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a b s t r a c t

This paper suggests a new stochastic expert framework to investigate the charging effect of plug-in
hybrid electric vehicles (PHEVs) on the optimal operation and management of micro-grids (MGs). In
this way, a useful method based on smart charging approach is proposed to consider the charging de-
mand of PHEVs in both residential location and public charging stations. The analysis is simulated for
24 h considering the uncertainties associated with the forecast error in the charging demand of PHEVs,
hourly load consumption, hourly energy price and Renewable Energy Sources (RESs) output power. In
order to see the effect of storage devices on the operation of the MG, NiMH-Battery is also incorporated
in the MG. According to the high complexity of the problem, a new optimization method called q-krill
herd (q-KH) algorithm is proposed which uses the phase angle vectors to update the velocity/position of
krill animals with faster and more stable convergence. In addition, a new modification method is pro-
posed to improve the search ability of the algorithm, effectively. The suggested problem is examined on
an MG including different RESs such as photovoltaic (PV), fuel cells (FCs), wind turbine (WT), micro
turbine (MT) and battery as the storage device.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing concerns on the high dependability of the in-
dustry on fossil fuels along with the rising amount of air pollution
made severe struggles for replacing the traditional transportation
systemswith the new electric vehicles (EVs) [1,2]. Recently, the EUs
energy policy [3] publicized a letter regarding the serious limita-
tions in the amount of emissions generated by the cars till 2012.
Nevertheless, one significant barrier in front of the use of EVs is
their high cost that mainly roots from the inappropriate storage
devices. In fact, the lack of sufficient technology for building cheap
and suitable batteries has guided the EVs industry toward the idea
of plug-in hybrid EVs (PHEVs). PHEVs can provide more balance
between the cost and performance that makes them more attrac-
tive devices with brighter future [4]. The use of internal combustion
engine along with the electric battery let the PHEVs travel more
distance in comparison with the pure EVs. Along with the several
benefits of PHEVs in the transportation systems, the high pene-
tration of these devices can make new challenges in the power
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systems especially regarding their charging demands. Some of
these challenges can be named as increasing the energy losses,
reducing the system reliability, reducing the grid power quality of
the electrical services, transformer saturation and feeder conges-
tion in both transmission and distribution systems [5e7]. The sta-
tistical data report the coincidence of peak load hours of the power
grids with hours in which the majority of EVs are charging. This
issue can lead to challenges in both the operation and planning of
the networks and thus increasing the investment costs. In order to
solve this issue, the idea of smart charging was developed [8].

In recent years, renewable energy sources (RESs) have also
found much popularity among the researchers and power engi-
neers. The appearance of RESs in the new power systems has
resulted in both advantages and disadvantages. In the side of ad-
vantages, improving power quality, enhancing the electrical ser-
vices, reducing power losses and providing the consumers locally
(nearness of generation and loads) can be named [9e11]. Cleanness,
modularity and fast installation are some of the other attractive
aspects of the RESs. In the side of disadvantages, increasing the
available strategies of the power systems, incrementing the
complexity and nonlinearity of the systems and higher costs for
supplying the infrastructure requirements can be named [12e14].
Nevertheless, the nature of RESs is such that their future success
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Nomenclature

BGi(t) the bid of ith DG at time t
X/q state variables vector in Cartesian/polar space
BSj(t) the jth storage device bid at time t
SSj(t) start-up/shut down cost of jth storage device at time t
SGi(t) start-up/shut down cost of ith DG at time t
PGrid(t) active power bought (sold) from (to) the utility at time

t
BGrid(t) utility bid at time t
ui(t) state of the ith QUOTE QUOTE unit denoting ON/OFF

statuses
Ng number of generating units
Ns number of storage devices
Pg vector including the power generation of all power

units
Ug vector including ONN/OFF statuses of all power units
T number of time intervals
PG,i(t) active power production of ith power unit
PG,i,min(t) minimum active power production of ith power unit at

t
PG,i,max(t) maximum active power production of ith power unit at

t
Ps,j,min(t) minimum active power production of jth storage

device at t
Ps,j,max(t) maximum active power production of jth storage

device
PGrid,min(t) minimum active power production of the grid at t
PGrid,max(t) maximum active power production of the grid at t
PL,i(t) the amount of lth load value at time t
NL total number of load levels
Wess(t) amount of stored energy inside the battery at time t
S probabilistic solution set of output variables
Z input set of uncertain variables
mzl mean value of input random variable zl
sZl standard deviation of zl
zl uncertain input random variable
Xmax=Xmin maximum or minimum value of vector X
Wess,max/Wess,min maximum/minimum stored energy inside the

battery
Pcharge/Pdischarge permitted rate of charge/discharge during a

finite time period (Dt)
hcharge/hdischarge battery efficiency during charge/discharge

period

Pcharge,max/Pdischarge,max maximum permitted rate of charge/
discharge during a finite each time
period (Dt)

lm(t)/lloss(t) hourly energy price /loss cost ($/MWh)
mPHEV
min /maxminimum/maximum hourly PHEV demand (kW)

mPHEV(t) hourly mean values of PHEV demand (kW)
bPHEV(t) hourly existence coefficient of PHEVs
E total energy demand of PHEVs (kWh)
Xb/qb best krill in the population
Vk
r;i=Dq

k
r;i velocity of the krill i in the iteration k in Cartesian/polar

space
Vind,i
k /Vfrg,i

k /Vdif,i
k Dqkind;i=Dq

k
frg;i=Dq

k
dif ;i induced/foraging/diffusion

velocity of ith krill at the kth
movement in Cartesian/
polar space

r empirical constant factors
Nv number of control variables
uind/frg/dif inertia of induction/foraging/diffusion motion
ε small positive number
rand mathematical operator for random value in the range

[0,1]
fw fitness function of the worst krill in population
Np number of population
Iter iteration number
MnK column-wise mean value of the krill population
41 random value in the range [0,1]
b constant value
F set of deterministic equations
Zl;1; Zl;2 estimated locations of input random variable zl
Yl;3 skewness coefficient of zl
xl;k standard location of zl
EðSki Þ kth moment of ith output random variable

List of abbreviations
FC fuel cell
WT wind turbine
PV photovoltaic
NiMH-Battery NickeleMetaleHydride battery
PHEVs plug-in hybrid electric vehicles
DG distributed generation
MG micro-grid
MT micro turbine
RES Renewable Energy Source
KH Krill Herd
q-MKH theta-modified KH
PEM Point Estimate Method
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has been estimated by the researchers from the last years [15].
Some of the problems that have been arisen in the area of RESs and
in the operation of the power systems are addressed by the term
micro-grid (MG). By definition, MG is an aggregation of distributed
generations (DGs), electrical loads and generation interconnected
among them and with the main grid [16]. In recent years, useful
works have been implemented in the area of MG. In Ref. [17], a
virtual MG was devised to examine the efficiency of an intelligent
method for operation management of the MG in one week. The
interactive effect between the MG and the main grid was investi-
gated in Ref. [18]. A new method based on mixed-integer linear
programming was suggested in Ref. [19] to find the optimal output
of DGs in an MG. In order to increase the lifecycle cost of the MG, a
three-phase approach including optimal design, sizing and opera-
tion of a renewableMGwas proposed in Ref. [9]. In Ref. [20], a linear
programming approach was presented to optimize the cost of a
photovoltaic (PV)-based MG. In Ref. [21], a multi-agent mechanism
was proposed to control an MG based on PV RESs. Similar work
based on genetic algorithm (GA) was done in Ref. [22]. Here, a
three-phase procedure including prediction, storage and manage-
ment is employed to fully operation of the MG. In Ref. [23], the role
of storage devices on the operation of MG was investigated. It was
shown that storage devices can reduce the cost of the MG effec-
tively. While each of these works has investigated significant as-
pects in the MG optimal operation, none of them have assessed the
effect of PHEVs on the future MGs. As mentioned before, the ever
increasing popularity of the PHEVs is an inevitable issue. The recent
statistics estimate more than one million PHEVs in America in the
years 2015e2017 [24].

According to the above discussion, investigating the effect of
PHEVs on the optimal operation of the MGs is a vital issue that is
not considered in the any of the above works. In fact, the stochastic



Fig. 1. Existence Coefficient of PHEVs in charging points.
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behavior of PHEVs can affect the operation of the MG severely. As
mentioned before, EV's drivers generally tend to charge their ve-
hicles at peak-load hours. In this regard, if the charging demands of
these devices are not managed optimally, the MG cost will be
increased and in some cases the charging demand can not be
supplied by the MG. Therefore, this paper aims to investigate the
optimal operation and management of a renewable MG in the
presence of PHEVs. A sufficient smart method is proposed to shift
the charging demand of PHEVs from peak-load hours to off-peak
hours. Using the proposed smart method can reduce the total MG
cost when increasing the penetration of PHEVs in the network. For
better analysis, the investigatedMG includes different types of RESs
such as PV, wind turbine (WT), fuel cell (PC), micro turbine (MT)
and a battery as the storage device. According to the nature of the
problem, it includes several sources of uncertainty (such as WTs
output power, PV output power, market cost for the future day, load
demand of MG for the future day and PHEVs' charging demand as
mobile loads) that should be managed suitably. In this regard, 2m
point estimate method (2m-PEM) is used to construct a stochastic
framework to capture the uncertainties in the problem. In order to
solve the problem optimally, a new optimization procedure based
on krill herd (KH) algorithm is devised too. KH algorithm is a newly
introduced optimization algorithm thatmimics the behavior of krill
animals for searching food [25]. In order to increase both the search
and convergence abilities of the KH algorithm, a new version of this
algorithm called q-modified KH (q-MKH) algorithm is proposed.
The q-MKH algorithm: 1) makes use of the polar coordinates
instead of the Cartesian coordinates to solve the problem, 2) makes
use of a two-phasemodificationmethod to increase the diversity of
the krill population. As it will be shown later, the proposed q-MKH
will be much more intelligent than the original KH algorithm. The
feasibility and satisfying performance of the proposed method are
examined on a typical renewable MG. Therefore, the main contri-
butions of this work can be summarized as: 1) investigating the
effect of charging demand of PHEVs on the optimal energy man-
agement of theMG, 2) introduction of a new powerful optimization
algorithm for solving the optimal operation and management of
MGs considering RESs, storage devices and PHEVs and 3) intro-
duction of the polar version of KH algorithm called q-KH suitable
for the optimization applications.

The rest of this paper is organized as follows: Section 2 describes
the proposed smart charging demand strategy for PHEVs. Section 3
describes the MG formulation including RESs. The 2m PEM as the
stochastic framework is explained in Section 4. The proposed q-
MKH is described in Section 5. Section 6 shows the results and
simulations on the MG test system. Finally, the conclusions and
main remarks are given in Section 7.

2. PHEV smart charging strategy

As the result of low capacity of the available batteries, PHEVs
should have fast access to the charging places. This issue forced the
public stations to be equipped with charging devices as well as the
PHEV owners' houses to have charging facilities [26]. According to
the nature of PHEVs, their charging demand is influenced by
different variables including charging current/voltage level, num-
ber of PHEVs, battery capacities and charging duration time. These
effective parameters together make the charging demand of the
PHEVs uncertain both in the public station or residential commu-
nities. It is demonstrated in the literature that the aggregated total
charging demand of PHEVs in the charging station and a residential
area tend to follow Weibull probability density function (PDF) and
normal PDF, respectively [27]. The mean value and the standard
deviation value of these PDFs are determined according to the
PHEVs' parameters. As mentioned before, one significant point
about the behavior of EV drivers is that they tend to charge their
vehicles at peak load hours. This event can result in severe prob-
lems for the power systems such as feeder congestion, power loss
increment, low reliability, low power quality and transformers
saturation. In order to overcome these problems, a smart charging
strategy should be devised. In comparison with the uncontrolled
charging scheme, the smart charging demand strategy provides
high penetration of PHEVs in the network. The proposed smart
charging strategy makes use of the market energy price to mini-
mize the energy cost for PHEVs. Generally, peak-load hours coin-
cide the high electricity cost hours and vice versa. Therefore, in
contrast to the uncontrolled charging scheme, the smart charging
scheme will shift the PHEVs' charging hours to off-peak hours.
Economically, this strategy would be the most beneficial and lower
electricity price will be more interesting for the consumers. The
proposed charging method uses two data sets for managing the
PHEVs' charging demand: 1) hourly price data of the electricity and
2) the presence of PHEVs in the charging point. The hourly price
data of the market is attained using the well-known forecasting
methods. Regarding the second parameter (presence of PHEVs in
the charging point), an existence coefficient bPHEV is defined that
shows the possibility of a PHEV being in the relevant charging
place. Fig. 1 shows the values of existence coefficient for two types
of charging places; 1) public station and 2) residential commu-
nities. According to Fig. 1, in residential communities, PHEVs are
connected to the chargers mostly at night hours or at the end of
days. On the other hand, PHEVs tend to be charged at public sta-
tions during mid-day hours.

The proposed smart charging strategy will manage the PHEVs
charging demand by minimizing the total charging cost using the
below equation:

Minimize
�

lmðtÞ
bPHEVðtÞ

� mPHEVðtÞ
�

subject to

PT
t¼1

mPHEVðtÞ ¼ E

mmin
PHEV � mPHEVðtÞ � mmax

PHEV

(1)

As it can be seen, the proposed strategy is a linear optimization
problem that can be solved using simple linear mathematical
methods such as simplex technique. According to the above
equation, by knowing the total energy demand of PHEVs in an area
for a specific time horizon, the hourly mean value of PHEVs
charging demandwould be determined for both the residential and
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public stations. It is worth noting that the consumers will be also
enthusiastic to charge their cars at hours with lower cost.
3. MG formulation

As mentioned before, this paper aims at optimal energy man-
agement of an MG including different types of DGs and storage
devices as well. The objective function and the relevant constraints
are described in the following.
3.1. Cost of energy

A typical MG with different types of DGs and storages with
interconnection with the main grid should be able to supply its
loads all the times. In fact, MG first tries to supply the internal loads
by the use of its own power units (DGs and storages) and the
additional demand is supplied from the main grid. Nevertheless,
sometimes it is more economical to buy electricity from the main
grid and operate DGs at minimum capacity. Also, it is beneficial to
store energy in the storage devices at light load hours and use it at
peak-load hours. These significant decisions should be made by the
MG central control (MGCC). MGCC should manage the above key
strategies by optimizing the below cost function [16]:

Min f ðXÞ ¼
XT
t¼1

Costt

¼
XT
t¼1

8<
:

XNg

i¼1

h
uiðtÞpGiðtÞBGiðtÞ þ SGijuiðtÞ � uiðt � 1Þj

i

þ
XNs

j¼1

h
ujðtÞpsjðtÞBsjðtÞ þ Ssj

��uj�t�� uj
�
t � 1

���i

þ pGridðtÞBGridðtÞ
9=
;

(2)

where X as the control vector that includes the amount of power
produced by each power unit (DGs, storage devices or the main
grid) and the ON/OFF status of DGs as follows:

X ¼ �
Pg;Ug

�
1�2nT ; Pg ¼ ½PG; Ps�; n ¼ Ng þ Ns þ 1

PG ¼
h
PG;1; PG;2;…; PG;Ng

i
; Ps ¼

�
Ps;1; Ps;2;…; Ps;Ns

�
PG;i ¼

�
PG;i

�
1
�
; PG;i

�
2
�
;…; PG;i

�
T
��
; i ¼ 1;2;…;Ng þ 1

Ps;j ¼
�
Ps;j

�
1
�
; Ps;j

�
2
�
;…; Ps;j

�
T
��
; j ¼ 1;2;…;Ns

Ug ¼ ½u1;u2;…;un�; uk2f0;1g
uk ¼ ½ukð1Þ;ukð2Þ;…;ukðTÞ�; k ¼ 1;2;…;n

(3)

In this paper, uk(t) ¼ 1 and uk(t) ¼ 0 are used to show the ON &
OFF status of the kth power unit at time t, respectively.
3.2. Security limitations

3.2.1. Generation and consumption balance
As the first role, MGCC should balance between the total load

demand and the total power generation as below. It is worth noting
that PHEVs charging demand can be supposed as variable loads in
the MG [16].

XNg

i ¼ 1

PG;iðtÞ þ
XNs
j¼1

Ps;jðtÞ þ PGridðtÞ ¼
XNL

l¼1

PL;l
�
t
�

(4)
3.2.2. Generation capacity
Each power unit is capable to generate electricity according to

its capacity [16]:

PGi;min
�
t
� � PGi

�
t
� � PGi;max

�
t
�

Pgrid;minðtÞ � PGridðtÞ � Pgrid;maxðtÞ
Psj;min

�
t
� � Psj

�
t
� � Psj;max

�
t
� (5)
3.2.3. Battery charging/discharging limits
The amount of power that can be provided by the battery at time

t is limited to the amount of power stored in the last hours. Also, the
battery can charge or discharge according to the specific rates as
below [16]:

WessðtÞ ¼ Wessðt � 1Þ þ hchargePchargeDt �
1

hdischarge
PdischargeDt

(6)8<
:

Wess;min � Wess
�
t
� � Wess;max

PchargeðtÞ � Pcharge;max
PdischargeðtÞ � Pdischarge;max

(7)
4. 2m-PEM as the stochastic framework

As mentioned before, the problem investigated includes many
uncertain parameters that necessitate the use of an appropriate
framework for modeling them. The forecast error in the WT output
power (as the result of wind speed variations), PV output power, load
demandof consumers at each hour,market price per kWhand PHEVs
charging demand behavior in both the residential and publication
stations are the uncertain variables of the problem. In order tomodel
the uncertainties of the variables in the problem, different methods
have been proposed in recent years. The most well-known and
popular method is Monte Carlo Simulation (MCS) that uses a high
numberof runs formodeling uncertainty. Themain deficiencyofMCS
is its high computational burden. In order to overcome this issue,
different methods were proposed that among the most well-known
are approximate methods. Approximate methods replace each un-
certain variable with a suitable PDF and then use a limited number of
runs instead of high number of runs inMCS. This paper makes use of
PEMwith 2m scheme tomodel the uncertainties of the problem [28].
The variable m denotes the number of uncertain variables in the
problem. The main feature of 2m PEM is that it requires just the first
few statistical data of the uncertain variables including the mean,
variance, skewness, and kurtosis coefficients [29e32]. The 2m-PEM
will convert the stochastic problem into 2m deterministic problems
with different probabilities. Considering the set of uncertain variables
as z, the uncertainties of these variables are transferred to the output
through the objective function as below [29]:

S ¼ FðzÞ (8)
In this paper, the output variable S is the value of the cost

function. First, 2m-PEM will replace each uncertain variable zl by a
PDF function fzl. Then, each PDF function fzl is replaced by two
concentration points zl,1 and zl,2 that are calculated as below [29]:

Si ¼ FiðZ1; Z2; Z3;…; ZmÞ (9)

zl;k ¼ mzl þ xl;k$szl ; k ¼ 1;2 (10)

xl;k ¼
Yl;3

2
þ ð � 1Þ3�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�



Y2
l;3

.
2
�2r

; k ¼ 1;2 (11)

Also, Yl;3 as the skewness coefficient is evaluated as [29]:



Fig. 2. Conceptual illustration of the 2m PEM.

Fig. 4. Flowchart of the proposed q-MKH algorithm.
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Yl;3 ¼
E
h�
zl � mzl

�3i
�
szl

�3 (12)

In the above equation, E is the expected operator. Finally, the
standard deviation value of Si can be evaluated using the below
equation [29]:

E
�
Sji
� ¼ Xm

l¼1

X2
k¼1

ðul;k � Sjiðmz1;mz2;…; zl;k;…;mzmÞÞ

s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðSiÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E


S2i
�
� ½EðSiÞ�2

r

ul;k ¼
1
2m

(13)

The schematic diagram of 2m-PEM is depicted in Fig. 2.
5. Optimization method based on q-MKH

The proposed problem is a complex, nonlinear non-convex
optimization problem that requires a powerful tool to escape
from the local optima. Therefore, this paper suggests a new opti-
mization algorithm called q-MKH (based on the KH algorithm). The
detailed descriptions of this algorithm are given in the following.
Fig. 3. Conceptual illustration of the induced distance also called sensing distance [25].
5.1. q-KH algorithm

The original KH algorithm is a newly introduced evolutionary
algorithm published in 2012 [25]. KH mimics the behavior of krill
animals to search for food. In comparison with the other well-
known evolutionary algorithms, KH is equipped with some
powerful metaheuristic mechanisms taken from the particle swarm
optimization (PSO) and genetic algorithm (GA). These features
make KH algorithm a powerful optimizer to solve the non-convex
optimization problems. In addition, KH has other useful charac-
teristics such as low dependency on the adjusting parameters, fast
convergence, easy implementation, usable for solving both
continuous and discrete optimization problems and automatic sub-
division for solving multi-modal optimization problems. Structur-
ally, KH algorithm starts with a random krill population. After
calculating the fitness function value for all krill, the best krill is
stored (best krill is the onewith the best fitness function value) and
then the algorithm tries to improve the krill population as below
[25]:

Xkþ1
i ¼ Xk

i þ Vk
r;ir

XNv

j¼1

�
uj � lj

�
(14)

In the above equation, Vk
r;i is the velocity of ith krill which is

affected by three motions: 1) induction motion Vk
ind;i, 2) foraging

motion Vk
frg;i and 3) random diffusion Vk

diff ;i as follows [25]:

Vk
r;i ¼ Vk

ind;i þ Vk
frg;i þ Vk

diff ;i (15)

The induction Vk
ind;i, foraging Vk

frg;i and random diffusion Vk
diff ;i

motions will be discussed later in detail. But in order to avoid



Fig. 5. Single line diagram of the MG test system.

Fig. 6. Forecasted values of the load demand, market price and PV and WT power production [14].
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Table 1
The limitations and Bids of RESs and the utility.

Type Min power
(kW)

Max power
(kW)

Bid
(Vct/kWh)

Start-up/Shut-down
cost (Vct)

MT 6 30 0.457 0.96
PAFC 3 30 0.294 1.65
PV 0 25 2.584 0
WT 0 15 1.073 0
Bat �30 30 0.38 0
Utility �30 30 e e
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repetition, first we describe the theta version of KH algorithm (q-
KH) here. As mentioned before in the Introduction section, a new
version of KH algorithm can be devised that searches for the
optimal solution in the polar space instead of the Cartesian space.
This ideawill convert the feasible search area of each variable to the
limited range of ½�ðp=2Þ;þðp=2Þ�. As a result, the search process can
be done easier with faster convergence. In order to formulate the q-
KH, each krill Xi is replaced by its phase vector qi. Similarly, the
velocity Vi is replaced by its phase vector Dqi. Therefore, motions of
induction Vk

ind;i, foraging Vk
frg;i and random diffusion Vk

diff ;i are
changed to Dqkind;i, Dq

k
frg;i and Dqkdiff ;i. Similarly, (14) and (15) can be

rewritten as below:

qkþ1
i ¼ qki þ Dqkr;ir

XNv

j¼1

�
uj � lj

�
(16)

Dqkr;i ¼ Dqkind;i þ Dqkfrg;i þ Dqkdiff ;i (17)

Each of the three motions of induction, foraging and random
diffusion are now explained:
Table 2
Comparison of objective function value evaluated for the defined scenarios for 20
trails (deterministic framework).

Method Best
solution
(Vct)

Worst
solution
(Vct)

Average
(Vct)

Standard
deviation
(Vct)

Mean
simulation
time (s)

First
Scenario

GA [16] 277.7444 304.5889 290.4321 13.4421 e

PSO [16] 277.3237 303.3791 288.8761 10.1821 e

FSAPSO [16] 276.7867 291.7562 280.6844 8.3301 e

CPSO-T [16] 275.0455 286.5409 277.4045 6.2341 e

CPSO-L [16] 274.7438 281.1187 276.3327 5.9697 e

AMPSO-T [16] 274.5507 275.0905 274.9821 0.3210 e

AMPSO-L [16] 274.4317 274.7318 274.5643 0.0921 e

GSA [34] 275.5369 282.1743 277.8021 2.9283 e

SGSA [34] 269.7600 269.7600 269.7600 0 e

HBMO 276.3822 283.493 279.3882 3.2201 12.743
HS 275.2741 285.4046 279.8321 2.2353 12.842
KH 274.3740 279.4834 276.1103 2.8764 12.736
q-MKH 266.7600 266.7600 266.7600 0 8.003

Second
scenario

GA [16] 277.7444 304.5889 290.4321 13.4421 e

PSO [16] 277.3237 303.3791 288.8761 10.1821 e

FSAPSO [16] 276.7867 291.7562 280.6844 8.3301 e

HBMO 275.3823 283.8702 278.4832 4.7703 14.283
HS 274.5381 282.7473 278.7743 3.7478 13.461
KH 273.5531 275.3923 274.8372 0.3238 12.213
q-MKH 261.2340 261.2340 261.2340 0 8.142

Third
scenario

GA [34] 334.8694 345.0211 336.2912 17.6310 14.291
PSO [34] 327.7211 340.3123 331.2102 13.1244 14.283
FSAPSO [34] 326.4291 335.4931 331.4301 10.6621 13.281
GSA [34] 319.6284 331.8401 323.1782 5.0257 3.96
SGSA [34] 304.1147 304.1873 304.1492 0.0108 1.56
HBMO 319.3926 331.0954 324.7844 4.7230 13.706
HS 315.9104 331.3578 320.9722 7.0391 13.832
KH 317.5642 337.6743 325.8498 7.8844 12.864
q-MKH 299.4124 299.4124 299.4124 0 8.233
- Induction motion Dqkind;i: This motion simulates the event that
the behavior of each krill individual is affected by the neigh-
boring krill:

Dqkind;i ¼ aind;iDq
max
ind;i þ uindDq

k�1
ind;i (18)
aind;i ¼
XNs

j¼1

"
fi � fj
fw � fb

� qi � qj��qi � qj
��þ ε

#
þ 2

2
4randð$Þ þ i

Iter

3
5f bi qbi

(19)

The first term in Eq. (19) is the normalized fitness function value
which is multiplied by the induced direction by different neighbors.
Fig. 7. Comparative convergence diagram of KH and q-MKH for all scenarios.
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Therefore, the neighbors' vector can be attractive or defensive
depending on positive or negative sign.

The krill qj is in the neighboring of krill qi if it is in the below
surrounding region:

RVicinity ¼ 1
5Np

XNp

j¼1

��qi � qj
�� (20)

A schematic representation of the induced distance around each
krill is shown in Fig. 3.

- Foraging motion Dqkfrg;i: This motion simulates the foraging
movement of krill for food. This motion is done based on the
food current location and the krill previous experience about
the food location as below:

Dqkfrg;i ¼ 0:02

"
2
�
1� i

�
fi

PNs
i¼1

qi
fiPN þ f bi q

b
i

#
þ ufrgDq

k�1
frg;i (21)
Iter s
i¼1

1
fi

According to the above equation, first the center of the food is
virtually determined (taken from center of mass) and then the food
attraction can be determined.

- Random diffusion Dqkdiff ;i: This motion simulates a random
process in terms of a maximum diffusion speed and a random
directional vector:

Dqkdiff ;i ¼ y� udiff (22)
The KH algorithm is also equipped with the crossover and mu-
tation operators from GA to improve its population. More infor-
mation can be found in Ref. [25]. Each time that the objective
function should be calculated, the phase vector qi should be con-
verted to its Cartesian framework Xi. This process is implemented
using the below equation:

Xk
i ¼ Xmax � Xmin

2
sin qki þ

Xmax þ Xmin
2

(23)

The above formulation is the tool required for calculating the
equivalent Cartesian vector for qi.
5.2. Modification method

In this section we introduce a two-phase modification method
to improve the search ability of the KH algorithm. These two
modifications can improve the performance of KH by increasing the
diversity of the krill population in each iteration. The first part of
the modification method uses the L�evy flight technique to make a
local search around each krill. By definition, a L�evy flight is a random
walk in which the step-lengths are distributed according to a
heavy-tailed probability distribution [33]. It is demonstrated in the
literature that L�evy flight has powerful ability in the optimization
applications [33]:

qkþi ¼ qki þ 414L�evyðGÞ (24)

L�evyðGÞ � t ¼ k�G;


1<G � 3

�
(25)

The second modification method tries to shift the mean of the
krill population toward the best krill in each iteration. In this way, at
first the mean value of the krill population MnK is calculated. Then
the position of each krill is updated as below:
qkþ1
i ¼ qki þ round



1þ rand

�

qb �MnK

�
(26)

The above movement will increase the convergence of the
proposed algorithm, effectively. The complete flowchart of the
proposed q-MKH algorithm is depicted in Fig. 4.
5.3. Application of q-MKH to solve the MG operation problem

In order to apply the proposed q-MKH on the energy manage-
ment of the renewable MGs, the below steps are required:

Step 1: Input data including the MG data (such as load data, cost
of energy, topology, etc), DGs data (including output power of
WT and PV and their standard deviation values for stochastic
analysis, capacity limits of MT and FC (fuel cell), etc), algorithm
data (including initial size of krill population, iteration criterion,
adjusting parameters) and PHEV charging data (including the
daily charging demand of PHEVs in both residential and public
stations). In this step, the hourly charging demand of PHEVs can
be determined using the proposed smart charging method as
described in Section 2.
Step 2: Convert the constrained optimization problem into an
unconstrained one by the use of penalty factors. In this regard,
all the equality and inequality constraints are met by applying
penalty factors.
Step 3: Generate the initial population of krill. In our problem,
each krill is a vector that determines the optimal status and
output power of the units as shown in (3). Regarding the q-MKH,
the initial phase angle (qi) and relevant incremental angle (Dqi)
for each krill is generated as follows:

qi;j ¼ j5
�
qj;max � qj;min

�þ qj;min; j ¼ 1;2;…;Nv

Dqi;j ¼ 0:1� qi;j; i ¼ 1;2;…;Np
(27)

As described before, in this paper, q is the phasor scheme of the
control vector X.

Step 4: Transition from the phase angle space to the Cartesian
space as shown in (23).
Step 5: Evaluate the expected value of the cost function. It is
worth noting that considering m random variables in the
problem, the 2m-PEM technique will solve the problem 2m
times. Here, the expected and standard deviation values of cost
function are calculated as described in Section 4.
Step 6: Store the best krill in the population. In this paper, the
best krill is the one with the least expected value of the cost
function.
Step 7: Apply the modification process as explained in Section
5.1 to each of the krill, separately. In this step, the krill popula-
tion is updated once.
Step 8: Apply the proposedmodificationmethod as explained in
Section 5.2. Here the krill population is updated once more.
Step 9: Update the position of best krill and store it.
Step 10: Check the termination criterion. If the termination
criterion is satisfied, finish the algorithm, otherwise return to
step 7.
6. Simulation results

This section makes use of a typical MG with different types of
RESs including an FC, a WT, an MT, a PV and a NiMH-Battery as the
storage device. Fig. 5 shows the single line diagram of the MG
connected to themain grid through a transformer [16]. The analysis
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is done for 24 h to determine the optimal output power of each unit
at different hours.

DGs are supposed to work at unit power factor, thus no reactive
power is produced. The forecast data for load value (neglecting EVs
charging demand), market price, PV output power and WT output
power are shown in Fig. 6.

The cost of kW power produced by DGs and the main grid and
their capacities data are shown in Table 1. Regarding theWTand PV
power sources, since they should produce their maximum power
after the first time installation (first time capital investment), the
MGCC should buy all the power of these DGs at each hour. Mean-
while, this strategy is a useful policy for supporting RESs in the
networks.

Regarding the optimization algorithm, the size of the krill
population is 25 and the termination criterion is to reach 200 it-
erations. These values are found after several running of the algo-
rithm experimentally. Other adjusting parameters of the algorithm
are taken in the scale from Ref. [25] as follows: maximum induced
speed is 0.01, maximum diffusion speed is 0.05, the position con-
stant factor is 0.3 and all the inertia weighting factors including
uind, ufrg and udif are assumed to be 0.8. About PHEVs, one public
charging station is supposed in theMG and the residential charging
demands of PHEVs are distributed in the other load centers. We
Fig. 8. Optimal operating point of power units in the three scenario of the first case in
the deterministic framework.
have considered similar total charging demand value of 250 kW for
charging at residential locations and public station during the day
in the MG. As described in Section 2, this 250 kW charging demand
can be considered in the MG optimal scheduling problem in either
uncontrolled or smart manner. In the case of smart charging of
PHEVs, mmin

PHEV and mmax
PHEV are assumed to be 0 and 50 kW for resi-

dential locations and 5 kW and 70 kW for public stations, respec-
tively. Therefore, in order to see the performance of the smart
charging strategy as well as the PHEVs effect on the system, three
different cases are defined: 1) neglecting PHEVs charging demand
in the system, 2) considering uncontrolled PHEVs charging demand
and 3) considering smart PHEVs charging demand. For each case,
three different scenarios are defined to highlight the performance
of DGs, effect of considering start-up or shut-down of DGs and
NiMH-Battery role. In this way, the first scenario considers all DGs
to operate without shut-down and the battery initial charge is in-
finitive (enough electricity charge for one day long). The second
scenario will let DGs shut down or start up according to the
economical preferences and the battery charge is infinitive. The
third scenario is similar to the second scenario but the initial charge
of the battery is zero. It is clear that the second scenario is the most
flexible scenario when the third scenario has a severe limitation on
the battery charge and discharge process. In order to see the high
ability of the proposed q-MKH in the optimization process, all the
three scenarios of the first case (neglecting PHEVs) are repeated for
20 trails. The analyses are implemented in both the deterministic
and stochastic frameworks. The purpose of the deterministic
framework is to show the satisfying performance of the q-MKH.
Fig. 9. Load Curve of the MG smart/uncontrolled PHEVs' charging strategy in a) resi-
dential places, b) public station.
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Therefore, only the first case is simulated in the deterministic
framework. Table 2 shows the simulation results for different sce-
narios of the first case (neglecting PHEVs) in the deterministic
framework. For better comparison, the results of other well-known
algorithms for optimizing the cost function are shown in Table 2. As
it can be seen, the q-MKH could reach more optimal solution than
the other algorithms for all the three scenarios. The second scenario
as the most flexible scenario has the least cost value and the third
scenario as themost rigid scenario has themost cost. As regards the
stability of the algorithms, the results of the best solution, worst
solution, average value and standard deviation value for the 20
trails are shown in Table 2. From these results, the high stability of
the proposed q-MKH is deduced easily.

In order to see the high convergence of the algorithm, Fig. 7
shows the comparative plot of the convergence diagram of KH
and proposed q-MKH for the best solution and for all three sce-
narios. According to the diagrams shown in Fig. 7, the proposed
algorithm has successfully converged to the optimal solution in the
first iterations.

The optimal output powers of the units for the three scenarios of
the first case are shown in Fig. 8. Negative values of power for
battery show battery is in the chargingmode and negative values of
power for the main grid show selling power to the grid. According
to Fig. 8, the second scenario has decided to shut down the MT in
the first hours for reducing the cost of the MG. Also from the results
of the third scenario, it is seen that the battery had to charge in the
first hours of the day to be able to discharge at later hours. This
event has resulted in incremental cost for the third scenario.

As far, the analysis was implemented in the deterministic
framework. From now on, the stochastic framework based on 2m-
PEM is employed to model the uncertainties of the random vari-
ables. The uncertain parameters of the problem are 1) output po-
wer of WT, 2) output power of PV, 3) load demand of the MG, 4)
market energy price and 5) PHEVs charging demand. We have
considered normal distribution function for modeling the uncer-
tainty of these parameters. It is clear that other PDFs can be used in
the similar manner. The standard deviation of the randomvariables
are assumed to be 0.05 for WT output power, 0.04 for PV output
power, 0.08 for loads of the MG, 0.03 for market energy and 0.15 for
charging demand of PHEVs.

In the first step, the charging demand of PHEVs in both public
stations and residential communities should be managed using the
proposed smart charging strategy explained in Section 2. As
mentioned before and according to Fig. 1, PHEVs tend to be con-
nected to residential chargers through hours 1e6 and 18e6 with
higher probability than the other hours. On the opposite point,
PHEVs have higher tendency to be connected to chargers at public
stations at mid-day hours. These two charging schemes for PHEVs
create the “worst case” scenario of coincidental of the peak elec-
trical demand of the grid with PHEV charging demand that is called
here as uncontrolled charging method. By the use of the proposed
smart charging method that was described in Section 2, the above
two charging schemes should be amended. According to Eq. (1),
Table 3
Comparison of objective function expected value for the three cases evaluated in the
2m-PEM stochastic frameworks.

Framework Cost value in
scenario 1

Cost value in
scenario 2

Cost value
in scenario 3

Case 1 (neglecting PHEVs
charging demand)

267.3241 262.8736 300.6742

Case 2 (considering uncontrolled
PHEVs charging demand)

1022.1814 1016.6576 1046.3222

Case 3 (considering smart
PHEVs charging demand)

540.6673 528.2249 682.2380
this amendment is done according to both the existence coefficient
of PHEVs and the electricity cost at different hours. As mentioned
before, in this paper, it is supposed that the mean values of the
charging demand of PHEVs for both residential and public stations
are 250 kW in the area limited to the MG land. Since the load de-
mand of MG is increased, we have increased the maximum power
capacity of the utility to 60 kW in Table 1. In other words, the ca-
pacities of all power units are kept similar to the first case and just
the utility maximum capacity is increased. One significant
constraint in the proposed smart charging strategy is that at each
hour, the summation of the MG load and PHEVs' maximum
charging demand (both residential and public station) should not
exceed the maximum power production of the power units (PV,
WT, FC, MT, battery and the utility). Fig. 9 shows the comparative
loading effect of considering PHEVs' charging demand in both
smart and uncontrolled charging methods. According to this Fig. 9,
the proposed smart charging method has shifted the PHEVs'
charging demand to off-peak load hours with lower cost.
Fig. 10. Optimal operating point of power units in the three scenario of the second
case in the stochastic framework.



Fig. 11. Optimal operating point of power units in the three scenario of the third case
in the stochastic framework.
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In the following, the simulation results of the three cases are
shown comparatively. According to the results of Table 3, the pro-
posed smart charging method has reduced the total cost of the MG
effectively. It should be noted that this amount of reduction in the
MG cost is reached just by smart management of the PHEVs de-
mand. This event can result in higher penetration of PHEVs in the
system that is a significant goal for the future networks. By
comparing the results of Case 1 with those of Cases 2 and 3, it is
seen that PHEVs charging demand has resulted in higher cost
which could be guessed before. Figs. 10 and 11 show the expected
optimal output of power units for Cases 2 and 3 for all scenarios.
7. Conclusion

This paper addressed the impact of PHEVs' charging demand on
the renewable MGs from the optimal operation and management
point of view. In this way, a smart charging strategy was proposed
to manage the charging demand of PHEVs in the public charging
stations and residential communities. Also, an intelligent stochastic
framework based on 2m-PEM and a new version of KH algorithm
called q-MKH algorithm were suggested. For better understanding,
three different cases each having three different scenarios were
defined. Also, both the deterministic and stochastic analyses were
implemented. The simulation results on a renewable grid-
connected MG including different types of RESs such as WT, FC,
MT, PV, battery and PHEVs showed the satisfying performance of
the proposed intelligent framework. From the optimization view,
the proposed q-MKH could reach more optimal solution for the MG
than the other well-known algorithms in the area for all scenarios.
According to the results, considering PHEVs in the system using the
proposed smart charging strategy can reduce the total cost of the
MG notably. This amount of reduction in the cost function value can
support the high penetration of EVs in the MG. However, without
smart management, the MG cost is increased severely which can
even result in loss of some of the loads in the peak-load hours.
References

[1] Madzharov D, Delarue E, D'haeseleer W. Integrating electric vehicles as flex-
ible load in unit commitment modeling. Energy 2014;65:285e94.

[2] Cardoso G, Stadler M, Bozchalui MC, Sharma R, Marnay C, Barbosa-P�ovoa A,
et al. Optimal investment and scheduling of distributed energy resources with
uncertainty in electric vehicle driving schedules. Energy 2014;64:17e30.

[3] “Commission Plans Legislative Framework to Ensure the EU Meets its Target
for Cutting CO Emissions From Cars,” Brussels, Belgium, IP/071155, Feb. 2007.

[4] Srivastava AK, Annabathina B, Kamalasadan S. The challenges and policy op-
tions for integrating plug-in hybrid electric vehicle into the electric grid. Electr
J 2010;23(3):83e91.

[5] Fern�andez L, SanRom�an T, Cossent R, Domingo CM, Frías P. Assessment of the
impact of plug-in electric vehicles on distribution networks. IEEE Trans Power
Syst 2011;26(1):206e13.

[6] Fern�andez IJ, Calvillo CF, S�anchez-Miralles A, Boal J. Capacity fade and aging
models for electric batteries and optimal charging strategy for electric vehi-
cles. Energy 2013;60:35e43.

[7] Zhang Qi, Mclellan Benjamin C, Tezuka Tetsuo, Ishihara Keiichi N.
A methodology for economic and environmental analysis of electric vehicles
with different operational conditions. Energy 2013;61:118e27.

[8] Hadley S. Impact of plug-in hybrid vehicles on the electric grid. Oak Ridge, TN:
Oak Ridge National Laboratory; 2006.

[9] Hafez O, Bhattacharya K. Optimal planning and design of a renewable energy
based supply system for microgrids. J Renew Energy 2012;45:7e15.

[10] Budischak C, Sewell D, Thomson H, Mach L, Veron DE, Kempton W. Cost-
minimized combinations of wind power, solar power and electrochemical
storage, powering the grid up to 99.9% of the time. J Power Sources 2013;225:
60e74.

[11] Aslani A, Helo P, Naaranoja M. Evaluation of renewable energy development
in power generation in Finland. J Renew Sustain Energy 2013;5:63e71.

[12] Niknam T, Azizipanah-Abarghooee R, Roosta A, Amiri B. A new multi-
objective reserve constrained combined heat and power dynamic economic
emission dispatch. Energy 2012;42(1):530e45.

[13] Niknam T. An efficient multi-objective HBMO algorithm for distribution
feeder reconfiguration. Expert Syst Appl 2011;38(3):2878e87.

[14] Sedaghati R, Kavousi-Fard A. A hybrid fuzzy-PEM stochastic framework to
solve the optimal operation management of distribution feeder reconfigura-
tion considering wind turbines. J Intell Fuzzy Syst 2013;14(1):1e8. http://
dx.doi.org/10.3233/IFS-130850.

[15] Niknam T, Kavousifard A, Aghaei J. Scenario-based multi-objective distribu-
tion feeder reconfiguration considering wind power using adaptive modified
particle swarm optimization. IET Renew Power Gener 2012;6(4):236e47.

[16] Moghaddam A, Seifi A, Niknam T, Alizadeh Pahlavani MR. Multi-objective
operation management of a renewable MG (micro-grid) with back-up micro-
turbine/fuel cell/battery hybrid power source. J Energy 2011;36:6490e507.

[17] Khodr HM, El Halabi N, García-Gracia M. Intelligent renewable microgrid
scheduling controlled by a virtual power producer: a laboratory experience.
J Renew Energy 2012;48:269e75.

[18] Tsikalakis AG, Hatziargyriou ND. Centralized control for optimizing microgrids
operation. IEEE Trans Energy Convers 2008;23(1):241e8.

[19] Morais H, K�ad�ar P, Faria P, Vale ZA, Khodr HM. Optimal scheduling of a
renewable micro-grid in an isolated load area using mixed-integer linear
programming. J Renew Energy 2010;35(1):151e6.

[20] Chedid R, Raiman S. Unit sizing and control of hybrid wind solar power sys-
tems. IEEE Trans Energy Convers 1997;12(1):79e85.

[21] Pipattanasomporn M, Feroze H, Rahman S. Securing critical loads in a PV-
based microgrid with a multi-agent system. J Renew Energy 2012;39(1):
166e74.

http://refhub.elsevier.com/S0360-5442(14)01238-9/sref1
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref1
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref1
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref2
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref2
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref2
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref2
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref2
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref3
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref3
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref3
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref3
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref4
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref5
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref6
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref6
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref6
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref6
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref7
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref7
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref8
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref8
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref8
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref9
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref9
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref9
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref9
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref9
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref10
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref10
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref10
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref11
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref11
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref11
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref11
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref12
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref12
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref12
http://dx.doi.org/10.3233/IFS-130850
http://dx.doi.org/10.3233/IFS-130850
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref14
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref14
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref14
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref14
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref15
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref15
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref15
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref15
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref16
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref16
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref16
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref16
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref17
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref17
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref17
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref18
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref19
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref19
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref19
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref20
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref20
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref20
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref20


A. Kavousi-Fard et al. / Energy 78 (2014) 904e915 915
[22] Chen C, Duan S, Cai T, Liu B, Hu G. Smart energy management system for
optimal microgrid economic operation. IET Renew Power Gener 2011;5(3):
258e67.

[23] Chakraborty S, Weiss MD, Simoes MG. Distributed intelligent energy man-
agement system for a single-phase high frequency AC microgrid. IEEE Trans
Ind Electron 2007;54(1):97e109.

[24] Ungar E, Fell K. Plug in, turn on, and load up. IEEE Power Energy Mag
2010;8(3):30e5.

[25] Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm.
Commun Nonlinear Sci Numer Simulat 2012;17:4831e45.

[26] IEEE USA. Plug-in electric hybrid vehicles, Position statement adopted by IEEE,
USA.

[27] Li G, Zhang XP. Modeling of plug-in hybrid electric vehicle charging demand in
probabilistic power flow calculations. IEEE Trans Smart Grid 2012;3(1):492e9.

[28] Kavousi-Fard A, Niknam T. Optimal distribution feeder reconfiguration for
reliability improvement considering uncertainty. IEEE Trans Power Deliv
2013;99:1e8.

[29] Kavousi-Fard A, Niknam T. Multi-objective stochastic distribution feeder
reconfiguration from the reliability point of view. Energy 2014;64:342e54.
[30] Mohammadi S, Mozafari B, Solimani S, Niknam T. An adaptive modified firefly
optimisation algorithm based on Hong's Point Estimate Method to optimal
operation management in a microgrid with consideration of uncertainties.
Energy 2013;51:339e48.

[31] Niknam T, Golestaneh F, Malekpour AR. Probabilistic model of polymer ex-
change fuel cell power plants for hydrogen, thermal and electrical energy
management. J Power Sources 2013;229:285e98.

[32] Malekpour AR, Niknam T, Pahwa A, Kavousi-Fard A. Multi-objective stochastic
distribution feeder reconfiguration in systems with wind power generators
and fuel cells using the point estimate method. IEEE Trans Power Syst
2013;28(2):1483e92.

[33] Brown C, Liebovitch LS, Glendon R. L�evy flights in Dobe Juhoansi foraging
patterns. Hum Ecol 2007;35:129e38.

[34] Niknam T, Golestaneh F, Malekpour A. Probabilistic energy and operation
management of a microgrid containing wind/photovoltaic/fuel cell generation
and energy storage devices based on point estimate method and self-adaptive
gravitational search algorithm. Energy 2012;43:427e37.

http://refhub.elsevier.com/S0360-5442(14)01238-9/sref21
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref21
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref21
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref21
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref22
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref22
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref22
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref22
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref23
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref23
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref23
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref24
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref24
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref24
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref25
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref25
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref25
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref26
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref26
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref26
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref26
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref27
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref27
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref27
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref28
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref28
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref28
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref28
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref28
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref29
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref29
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref29
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref29
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref30
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref30
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref30
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref30
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref30
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref31
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref31
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref31
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref31
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref32
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref32
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref32
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref32
http://refhub.elsevier.com/S0360-5442(14)01238-9/sref32

	Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids
	1. Introduction
	2. PHEV smart charging strategy
	3. MG formulation
	3.1. Cost of energy
	3.2. Security limitations
	3.2.1. Generation and consumption balance
	3.2.2. Generation capacity
	3.2.3. Battery charging/discharging limits


	4. 2m-PEM as the stochastic framework
	5. Optimization method based on θ-MKH
	5.1. θ-KH algorithm
	5.2. Modification method
	5.3. Application of θ-MKH to solve the MG operation problem

	6. Simulation results
	7. Conclusion
	References


