foundation whose density is identical to that of

Fig. 3. The effect of interaction on Δ: the amplitude of foundation vibration. (a) R/H ¼ 10, Mb/Ms ¼ 1, Mf/Ms ¼ 1, ε ¼ 0, 2, 4, (b) R/H ¼ 100, Mb/Ms ¼ 1, Mf/Ms ¼ 1, ε ¼ 0, 2,
4 and (c) Mb/Ms ¼ 1, Mf/Ms ¼ 1, ε ¼ 0, 2, 4 (Trifunac, 1972).
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the surrounding soil by setting Mb=Ms ¼ 0.

Δo ¼
J1ðkaÞ−fJoðkaÞ=Hð1Þ

o ðkaÞgHð1Þ
1 ðkaÞ

h i
ao

ka
2 ðMf =MsÞ−ðHð1Þ

1 ðkaÞ=Hð1Þ
o ðkaÞÞ

ð32Þ

To characterize the problem in terms of dimensionless para-
meters, we define ε¼ kbH=ka¼ βH=βb awhere H¼ R�R1. The
shape of the tapered shear wall is characterized by the ratio
R=H, the ratio of the circular radius of the sector to its height.
We plot the amplitude of the foundation vs. the dimensionless
ωa=β for R=H ¼ 10 and 100, H=a¼ 10, Mf =Ms ¼ 1 and Mb=Ms ¼
1; 2; 4 with ε¼ 0;2;4 (Figs. 3(a), (b), (c), and 4(a, b, c and d))
and compare them with Trifunac [2]. The results agree well
when R=H¼ 10, and are found to be almost identical when
R=H ¼ 100.

The two figures show that the new model of the tapered-
shape shear wall is a legitimate and realistic model and the
results show good agreement with the model studied by Luco [1]
and Trifunac [2]. The existing model has one advantage over the
models studied by Luco [1] and Trifunac [2]. While the previous
models allow explicit analytic expression to be derived for the
displacement of the semi-circular rigid foundation below a
rectangular shear wall, it has the limitation that the derivation
works only for a rigid foundation and cannot be extended to the
case of a flexible foundation. The present model also allows

explicit analytic expressions for the displacements of the same
semi-circular foundation below a tapered-shape shear wall and
when the shape of the shear wall is close enough to the
rectangular one, the expressions for the displacement amplitudes
agree at all angles of incidence and at all frequencies (Figs. 3 and
4). Further, results for the present model can and will be
extended to cases in which the foundation is flexible and elastic
with different elastic properties. This new model is thus formu-
lated for future work on soil-structure interaction by flexible,
elastic foundations.

5. Conclusion and further studies

In the majority of papers on soil-structure interaction – similar
to the papers by Luco [1] and Trifunac [2], the foundation is
simplified as a rigid body. Almost every building has a foundation
that transfers upper loads to the soil evenly. With the exception of
some towers and mast structures, most engineered structures
cannot to be mathematically simplified to a single degree-of-
freedom dynamic system. Therefore, a mathematical model with
a flexible foundation is of considerable significance in soil-
structure interaction research.

From the results of the numerical analyses of the proposed
model in Fig. 2, it is concluded that the tapered-shape structure

Fig. 4. Comparison of the displacement amplitudes of the Tapered-shape structures (a,b) and the rectangular structures (c,d) of Trifunac [2].
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methodology works well with large-enough radius R. This meth-
odology can be extended to solve for the soil-structure interaction
of a shear wall supported by a flexible foundation as part of our
future studies.

As seen in Trifunac [2], when a foundation is assumed to be
rigid, every particle at any horizontal cross-section of the structure
parallel to the half-space surface must have the same out-of-plane
motion of the shear wall and is independent of coordinate y. Thus,
dependence on y in the shear wall is eliminated in Eq. (10). This
simplicity in the dependence of the displacement solution does
not permit an extension of the solution for a flexible foundation.
The wave field within the structure of the tapered-shape metho-
dology only depends on the polar coordinate system, thus the
methodology can be expanded to solve for both rigid and flexible
elastic foundations.

Appendix A

Asymptotic Approximation for R¼ R1þHca
The mass of the soils foundation, Ms per unit length is

Ms �
rπa2

2
¼ μπa2

2C2

� �
k
k

� �2

¼ μπa2k2

2ω2 ðA1Þ

The mass of the building, Ms per unit length is

Mb � 2rbaH¼ 2μbaH

C2
b

 !
kb
kb

� �2

¼ 2μbk
2
baH

ω2 ðA2Þ

μbkbRnπ
μkπa

� μbkbRnπ
μkπa

� �
kbH
kbH

� �
¼ μbk

2
bðRnπHÞ

μkπaðkbHÞ
¼ μbk

2
bð2aHÞ

μkπaðkbHÞ
ðA3Þ

μbkbRnπ
μkπa

� ω2Mb

2ω2Ms

πk2a2

� �
ðkbHÞ

¼ ka
2

� �
Mb

Ms

� �
1

kbH

� �
ðA4Þ

H∧
o ðkbR1; kbRÞ ¼

Hð1Þ
o ðkbRÞHð2Þ

1 ðkbR1Þ−Hð1Þ
1 ðkbR1ÞHð2Þ

o ðkbRÞ
Hð2Þ

1 ðkbR1Þ
and ðA5Þ

H∧
o
0ðkbR1; kbRÞ ¼

Hð1Þ
o

0ðkbRÞHð2Þ
1 ðkbR1Þ−Hð1Þ

1 ðkbR1ÞHð2Þ
o

0ðkbRÞ
H 2ð Þ

1 ðkbR1Þ
: ðA6Þ

Note that H∧
o
0ðkbR1; kbRÞ with respect to R.

H∧
1ðkbR1; kbRÞ ¼

−Hð1Þ
1 ðkbRÞHð2Þ

1 ðkbR1ÞþHð1Þ
1 ðkbR1ÞHð2Þ

1 ðkbRÞ
Hð2Þ

1 ðkbR1Þ
ðA7Þ

H∧
1ðkbR1; kbRÞ

H∧
o ðkbR1; kbRÞ

¼ −Hð1Þ
1 ðkbRÞHð2Þ

1 ðkbR1ÞþHð1Þ
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Hð1Þ
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; ðA8Þ

where

Hð1Þ
o ðxÞ ¼

ffiffiffiffiffiffi
2
πx

r
ei x� π

4ð Þ ðA9Þ

Hð2Þ
o ðxÞ ¼

ffiffiffiffiffiffi
2
πx

r
e� i x� π

4ð Þ ðA10Þ

Hð1Þ
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2
πx

r
ei x� 3π

4ð Þ ðA11Þ
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ffiffiffiffiffi
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πx
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e−i x−3π
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H∧
1ðkbR1; kbRÞ
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� −ei kbR−3π
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4ð Þþei kbR1−3π
4ð Þe−i kbR−3π

4ð Þ
ei kbR−π

4ð Þe−i kbR1−3π
4ð Þ−ei kbR1−3π

4ð Þe−i kbR−π
4ð Þ ðA13Þ

H∧
1ðkbR1; kbRÞ
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where H ¼ R−R1. Eq. (A15) can be simplified to

H∧
1ðkbR1; kbRÞ

H∧
o ðkbR1; kbRÞ

�−
eikbH−e−ikbH

i eikbHþe−ikbH
	 
¼ − tan ðkbHÞ ðA16Þ

The displacement of the foundation, Δ, Eq. (29a,b) can be
expressed to Eq. (1) (Trifunac [2]), as follows:

Δ¼
J1ðkaÞ� JoðkaÞ

Hð1Þ
o ðkaÞ

� �
Hð1Þ

1 ðkaÞ
� �
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� �h i
�Hð1Þ

1 ðkaÞ
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Glossary

a: radius of the semi-circular rigid foundation;
a: radius of the semi-circular flexible foundation;
An: complex constants;
B: width of building;
Cβ: shear wave velocity in the soil;
Cβb

: shear wave velocity in the building;
f s: force per unit length due to scattered waves;
f b: force of the shear wall acting on the foundation per unit;
H: height of the building;
Hð1Þ

n xð Þ: Hankel function of the first kind with argument x and order n;
Hð2Þ

n xð Þ: Hankel function of the second kind with argument x and order n;
i: imaginary unit;
n: subscripts used for sequence number;
Jn xð Þ: Bessel function of the first kind with argument x and order n;
k: wave number in the soil, k¼ω2=Cβ;
kb: wave number in the building, kb ¼ω2=Cβb

;

Mb: mass of shear wall per unit length;
Mf : mass of rigid foundation per unit length;
Ms: mass per unit length of soil to be replaced by the rigid foundation;
γ: angle of incidence of SH-waves;
Δ: amplitude of the displacement of the foundation;
w: amplitude of the displacement of the total wave field in the soil;
w f fð Þ: amplitude of the displacement of the free-field wave in the half-space;
w Bð Þ: amplitude of the displacement of the wave field in the building;
w Rð Þ: amplitude of the displacement of the wave field in the rigid foundation;
w Sð Þ: amplitude of the displacement of the scattered wave field in the soil;
wi: amplitude of the displacement of the incident plane wave in the soil;
wr: amplitude of the displacement of the reflected plane wave in the soil;
μ: chear modulus of the soils;
μb: chear modulus of the shear wall;
ρ: density of the soils;
ρb: density of the shear wall;
ω: circular frequency of the incident SH waves;
δn: Dirac-delta function.
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