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a b s t r a c t

Breast cancer is the second commonest type of cancer in the world, and the commonest among women, cor-

responding to 22% of the new cases every year. This work presents a new computational methodology, which

helps the specialists in the detection of breast masses based on the breast density. The proposed methodol-

ogy is divided into stages with the objective of overcoming several difficulties associated with the detection

of masses. In many of these stages, we brought contributions to the areas. The first stage is intended to detect

the type of density of the breast, which can be either dense or non-dense. We proposed an adaptive algorithm

capable of analyzing and image and telling if it is dense or non-dense. The first stage consists in the segmen-

tation of the regions that look like masses. We propose a novel use of the micro-genetic algorithm to create a

texture proximity mask and select the regions suspect of containing lesions. The next stage is the reduction

of false positives, which were generated in the previous stage. To this end, we proposed two new approaches.

The first reduction of false positives used DBSCAN and a proximity ranking of the textures extracted from the

ROIs. In the second reduction of false positives, the resulting regions have their textures analyzed by the com-

bination of Phylogenetic Trees, Local Binary Patterns and Support Vector Machines (SVM). A micro-genetic

algorithm was used to choose the suspect regions that generate the best training models and maximize the

classification of masses and non-masses used in the SVM. The best result produced a sensitivity of 92.99%, a

rate of 0.15 false positives per image and an area under the FROC curve of 0.96 in the analysis of the non-dense

breasts; and a sensitivity of 83.70%, a rate of 0.19 false positives per image and an area under the FROC curve

of 0.85, in the analysis of the dense breasts.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Breast cancer is the most frequent type of cancer among the fe-

ale population. It is also the type of cancer which most kills women

Parkin, Bray, Ferlay, & Pisani, 2005). The early diagnosis of this dis-

ase is the main form of fighting it.

A mammogram is a radiography of the breast, which allows the

arly detection of cancer, since it is capable of displaying lesions at

heir initial stage, having sizes in the range of millimeters. It is made

hrough an appropriate X-ray device, called mammographer. The pre-

ision of the mammogram depends on several factors, such as size

nd location of the lesion, the density of the breast tissue and on the

uality of the technical resources used. Besides, the task of carefully
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nterpreting a large number of cases demands time and an elevated

egree of attention from the specialist physician.

According to Norman, et al. (Boyd et al., 2007), one of the factors

hat hinder the detection of masses by the specialists is the type of

ensity of the breast, which can be dense (fibrous) or non-dense (fat).

he fat tissue appears as a dark region in a mammogram. On the other

and, fibrous structures (including masses) appear as clearer regions

f the mammogram. Due to these characteristics, it is more difficult

or a radiologist to find lesions in dense breasts.

All these factors have motivated much research over the last

ecades, aiming at the development of computational systems to

elp the specialist physician in the task of interpreting radiologi-

al images. These Computer-Aided Detection (CAD)/Diagnosis (CADx)

ystems have gained more and more space in modern medicine, serv-

ng as a second information source for specialists and increasing the

ates of correct detections in the identification of serious diseases,

uch as breast cancer (Fenton et al., 2007). However, most studies

een in the literature use the same techniques and configurations
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both for dense and non-dense masses, whereas those techniques

could be more appropriate for a specific kind of density.

The efficiency of CAD systems depend on the image processing

techniques. The available literature brings acknowledged works that

deal with the same problem approached by the methodology pro-

posed herein, that is, the development of computational methods for

aiding the specialist in the detection of lesions in mammograms.

The present bibliography contains a wide variety and combination

of techniques intended to detect masses in mammograms. They nor-

mally employ techniques for describing the geometry and the texture

of suspect regions.

For the geometric analysis, descriptors are used to find a shape

pattern capable of representing and differentiating between masses

and non-masses. Some examples of geometric descriptors are: area,

perimeter, circularity, shape factor (Dong et al., 2015), eccentric-

ity, circular density, circular disproportion and density (Sampaio,

Moraes Diniz, Corrêa Silva, Cardoso de Paiva, & Gattass, 2011) ac-

tive contour (Liu, Xu, Liu, & Feng, 2011), template matching (Nunes,

Silva, & de Paiva, 2009), contourlet (Moayedi, Azimifar, Boostani, &

Katebi, 2010), generalized moment patterns (Deepak, Medathati, &

Sivaswamy, 2012), density-weighted contrast enhancement (Petrick,

Chan, Sahiner, & Wei, 1996), etc.

The vast majority of studies use some kind of texture analysis.

These analysis usually employs statistical and geostatistical descrip-

tors, diversity and richness-of-species indexes, with the objective

of finding relations between the distribution of pixels belonging

to masses and non-masses. Some examples of texture descriptors

include: Local Binary Patterns (LBP) (Berbar, Reyad, & Hussain, 2012),

Complete Local Binary Patterns (Liu et al., 2011), statistical fusion

(Bajger, Ma, Williams, & Bottema, 2010), Gray Level Co-occurrence

Matrix (GLCM) (Abdalla, Dress, & Zaki, 2011; Anitha & Peter, 2015; Tai,

Chen, & Tsai, 2014), first-order and second-order statistical functions

(Berbar et al., 2012; Jen & Yu, 2015), Gabor filters, image phase analy-

sis, angular analysis of energy propagation, fractal analysis, Laws tex-

ture and Haralick descriptors (Banik, Rangayyan, & Desautels, 2011),

gray-scale invariant ranklet texture (Masotti, Lanconelli, & Cam-

panini, 2009), optical density transformation(Tai et al., 2014), pyra-

mid decomposition(Lin, Chang, Yeh, Liu, & Yeh, 2014). Other descrip-

tors are obtained by the Fourier and Wavelet transforms(Agrawal,

Vatsa, & Singh, 2014; Kuo, Lin, Hsu, & Cheng, 2014; Lin et al., 2014),

Phylogenetic Trees(Oliveira, Carvalho Filho, Silva, de Paiva, & Gattass,

2015), Vector Field Convolution (Dong et al., 2015).

The texture and geometry descriptors are, in general, used to-

gether with some machine learning technique, which will tell if the

Region of Interest (ROI) analyzed belongs to a mass or to a non-mass.

Some examples include the Support Vector Machine (SVM) (Agrawal

et al., 2014; Berbar et al., 2012; Dong et al., 2015; Liu et al., 2011;

Oliveira et al., 2015; Sampaio et al., 2011), Linear Discriminant Anal-

ysis (LDA) (Abdalla et al., 2011; Bajger et al., 2010), Artificial Neural

Networks (ANN) (Abdalla et al., 2011; Banik et al., 2011; Lin et al.,

2014) and k-Nearest Neighbors (KNN) (Berbar et al., 2012), Stepwise

Discriminant Analysis(Tai et al., 2014), Particle Swarm Optimization

(PSO)Kuo et al. (2014).

Great efforts were joined to create image databases for open use

by the scientific community. Among these databases, we highlight

the Digital Database for Screening Mammography DDSM (Abdalla

et al., 2011; Bajger et al., 2010; Berbar et al., 2012; Dong et al., 2015;

Jen & Yu, 2015; Liu et al., 2011; Oliveira et al., 2015; Sampaio et al.,

2011; Tai et al., 2014), and the Mammographic Image Analysis Society

(MIAS) (Agrawal et al., 2014; Anitha & Peter, 2015; Deepak et al., 2012;

Dong et al., 2015; Kuo et al., 2014; Moayedi et al., 2010). Some stud-

ies use private databases with the same purpose (Bajger et al., 2010;

Banik et al., 2011; Jen & Yu, 2015; Lin et al., 2014).

Analyzing the studies numbered above, we notice that most of

them use the MIAS and DDSM databases. Nevertheless, none of them

tries to use a methodology adapted to the density of the breast.
The cited works, in general, use supervised learning techniques to

erform the classificatoin of the ROIs. The SVM classifier, which got

uch attention, was also used in this work.

This work used two stages (segmentation and reduction of false

ositives using DBSCAN), which use information of the from the im-

ge under analysis, dismissing the use of a specific knowledge base

or each stage.

The work by Oliveira et al. (2015) also extracts features using phy-

ogenetic trees. However, it only takes into account the frequency of

he gray levels of the ROIs under analysis. In our work, the phyloge-

etic trees use the spatial relation among gray levels, as well as their

ccurrences, thus performing both a local and a global analysis. We

ust stress that the work by Oliveira et al. (2015) did not apply the

tages of segmentation and reduction of false positives, and for this

eason had a superior performance, since classification errors in these

tages were not computed.

Opposite the present work, none of the cited work use a method-

logy in an attempt to optimize their training models.

Table 17 summarizes the related works presented in this section.

This work presents a CAD methodology for helping the special-

st physician in the task of detecting masses in mammographic im-

ges. The technique is adapted to the density of the breast. The first

tage of the methodology removes artifacts outside the breast and

akes the reduction of noise. The next stage classifies the density of

he breast as dense or non-dense. The segmentation chooses the re-

ions of the image that probably contain masses by means of a micro-

enetic algorithm(μGA). A first reduction of false positives (RFP) uses

he Density Based Spatial Clustering of Applications with Noise (DB-

CAN) and a proximity ranking of the textures extracted from the re-

ions of interest (ROI). In the second RFP, the ROIs have their textures

nalyzed by the combination of Phylogenetic Trees, Local Binary Pat-

erns and Support Vector Machines (SVM).

The next sections can be briefly described as follows. Section 2

resents the bibliographic review, containing the theoretical basis

ecessary for understanding the methodology. In Section 3 we

resent the five stages that compose the present work: image acqui-

ition, density detection, pre-processing, segmentation of the regions

f interest and reduction of false positives. In Section 4, we present

nd discuss the results. We also present case studies of the appli-

ation of the proposed methodology. Section 5 concludes the work,

resenting the main contributions and the efficiency of the methods

sed.

. Theoretical basis

This section brings a quick review on Phylogenetic Trees, Local Bi-

ary Patterns (LBP), taxonomic diversity and distinction indexes and

icro-genetic Algorithm.

.1. Phylogenetic trees and taxonomic indexes

Phylogenetic trees are used in Biology to describe the evolution-

ry relation among species. In these trees, the leaves represent the

pecies and the internal nodes represent the common ancestors be-

ween the species. So, it is possible to relate the species under study

rom an evolutionary standpoint. The inclined cladogram is a graphic

epresentation used to describe the phylogenetic relation between

ncestor species (Hall & Greenstreet, 1998). These trees allow the ex-

raction of indexes that relate the diversity, richness and parenthood

etween species.

Fig. 1 presents an example of ape phylogenetic tree, represented

y an inclined cladogram, where one may notice that a chimpanzee

as higher phylogenetic proximity to humans than a siamang. In this

ree, the leaf nodes are the species analyzed, the internal nodes corre-

pond to a common ancestor and the edges indicate the phylogenetic

istance between both species.



W.B. de Sampaio et al. / Expert Systems With Applications 42 (2015) 8911–8928 8913

Fig. 1. Example of ape phylogenetic tree.

Fig. 2. Use of phylogenetic trees for analysis of texture. (a) Image with 3 gray levels.

(b) Representation of a phylogenetic tree by inclined cladogram. (c) Representation of

a phylogenetic tree by a matrix.
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By means of phylogenetic trees, we can compute two taxonomic

ndexes that relate species belonging to a community. For these in-

exes, we must consider xi and xj as the number of individuals of

he species i and j, respectively. The variable wij is the phylogenetic

istance (weight) between the species i and j, that is, the number of

dges that separate both species in the cladogram, and n is the total

umber of individuals in a certain area.

The first index is the taxonomic diversity (�), which considers the

bundance of species and the taxonomic relation among them. So,

ts value expresses the mean taxonomic distance between any two

ndividuals randomly chosen from the sample. The index (�) can be

omputed by Eq. (1).

=
∑∑

i< j wi jxix j

[n(n − 1)/2)]
(1)

The second index is the taxonomic distinction (�∗), which rep-

esents the mean taxonomic distance between two individuals, pro-

ided that they belong to different species. It can be computed by

eans of Eq. (2).

∗ =
∑ ∑

i< j wi jxix j∑∑
i< j xix j

(2)

In image processing, we can use phylogenetic trees to describe a

exture. In this case, the species are the gray levels. Fig. 2(a) contains

n example of texture that has only three gray levels (black, gray and

hite). Fig. 2(b) contains a phylogenetic tree in the form of an in-

lined cladogram of the gray levels of Fig. 2(a), in which each sub-

cript value corresponds to the number of individuals of the species.

ig. 2(c) contains the representation of the inclined cladogram of

ig. 2(b) in matrix form.

In this work, the phylogenetic trees are used to describe the

exture of ROIs where all the species analyzed are LBP codes. The
Fig. 3. Thorough representati
bjective is the classification of these ROIs into mass and non-mass

y the SVM.

.2. Local binary patterns

The Local Binary Patterns (LBP) turn any given texture, defined by

vicinity of radius R and formed by P neighbors, into a code by means

f a thresholding (Ahonen, Hadid, & Pietikainen, 2006). Ley I be an

mage and gp the gray level of a pixel located in a circular region of

neighbors around the point c = (yc, xc) within a distance R. The P

ixels neighbor of the point c can be determined through Eqs. (3) and

4), in which p = 0, 1, . . . , P − 1 (Ahonen et al., 2006).

p = x + Rcos(2π p/P) (3)

p = y − Rsin(2π p/P) (4)

here yp and xp are the coordinates of the pixel p, neighbor of the

oint c = (yc, xc), R is the radius and P is number of neighbors ana-

yzed.

The binary sequence LP is obtained through a thresholding of the

lements P, where the threshold is the value of the central pixel p.

riting the thresholding function as s(Z), where z is the difference

etween the gray levels of the central pixel and a pixel of the vicinity,

he thresholding function is defined as (Ahonen et al., 2006):

(z) =
{

1, z ≥ 0

0, z < 0
(5)

The computation of the pattern is made through the summation of

he thresholding of the vicinity, weighted by the square of the order of

ach neighbor. Eq. (6) defines the LBP operator (Ahonen et al., 2006).

BPP,R(yc, xc) =
P−1∑
p=0

s(gp, gc)2p (6)

In this work, the LBP codes are used as the species analyzed by

hylogenetic trees to describe the texture of segmented ROIs. The use

f LBP is intended to provide the analysis of texture with informa-

ion about the spatial relationship between neighbor pixels in a ROI

Fig. 3).

.3. Micro-genetic algorithm

The Micro-genetic Algorithm (μGA) is a kind of evolutionary algo-

ithm whose main characteristic is the reduced size of the population

n each generation (Tam, Cheng, & Lui, 2006). Since the population

ize is reduced, the genetic diversity tends to decrease rapidly, but

hen this occurs, the μGA restarts the population, keeping just the

lite unchanged. This feature allows the μGA to avoid the early con-

ergence and the production of sub-optimal results.

In the present work, the μGA was used to create the best training

odel for the SVM classifier at the stages of breast density detection

nd training, as well as to create texture proximity masks in the seg-

entation.
on of the methodology.
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Table 1

Density definitions according to BI-RADS.

Density Description Note

1 Breast totally filled with fat. Absence of fibrous tissue.

2 Presence of dispersed

fibroglandular tissue

May hide a lesion in a

mammogram.

3 The breast is heterogeneously

dense.

May reduce the sensitivity of the

exam.

4 The breast tissue is extremely

dense.

Reduces the sensitivity of the exam.

Fig. 4. Example of DDSM image with the typical elements found.
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3. Proposed methodology

The rest of this section describes each one of these stages in detail.

3.1. Acquisition

For the development of this methodology, we used the database of

digitized mammograms called Digital Database for Screening Mam-

mography (DDSM), available on the Internet. The DDSM is a pub-

lic database containing 2620 cases, made freely available (Heath

et al., 1998) through the efforts of some American institutions (Mas-

sachusetts General Hospital, Wake Forest University, and Washington

University in St. Louis School of Medicine).

Each case contains two images of each breast in the craniocaudal

(CC) and mediolateral oblique (MLO) projections, besides extra infor-

mation about the exam (breast density, date of the study, patient’s

age, type of pathology, number of anomalies, etc.) and about the im-

age (filename, film type, date of scanning, scanner type, sequence,

pixels per line, bits per pixel, lesion location, etc.).

All the information contained in the DDSM was supplied by spe-

cialist physicians (Heath et al., 1998). The information about density

of the breast is present in the DDSM, and can have values ranging

from 1 to 4. These values can be interpreted using the definitions in-

dicated by the BI-RADS, as described in Table 1.

In this work, we used 1727 images from the DDSM database, being

1049 images of non-dense breasts (values 1 and 2 in Table 1) and

678 images of dense breasts (values 3 and 4 in Table 1). These images

must contain at least one mass lesion. Images containing other types

of lesion are not part of this study.

3.2. Pre-processing

Images belonging to the DDSM database present noise and typical

elements of a mammogram, which may interfere in the results of the

proposed methodology. These undesired elements include identifica-

tion marks of the patient or of the type of exam, pixels of the image

background, and eventual noises produced by imperfections in the

generation or scanning processes of the image. The objective of this

pre-processing stage is to remove these unwanted elements. Example

of such elements are shown in Fig. 4.

The first step of the pre-processing stage is a reduction of the orig-

inal image size, resulting in an image with height of 1024 pixels. The

same reduction proportion is made for the width. The objective of

this reduction is to reduce the processing time, which is too high

when one works with the image in its original size, that is, a mean

height of 6000 pixels. This reduction does not imply in loss of in-

formation. The works by Sampaio et al. (2011), Nunes et al. (2009)

are some examples in the literature which used image size reduction

without loss of information or performance.

Next, all points within a distance of 30 pixels from the vertical bor-

der and 60 pixels from the horizontal borders are removed (Fig. 5(a)).

This removal is intended to remove from the image the area between

the borders of the film and the empty spaces without the film.

The background, with gray levels close to black, is removed with

use of the thresholding algorithm. First, the image is divided in half,
ccording to the while line in Fig. 5(b). Then, we compute the sum of

ll gray levels values of each half of the image. Since the gray levels

lose to black have values close to zero, then the size with the small-

st sum contains the background portion, and is the opposite to the

reast side.

The side containing the background is divided in half, according

o the gray line in Fig. 5(c). With the slice closer to the border (and

pposite to the breast), we apply the mean filter (Gonzalez, Woods, &

asters, 2009) for noise removal, and compute the mean (μ) and the

tandard deviation (σ ) of the gray levels.

Let L = μ + σ, if L is below 50, then we use L as thresh-

ld (Gonzalez et al., 2009). Otherwise, we use μ (values empirically

etermined). This thresholding serves to separate the background re-

ion, in such a way to preserve the contour of the breast.

With the thresholding, the more intense pixels, like the pixels of

he breast and of the identification marks, are grouped into a cluster

white) and the less intense ones, like those of the background and

oise, are grouped into another cluster (black). The group of pixels

hat correspond to the background is eliminated from the image with

exture. The visual representation of the clusters created can be seen

n Fig. 5(e).

In the resulting image, there are still some objects outside

he breast, such as identification labels of the exam and some

oise. These objects are removed by the region growing algorithm

Gonzalez et al., 2009), which separates the non-connected regions

f the image (Fig. 5(f) and (g)). Only the region with the largest area,

hat is, the breast, is selected (Fig. 5(g)).

The MLO images usually contain the chest muscle, which is associ-

ted to high gray levels. This characteristic interferes in the frequency

f the gray levels of the image. So, all MLO images were submitted to

new pre-processing for removal of the chest muscle, such as in the

ork by Sampaio et al. (2011).

At this point of the methodology, all the techniques were equally

pplied, both for dense and non-dense breasts. However, the pro-

osed methodology will be divided into two processing stages.

The training and validation stage (Sections 3.3–3.5.2) uses a base

ith 80% of the 1049 non-dense images (839 images, with 888

asses) and 80% of the 678 dense breast images (543 images, with

62 masses) chosen in Section 3.1. Based on these images, we esti-

ate empirically the parameters for the techniques used. Also based

n these images, we estimate, empirically, the training models for op-

imization of the results of the classification in the stages of density

etection and training/validation/test.
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Fig. 7. Application of the variance filter. (a) Dense breast. (b) Non-dense breast.

Table 2

Number of vectors used to create the density training model.

Density Total Training Validation Not selected

(70%) (20%) (10%)

Non-dense 839 587 168 84

Dense 543 380 109 54

Table 3

Confusion matrix of the validation.

Density

Non-dense Dense

Classification Non-dense 168 0

Dense 0 109
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3.3.3. Training and validation

The previous stage produces a set of feature vectors extracted

from non-dense and dense breast images. These feature vectors will

be used to determine an optimized training model by the μGA. In

order to create the (density) training model, it is necessary to divide

the set of vectors in the proportion of 70% for training and 20% for

validation. The remaining 10% are not selected. Table 2 contains the

distribution of the number of vectors used to create the density train-

ing model.

Each chromosome is randomly formed by two sub-samples. The

first sub-sample contains 70% of the feature vectors created, that

is, they were extracted from 587 non-dense breast images and 380

dense breast images. The SVM will be trained with these vectors.

The second sub-sample contains 20% of the feature vectors, that

is, they were extracted from 168 non-dense breasts images and 109

dense breast images. These vectors will be classified by the SVM (val-

idation).

The sub-sample formed by 10% of the feature vectors, which were

not selected by the μGA (84 vectors extracted from non-dense breast

images and 54 vectors extracted from dense breast images), will be

dismissed, since they degrade, have little or no contribution for the

enhancement of the validation performance.

It is important to observe that the parameters used by the SVM, in

this and in the other stages, were automatically determined accord-

ing to (Chang & Lin, 2011).

The μGA created to optimize the breast density detection has the

following characteristics:

• Each generation has 10 chromosomes.
• The selection is made through the roulette wheel technique.
• The elite is formed by one chromosome.
• The crossover between two chromosomes A and B exchanges the

features that they do not share. A vector can only be exchanged

with another vector of the same sub-sample type (training with

training, validation with validation). Each chromosome randomly

changes between 1 and 5 of its vectors.
• The mutation of a chromosome A randomly replaces between 1

and 5 of its vectors with new ones which do not belong to A.
• In the cases of precocious convergence, the population is

restarted, keeping only the elite unchanged. The early conver-
gence is detected when 60% or more of the population has the

same fitness as the fittest individual of the current generation and

when the number of past generations is smaller than 50. These

values were empirically defined, so that the initial number of rep-

etitions is high, thus improving the scans in the feature space.
• The fitness of a chromosome is computed through the arithmetic

mean of sensitivity, specificity and accuracy found in the classi-

fication of the validation sub-sample. The smaller the mean, the

fittest will be the individual, and consequently better will be the

correct detection of the dense or non-dense breasts.
• The stop criterion is reached when the fitness of the fittest indi-

vidual is repeated for 100 consecutive generations.

According to (Ng, 2008) sensitivity, specificity and accuracy are

tatistics commonly used to indicate the efficiency of a certain test

o indicate the presence or absence of a disease. Sensitivity evalu-

tes how good a test is at indicating the presence of a disease. Speci-

city estimates the probability of the presence of a disease being dis-

issed. Accuracy measures the correctness of the identification or

xclusion of a certain condition. Some examples of the application of

he measurements in CAD systems are found in Sampaio et al. (2011)

nd Junior, de Paiva, Silva, and de Oliveira (2009).

Table 3 contains a confusion matrix of the validation, with the cre-

tion of the training model optimized by the μGA. In this table, one

an notice that the density training model achieved 100% sensitivity,

pecificity and accuracy.

The SVM uses a sub-sample of the training vectors to generate the

eparation surface between the classes under analysis. These vectors

re known as support vectors.

A training using SVM suffers from overfitting when the number of

upport vectors used to generate the separation surface gets closer to

he total number of vectors used in the training. In other words, the

VM loses its generalization capability. From the 967 feature vectors

sed in the training (Table 3), only 319, that is, 33% of them, were used

s support vectors. So, we can state that there was no overfitting in

he training.

The training model generated will be used in the detection of the

reast density in the training set.

The next stages adjust the parameters of the techniques accord-

ng to the density of the image under analysis. Table 4 contains the
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Fig. 5. Removal of background and noise. (a) Reduced image. (b) The arrow indicates the half of the image containing the background, the white line indicates the half of the image.

(c) The gray line divides in half the part of the image containing the background. The arrow indicates the slice on which the threshold is computed. (d) Result of the thresholding.

(e) Background removal. (f) and (g) Non-connected objects separated by the region growing algorithm. (g) Result of the pre-processing.

Fig. 6. Breast density detection scheme.
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The test stage is described in Section 4.1. It is formed by 20% of the

049 images of non-dense breasts (120 images, with 214 masses) and

0% of the images of dense breasts (135 images of dense breasts, with

35 masses) which did not participate in the training and validation

tage.

.3. Detection of breast density

The objective of this stage is to classify the breast either as dense

r as non-dense. This is also a crucial stage, since it determined the

se of distinct configurations for dense and non-dense breasts. Fig. 6

resents the stages of density detection.

.3.1. Pre-processing

The pre-processing consists in the application of a variance filter

Gonzalez et al., 2009) of radius r = 5. The application of this filter is

ustified by the structural differences between dense and non-dense

reasts, as observed in Fig. 7. After applying the variance filter, all of

he computed values are scaled into the integer interval from 0 to

55.
Fig. 7(a) contains an example of dense breast and the application

f the variance filter. It can be noticed that dense breasts have a large

ariation in the distribution of the gray tones. This implies directly in

he higher number of structures highlighted by the variance filter.

Fig. 7(b) shows an example of non-dense breast and the applica-

ion of the variance filter. The images of non-dense breasts have a

ore uniform distribution of gray tones, which implies in a smaller

umber of structures highlighted by the variance filter.

After the application of the variance filter, occurs the extraction of

eatures.

.3.2. Features extraction

Features extraction consists in taking two measurements that re-

ate variance and the area of the images resulting from the variance

lter.

Let vyx be the scaled value of the variance for the pixels pyx, be-

onging to the breast region, and Am the area that contains only the

reast. The first feature, internal variance (Vinterna), consists in sum-

ing all the vyx and dividing by Am (Eq. (7)).

internal =
∑

y

∑
x vyx

Am
(7)

Let Av be the area formed by the pixels of the breast whose val-

es of vyx are not zero. The second feature, mean variance (Vmean),

onsists in summing all the vyx and dividing by Av (Eq. (8)).

mean =
∑

y

∑
x vyx

Av
(8)

The division by the area (Am or Av) is justified by the existence

f breasts of various sizes. So, a small and dense breast area (higher

ariance) could be confused with a big and dense breast (smaller vari-

nce) if we considered just the sum of the variances. From each im-

ge, we extract a features vector formed by these two features.
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Table 4

Parameters used in segmentation and first false positives reduction.

Technique Non-dense breasts Dense breasts

Segmentation

Mean filter (radius) 1 pixel 1 pixel

CLAHE (radius) 64 pixels 32 pixel

CLAHE (gray levels) 256 256

CLAHE (overlapping) 5 pixels 3 pixels

uGA (stop criterion) 30 repetitions of the elite 50 repetitions of the elite

uGA (mask size) 5 × 5 9 × 9

uGA (threshold) 110 90

1st false positive reduction

Window size 32 × 32 32 × 32

DBSCAN (Eps) 5 3

DBSCAN (MinPts) 1 1
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arameters used to segment ROIs and reduce false positives in dense

nd non-dense breasts.

.4. Segmentation of the ROIs

This stage is indented to identify the regions of the breast with

igher possibilities of being masses. In this work, the segmentation is

one by the μGA, in order to create the mass candidates.

Next we describe the starting steps of the segmentation of ROIs

y means of the μGA. These steps serve to prepare the image for the

egmentation processes. They are:

• The height and the width of the analyzed image is reduced in

half (height of 512 pixels). This occurs because the evolutionary

methodologies, in general, work with several generations, so, this

reduction reduces the total processing time necessary. In general,

there is not much loss of information in images with 1024 pixels

in height, and its copy reduced to 512 pixels in height did not led

to great changes in the outcome of the segmentation, except for

the time consumption.
• Application of the mean filter with radius r = 1 to reduce the noise

in the image.
• A CLAHE contrast enhancement is applied (Ferguson, Arslan,

Erdogan, & Parmley, 2008), in order to improve the visual distinc-

tion of the structures inside the breast.

The configurations of radius, size of the pixel overlapping adopted

n CLAHE, stop criterion, proximity mask size and threshold used by

he μGA prevents the segmentation of masses with excess of extra

ixels, in both dense and non-dense breasts.

After that, the μGA is used to generate an optimized texture

roximity mask. A chromosome is defined by a mask M (matrix) of

ize N × N.
Fig. 8. Computation of the texture proximity. (a) Reduced image. (b) Proximity mask
In order to compute the mask values, we first compute the mean

μ) and the standard deviation (σ ) of the gray levels of all pixels of the

esized image, not taking the background into account. Each element

ij of the mask receives a value which is the sum of μ and a random

alue in the interval [−σ , + σ ]. This serves to create a mask which is

s close as possible to the texture of the breast under analysis, so we

an say that M is a texture proximity mask.

To compute the fitness of a chromosome, we use all windows,

ithout pixel overlapping, that do not contain background. Fig. 12

ontains a similar example which uses 32 × 32 windows (to improve

isualization).

For a better understanding, it is necessary to provide a better ex-

lanation of the concept of texture proximity. The texture proximity

etween a window centered at the pixel pyx and the chromosome is

btained by the sum of the absolute values of the differences between

ll the pixels of the window and their counterparts in the chromo-

ome.

The fitness of the chromosome is computed by the mean of the

istances of all windows, regardless of the background. The smaller

he fitness of a chromosome, smaller will be its mean distance with

ost part of the breast texture contained in the image, that is, the

exture of the mask resembles the texture of the majority of the win-

ows of the breast. The objective of the μGA is to minimize this dis-

ance. Fig. 8 contains an example of the computation of the proximity

etween a chromosome and a 3 × 3 window.

Fig. 8(a) is the reduced image. Fig. 8(b) is the proximity mask

chromosome) created by the mean (103) and the standard devia-

ion (3) computed in Fig. 8(a). Fig. 8(c) contains the absolute values of

he differences between the corresponding elements of the window

nd of the proximity mask. Fig. 8(d) contains the sum of the values of

ig. 8(c). This value does not constitute the fitness of the chromosome

et, since it is just the distance between the window and the mask.

he computation of the fitness must use the means of the distances

etween all the windows of the image.

The configurations of the μGA used to create an optimized texture

roximity mask are:

• Each generation has 10 chromosomes.
• The selection is done by the roulette wheel technique.
• The elite is formed by one chromosome.
• The crossover between two chromosomes A and B is produced by

the arithmetic mean of the elements of the matrices of A and B.
• The mutation of a chromosome A chooses a line of the proximity

matrix A and adds a random value between [−5; +5] to each ele-

ment of the chosen line. The final value of each element must be

in the interval [0, 255].
• In the case of precocious convergence, the population is restarted,

keeping only the elite unchanged. The early convergence is de-

tected when 60% or more of the population has the same fitness as
(chromosome). (c) Difference between (a) and (b). (d) Sum of the values of (c).
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Fig. 9. Segmentation of a pixel. (a) Reduced image. (b) Proximity mask found by the μGA. (c) Difference between (a) and (b). (d) Comparison with the threshold. (e) Segmented

point.

Fig. 10. Example of segmentation in a non-dense breast. (a) Input image. (b) Suspect regions. (c) Image resulting from the segmentation.

Table 5

Number of ROIs produced by the segmentation in the training and validation stage.

Type of

density

Masses Non-masses

segmented

Proportion

Non-masses/masses

Segmented Lost

Total % Total %

Non-dense 865 97.41 23 2.59 9613 11.11

Dense 531 94.48 31 5.52 6933 13.06
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the fittest individual of the current generation and when the num-

ber of past generations is smaller than 50. These values were em-

pirically defined, so that the initial number of repetitions is high,

thus improving the scans in the feature space.
• O stop criterion is reached when the fitness of the fittest indi-

vidual is repeated for 30 consecutive generations for non-dense

breasts, and 50 consecutive generations for dense breasts.

With the texture proximity mask found by the μGA, we carry out

the segmentation itself.

The μGA creates a proximity mask which resembles the major-

ity of the texture of the breast (commonest texture, supposedly with

no lesion). The regions having texture very different from the rest

of the texture of breast are considered suspect of having masses. In

other words, the segmentation consists in eliminating the areas of

the breast whose textures are closer to the proximity mask, remain-

ing only those with very different texture.

For all the p pixels of an image I, belonging to the breast, if the dis-

tance between the pixels of a window centered in pyx and the prox-

imity mask found is above a threshold L, then pyx belongs to a region

suspect of being a lesion (different from the majority of breast tex-

ture), and will get the value 255, otherwise will receive value 0 (zero).

After this procedure, the size of the image is restored to the size be-

fore the segmentation, as well as the textures of the regions marked

as suspect.

Fig. 9 presents an example of segmentation of the pixel high-

lighted in Fig. 9(a). Fig. 9(b) is the mask which represents the fittest

chromosome found by the μGA. Fig. 9(c) contains the differences be-

tween Fig. 9(a) and (b). Fig. 9(d) compares the mean of the sum of the
alues of Fig. 9(c) with a threshold. Fig. 9(e) contains the segmented

ixel.

Fig. 10 contains an example of non-dense breast which was sub-

itted to the segmentation process, in which Fig. 10(a) is the input

mage resulting from the pre-processing, Fig. 10(b) contains the re-

ions marked as suspect and binarized, and Fig. 10(c) is the image re-

ulting from the segmentation process, showing the suspect regions

nd their textures.

The final stage of the segmentation consists in isolating the sus-

ect regions so that they can be individually analyzed in the next

tage. Each ROI is separated by a region growing algorithm.

In this stage, we used 839 non-dense breasts images, with 888

asses; and 543 dense breasts images, with 562 masses. From the

on-dense breasts, the segmentation extracted 865 ROIs from masses

97.41% of the total masses), and 9613 ROIs from non-masses. From

he dense breasts, the segmentation extracted 531 ROIs from masses

94.48% of the total masses), and 6933 ROIs from non-masses. Table 5

ontains the results of the segmentation for this stage.
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Fig. 11. Examples of ROIs separated by the region growing algorithm.

Fig. 12. Stages of the first reduction of false positives. (a) All the internal 32 × 32 windows in the breast region. (b) Windows removed from the windows list highlighted. (c) ROIs

generated by the segmentation. (d) ROIs resulting from the reduction of false positives.
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Table 6

Number of ROIs resulting from the reduction of false positives, using DBSCAN, in the

training and validation stage.

Density Masses Non-masses

Previous

stage

Selected Lost Previous

stage

Remaining

Total % Total %

Non-dense 865 843 94.93 45 5.07 9613 3197

Dense 531 522 92.88 40 7.12 6933 2099
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The segmentation achieved good results for both dense and non-

ense breasts. However, the number of segmented non-masses is be-

ween 11.11 and 13.06 times bigger than the number of segmented

asses. So, it is necessary to reduce the number of segmented non-

asses. Fig. 11 contains examples of ROIs separated by the region

rowing algorithm.

.5. Reduction of false positives

The objective of the segmentation is to generate ROIs. However,

n some cases occurs a phenomenon known as super segmentation,

hich consists in the excessive segmentation of suspect regions. That

s, besides marking areas that contain masses, a very large number

f healthy regions is marked as lesions (false positives), which ele-

ates the number of ROIs to be analyzed in the next stages. So, it is

ecessary to reduce the number of segmented false positives.

.5.1. Reduction of false positives by DBSCAN

The first reduction of false positives consists in eliminating ROIs

rroneously marked as lesion, in both dense and non-dense breasts.

For an image I, we create a list of all non-overlapped 32 × 32-

ixel windows that do not contain the background and that are on

he region of the breast (Fig. 12(a)). We compute the mean μT (total

ean) and the standard deviation σ T (total standard deviation) of the

ray levels of these windows.

The windows with mean above μT + σT are removed from the

indows list (Fig. 12(b)), that is, windows that differ too much from

he listed windows. This way, only the windows that have the gray

evels of the majority of the windows in the internal area of the breast

emain in the list.

With the windows that are not in the list yet, we compute μR,

ean of the remaining windows. This mean will serve as distance

etric for comparison of the segmented ROIs of I.

Let RI be the set of ROIs of the image I (Fig. 12(c)), and r a ROI be-

onging to RI. A ranking value is assigned to each ROI r of RI as follows:

ankingr = |μR − μr| (9)
here μr is the mean of the gray levels of the ROI r. This value informs

he distance between the gray levels of a ROI and the gray levels of the

mage to which it belongs. The ROIs with higher ranking are the ones

hich most differ from the mean of the gray tones of the image, with

high chance of being lesions.

Next, we use DBSCAN to generate clusters of ROIs based on the

nalysis of the rankings. For non-dense breasts, the value of Eps is 5

nd MinPts is 1. For dense breasts, the value of Eps is 3 and MinPts is

. These are the best values empirically found.

After clustering, we analyze all the ROI groups formed. The group

ith the highest mean ranking is passed to the features extraction

tage; the remaining ones are discarded (Fig. 12(d)).

Table 6 contains the results of the reduction of false positives of

his stage.

The reduction false positives achieved a good performance in the

raining and validation stage, since the reduction of the non-masses

n non-dense breasts was of 66.74% and 69.72% of non-masses in

ense breasts.

The ROIs which were not discarded in the reduction false positives

ill have their texture features extracted in the second reduction of

alse positives.

.5.2. Reduction of false positives by Phylogenetic Tress, LBP and SVM

The second reduction of false positives consists in analyzing the

emaining ROIs by the combination of phylogenetic trees and LBP
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Table 7

Number of features extracted in each type of sub-region.

Sub-region

type

Number of

sub-regions

Distances

(LBP radiuses)

Number of

indexes

Total of

features

Circular 5 5 2 50

circular crown 5 5 2 50

Internal mask 4 5 2 40

External mask 4 5 2 40

Fig. 13. Example of circular regions.

Fig. 14. Example of regions in circular crowns.
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to extract texture features locally (LBP) and regionally (sub-regions),

and so classify them into mass or non-mass by means of the SVM.

Features extraction

The objective of the extraction of features, in this stage, is to obtain

descriptive measures of the ROIS resulting from the first reduction of

false positives and form a set of feature vectors which will be ana-

lyzed in the training and validation stage.

The texture of the ROIs is described by the taxonomic indexes �

and �∗ through the combination of LBP and phylogenetic trees. The

LBP produces local texture information, where the vicinity of a pixels

is analyzed within a radius varying from 1 to 5 pixels of distance.

The division of the ROIs into sub-regions produces regional infor-

mation. The subregions have 4 distinct configurations, and will be de-

scribed next.

Sub-regions of interest

Before the extraction of features itself, it is necessary to divide the

ROIs into sub-regions of interest, in order to analyze the texture of

the ROIs regionally. These regional analyses are superior to the global

analyses (entire ROI), according to Sampaio et al. (2011), Junior et al.

(2009), de Oliveira Martins, Silva, De Paiva, and Gattass (2009).

The computation of the taxonomic indexes � and �∗ is done

on four distinct sub-region shapes: circular, circular crown, internal

mask and external mask. In Table 7, we give details on the number of

sub-regions used in each analysis, and the composition of each char-

acteristic is describe in Table 8.

The radius of the sub-region rj is determined by means of the

Eq. (10):

r j = j × R

nr
, with j < nr (10)

where j is the index of the radius of the sub-region to be determined.

R is the larger radius that goes from the center of mass to the border

of the ROI. And nr is the number of sub-regions that each ROI was

divided into. Fig. 13 contains examples of circular sub-regions used

to determine the taxonomic diversity and distinctness indexes.

In order to create sub-regions in the shape of circular crowns, the

pixels that form a circular crown are between two consecutive circles.

Fig. 14 contains examples of sub-regions in circular crowns.
Table 8

Description of the composition of each feature.

Feature 0 1 2 3 4 5 6 7 8 9

Sub-region 1 1 1 1 1 1 1 1 1 1

LBP radius 1 1 2 2 3 3 4 4 5 5

Index � �∗ � �∗ � �∗ � �∗ � �

Feature 20 21 22 23 24 25 26 27 28 2

Sub-region 3 3 3 3 3 3 3 3 3 3

LBP radius 1 1 2 2 3 3 4 4 5 5

Index � �∗ � �∗ � �∗ � �∗ � �

Feature 40 41 42 43 44 45 46 47 48 4

Sub-region 5 5 5 5 5 5 5 5 5 5

LBP radius 1 1 2 2 3 3 4 4 5 5

Index � �∗ � �∗ � �∗ � �∗ � �
To create the sub-regions by means of internal masks, we first find

he center of mass of the ROI. The internal mask corresponds to a

educed shape region and with the same center of the original ROI.

he pixels that remain in the sub-region belong to the ROI. Fig. 15

ontains examples of sub-regions extracted with the use of internal

asks.

The external mask is a region that does not correspond to the over-

apping of two consecutive internal masks and of same center. Fig. 16

ontains examples of sub-regions extracted using external masks to

etermine the taxonomic diversity and distinctness indexes.

eature vectors

The feature vectors are extracted from each sub-region through

he taxonomic indexes � and �∗, where the species are LBP codes,

efined with the radius R varying from 1 to 5 and fixed vicinity P of

pixels. Each sub-region is analyzed in five distinct radiuses. Table 7

ontains the number of features extracted from each ROI according to

he type of sub-region used.

Table 8 contains the description of the composition of each indi-

idual feature.

In this stage, the parameters used for non-dense breasts were the

ame used for dense breasts. After several analyses, there was no

ombination capable of justifying the use of different parameters.

raining and validation

For each analysis of sub-region, we create two texture training

odels optimized by the μGA, one for each type of breast density,

sing the feature vectors extracted from the ROIs resulting from the

eduction of false positives.

Each chromosome is randomly formed by two sub-samples. The

rst sub-sample contains 70% of feature vectors created, that is, were

xtracted from 622 segmented ROIs of non-dense breasts and 394

egmented ROIs of dense breasts will be trained by the SVM.
10 11 12 13 14 15 16 17 18 19

2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 4 4 5 5
∗ � �∗ � �∗ � �∗ � �∗ � �∗

9 30 31 32 33 34 35 36 37 38 39

4 4 4 4 4 4 4 4 4 4

1 1 2 2 3 3 4 4 5 5
∗ � �∗ � �∗ � �∗ � �∗ � �∗

9

∗
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Fig. 15. Example of regions with the use of internal masks.

Fig. 16. Example of regions with the use of external masks.
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The second sub-sample contains 20% of the feature vectors cre-

ted, that is, were extracted from 178 segmented ROIs of non-dense

reasts and 112 segmented ROIs of dense breasts. These vectors will

e classified by the SVM (validation).

The sub-sample formed by 10% of the feature vectors which were

ot used will be dismissed, since its elements degrade or do not con-

ribute to the enhancement of the performance of the validation.

The sub-sample of 10% are cases that contain noises or redundant

nformation. So, they are ignored in the generation of an optimized

raining model. Figs. 17 and 18 illustrate cases of noise and redun-

ance.

Fig. 17(a) shows the original DDSM image. Fig. 17(b) shows the

arking of a lesion. Fig. 17(c) contains the ROI used to generate a

eature vector. This is an example of ROI that does not contribute to

he performance of the training, since the texture information cannot

e efficiently used to distinguish between mass and non-mass, due to

he presence of noise.

Fig. 18(a) shows the original DDSM image. Fig. 18(b) shows the

arking of a lesion. Fig. 18(c) shows the ROIs used to generate two

eature vectors. This is an example of ROIs that have very similar tex-

ures, thus having redundant information.

Notice that the sub-sample of 10% does not prevent cases like

hese from being included in the optimized training model, that is,
Fig. 17. Exemplo
he training/validation is not free from noises and ambiguities. Such

ases are simply less likely to be selected. This rationale is applied in

he same manner as in Section 3.3

The configurations of the μGA used to optimize the reduction of

alse positives are:

• The crossover of two chromosomes A and B exchanges from 1 to

5 vectors between A and B. A vector can be can be exchanged

only with another one of the same sub-sample type (training with

training, validation with validation).
• The mutation of a chromosome A randomly replaces from 1 to 5

of its vectors with new ones which are not already in A.
• The population restart keeps only the elite.
• The fitness of a chromosome is computed by the simple arith-

metic mean of sensitivity, specificity and accuracy, found in the

classification of the validation sub-sample.
• The stop criterion is reached when the fitness of the fittest indi-

vidual is repeated for 100 consecutive generations. These values

were found empirically. In general, good results were achieved

with 44–55 repetitions of the best fitness on average. So, in or-

der to make sure that the feature space was well explored and

that the classifier had not found a local sub-optimal, we double

(almost) the number of repetitions of the best fitness. This is the

same procedure applied in Section 3.3

The validation stage achieved good results. According to the

able 9, the analysis by circular sub-regions presented the worst per-

ormances, with sensitivity of 88.76%, specificity of 91.86% and ac-

uracy of 91.21%. The analysis by internal masks produced the best

esult, with a sensitivity of 99.41%, specificity of 97.97% and accuracy

f 98.27%.

The analysis by internal masks had the best result, with a sensitiv-

ty of 99.41%, specificity of 97.97% and accuracy of 98.27%.
de ruído.
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Fig. 18. Exemplo de redundância.

Table 9

Performance of the SVM classifier in the second reduction of false positives, with the

texture features extracted from non-dense breasts

Sub-region Masses Non-masses Performance

Success Errors Success Errors Sen. (%) Spe. (%) Acc. (%)

Circular 150 19 587 52 88.76 91.86 91.21

Circular crown 153 16 616 23 90.53 96.4 95.17

Internal mask 168 1 626 13 99.41 97.97 98.27

External mask 164 5 622 17 97.04 97.34 97.28

Table 10

Performance of the SVM classifier in the second reduction of false positives, with the

texture features extracted from dense breasts.

Sub-region Masses Non-masses Performance

Success Errors Success Errors Sen. Spe. Acc.

(%) (%) (%)

Circular 93 11 383 36 89.42 91.41 91.01

Circular crown 97 7 378 41 93.27 90.21 90.82

Internal mask 101 3 399 20 97.12 95.23 95.60

External mask 100 4 388 31 96.15 92.60 93.31

Table 11

Confusion matrix of the test.

Density

Non-dense Dense

Classification Non-dense 206 4

Dense 2 133

4
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Table 10 contains the result of the validation for each type of sub-

region, using texture features extracted from dense breasts. The anal-

ysis by circular sub-regions had the worst results, with a sensitivity

of 89.42%, specificity of 91.41% and accuracy of 91.01%. The analy-

sis through internal masks had the best result, with a sensitivity of

97.12%, specificity of 95.23% and accuracy of 95.60%.

At the end of this stage, eight training models are created, one

model for each of sub-region type of the ROI and density. The results

achieved in this stage present a good indication that the μGA man-

aged to create good training models. However, these models must be

tested with new cases.

4. Results and discussion

This section presents and discusses the final results, generated in

the test stage and achieved according to the methodology described

in Section 3.
.1. Detection of masses

The best training models and parameters estimated in the training

nd validation stage will be tested with new cases. This new stage,

alled detection of masses, uses a base with 20% of the images that

id not participate in the training and validation stage (Section 3.3),

eing formed by 210 non-dense breast images (with 214 masses) and

35 dense breast images (com 135 masses). Based on these images,

e compute the general performance of the proposed methodology.

.1.1. Acquisition and pre-processing

To the images used in the test stage, we applied the same pre-

rocessing techniques described in Section 3.3.1 and, after that, clas-

ified them into non-dense or dense.

.1.2. Detection of breast density

The objective of the stage of breast density detection is to clas-

ify the breast as non-dense or dense. It comprises three sub-stages:

re-processing, extraction of features and test. The sub-stages of pre-

rocessing and extraction of features are identical to those described

n Section 3.3.

After the extraction of features, the test sub-stage classifies the

eatures extracted from the test images (set of 20%) into non-dense

r dense, using the training model optimized by the μGA.

The set of images of the test set is formed by 210 non-dense breast

mages and 135 dense breast images. The training model created by

he μGA is used by the SVM to classify the images into non-dense and

ense. Table 11 contains the confusion matrix of the classification.

Looking at Table 11, one notices that the training model created

chieved, in the classification of the density of the breast, 98.10% sen-

itivity, 98.52% specificity and 98.26% accuracy. As can be seen, the
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Table 12

Number of ROIs produced in the segmentation, in the test stage.

Type of

density

Masses Non-masses

Segmented

Proportion

Non-masses/masses

Segmented Lost

Total % Total %

Non-dense 207 96.73 7 3.27 2031 9.81

Dense 127 94.07 8 5.93 1337 10.53
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Table 13

Number of ROIs resulting from the reduction of false positives using DBSCAN, in the

test stage.

Type of

density

Masses Non-masses

remaining

Proportion

Non-masses/masses

Selected Lost

Total % Total %

Non-dense 203 94.86 11 5.14 739 3.64

Dense 112 90.37 13 9.36 509 4.17

Table 14

Performance of the SVM classifier in the second reduction of false positives, using the

texture features extracted from non-dense breasts.

Sub-region Masses Non-masses Performance

Success Errors Success Errors Sen. Spe. Acc.

(%) (%) (%)

Circular 165 38 577 162 81.28 78.08 78.77

Circular crown 180 23 665 74 88.67 89.99 89.7

Internal mask 199 4 708 31 98.03 95.81 96.28

Internal mask 191 12 690 49 94.09 93.37 93.52

Table 15

Performance of the SVM classifier in the test stage, using the texture features extracted

dense breasts.

Sub-region Masses Non-masses Performance

Success Errors Success Errors Sen. Spe. Acc.

(%) (%) (%)

Circular 93 29 412 97 76.23 80.94 80.03

Circular crown 96 26 455 54 78.69 89.39 87.32

Internal mask 113 9 483 26 92.62 94.89 94,45

External mask 112 10 468 41 91.80 91.94 91.91
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reast density detection stage had good results. This is an important

act, because the performances of the next stages will not be compro-

ised.

All the images, correctly classified or not, will be used in the next

tage. The use of all the images will indicate the global performance

f the methodology, and not only the performance of each isolated

tage.

The next stages adjust the parameters of the techniques employed

ccording to the result of the classification of the density of the image

nder analysis.

.1.3. Segmentation of the ROIs

This stage is intended to identify the regions of the breast with

igher chances of containing masses. This is done by means of the

GA. The procedures are identical to those described in Section 3.4,

dapting the parameters according to the density, as in Table 4.

In this stage, we used 210 non-dense breast images, with 214

asses; and 135 dense breast images, com 135 masses. From the

on-dense breasts, the segmentation extracted 207 ROIs containing

asses (96.73% of the total of masses), and 2031 ROIs containing non-

asses. From the dense breasts, the segmentation extracted 127 ROIs

ontaining masses (94.07% of the total of masses), and 1337 ROIs con-

aining non-masses. Table 12 contains the results of the segmentation

f this stage.

The segmentation achieved good results, since more than 94% of

he masses were segmented. However, the number of non-masses

egmented is from 9.81 to 10.53 times bigger than the number of

asses segmented. So, it is necessary to reduce the number of non-

asses segmented.

.1.4. Reduction of false positives using DBSCAN

The stage of reduction of false positives consists in eliminating the

OIs that do not have masses. The procedures are identical to those

escribed in Section 3.5, having the parameters adapted according to

able 4.

For the non-dense breasts, from the 207 masses produced by the

egmentation, after the reduction of false positives, there were still

03 masses left, which corresponds to 94.86% of the 214 total masses.

rom the 2031 non-masses produced by the segmentation, after the

eduction of false positives, there were still 739 non-masses left.

For the dense breasts, from the 127 masses produced by the

egmentation, after the reduction of false positives, there were 122

asses left, which corresponds to 90.37% of the 135 total masses.

rom the 1337 non-masses produced by the segmentation, after the

eduction of false positives, 509 non-masses were left. Table 13 con-

ains the results of the reduction of false positives of this stage.

The reduction of false positives using DBSCAN achieved a good

erformance in the test stage, since the reduction of non-masses in

on-dense breasts was of 63.36%, and of 61.92% of the non-masses in

ense breasts.

After the reduction of false positives using DBSCAN, the second

eduction of false positives is started.

.1.5. Reduction of false positives using Phylogenetic Trees, LBP and SVM

This second reduction of false positives uses texture features to

xtract descriptive measurements of the ROIs resulting from the first
eduction of false positives, and to form um set of feature vectors, by

he combination of LBP and Phylogenetic Trees.

The procedures are identical to those described in Section 3.5.2,

aving the parameters adapted according to the density.

The optimized models created by the μGA in the training and val-

dation stage (Section 3.5.2) are used to test new feature vectors. This

ill indicate if the models created have a good generalization power

or cases not trained.

At the end of the tests, we compute the values of sensitivity, speci-

city and accuracy. Table 14 contains the performance of the tests

or each type of sub-region, using the feature vectors extracted from

on-dense breasts. In this table, one can notice again that the anal-

sis using circular sub-regions had the worst result, with 81.28% of

ensitivity, 78.08% specificity and 78.77% accuracy. Again, the analy-

is using internal masks achieved the best performance, with 98.03%

ensitivity, 95.81% specificity and 96.28% accuracy.

The Table 15 contains the test results for each type of sub-region,

sing the feature vectors extracted from dense breasts.

Analyzing the Table 15, it can be again noticed that the analysis

sing circular sub-regions presented the worst result, with 76.23%

ensitivity, 80.94% specificity and 80.03% accuracy. Once more, the

nalysis using masks achieved the best performance, with 92.62 sen-

itivity, 94.89% specificity and 94.45% accuracy.

The results presented in Tables 14 and 15 are values which just

ndicate the performance in the second reduction of false positives.

nalyzing the total of original images and masses for this stage, from

he 214 masses in the starting 210 non-dense breast images, 199 were

etected in the best case, in which the sub-regions are extracted by

nternal masks, resulting in a sensitivity of 92.99%, a rate of 0.15 false

ositives per image and an area under the FROC curve of 0.96.
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Table 16

Areas under the FROC curves for non-dense and dense breasts.

Non-dense Dense

Circular 0.80 0.72

Circular crown 0.86 0.76

Internal mask 0.96 0.85

External mask 0.93 0.85
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Analyzing the total of original images and masses for this stage,

from the 135 masses in the starting 135 dense breast images, 113 were

detected in the best case, in which the sub-regions are extracted by

internal masks, resulting in a sensitivity of 83.70%, a rate of 0.19 false

positives per image and an area under the FROC curve of 0.85.

Table 16 contains the areas under the FROC curves of the results

obtained with non-dense and dense breasts.

Analyzing the results, the proposed methodology has, in general,

a higher performance in the analyses of non-dense breasts. The anal-

yses internal masks present superior performance compared to the

other regional analyses applied.

Next, we present the cases of success and failures of the proposed

methodology.

4.2. Case studies

In this section we examine the most important stage of the pro-

posed methodology through some test cases. The objective is to ease
Fig. 19. Success in the detection of the density. (a) Non-dense breast. (case A_1004). (b) App

the variance filter to (c).

Fig. 20. Failure in the detection of the density. (a) Non-dense breast (case C_0095). (b) App

the variance filter to (c).
he understanding of the techniques used in each stage. For such, we

resent six cases.

.2.1. First case: correct detection of the density

The first case, presented in Fig. 19, is an example of success in the

etection of the density of non-dense and dense breasts.

As can be observed in Fig. 19(b), a application of the variance fil-

er to Fig. 19(a) highlights just a few internal structures, which is ex-

ected for non-dense breasts. So, the values of vinternal (Eq. (7)) and

mean (Eq. (8)) are lower. In Fig. 19(d), the application of the variance

lter to Fig. 19(c) highlights many internal structures, which is ex-

ected for dense breasts, so, vinternal and vmean are higher.

.2.2. Second case: incorrect detection of the density

The second case, presented in Fig. 20, is an example of failure

n the detection of the density of non-dense breasts and dense. As

an be observed in Fig. 20(b), the application of the variance filter to

ig. 20(a) highlights many internal structures, which is not expected

or non-dense breasts, so the values of vinternal and vmean are higher. In

ig. 20(d), the application of the variance filter to Fig. 20(c) highlights

ew internal structures, which does not match with dense breasts, so,

internal and vmean have lower values.

.2.3. Third case: success in the detection of masses

The third case is an example of success in the segmentation and

n the reduction of false positives. Fig. 21(a) is the original image. A

egion marked in red in Fig. 21(b) contains a mass. This marking was

etrieved from the DDSM. Fig. 21(c) contains the result of the segmen-

ation. In it, the region containing the mass was correctly segmented.
lication of the variance filter to (a). (c) Dense breast (case A_1057). (d) Application of

lication of the variance filter to (a). (c) Dense breast (case A_1581). (d) Application of
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Fig. 21. Success in the detection of masses (case A_1498). (a) Pre-processed image. (b) The region in red indicates an area containing a mass. (c) Result of the segmentation.

Fig. 22. Failure in the detection. (a) Original image (case A_1009). (b) Pre-processed image. (c) ROIs selected in the segmentation. (d) ROIs resulting from the reduction of false

positives. (e) In blue, the mass found by the methodology (false positive), and in red, the area pointed by the DDSM, containing the mass. In yellow, the segmented ROI which

contains the mass, but was not selected (false negative). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
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Fig. 23. Segmentation failure (case A_1494). (a) Pre-processed image. (b) The region

in red indicates an area containing a mass. (c) Result of the segmentation. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of this article)

b

r

4

r

c

F

F

S

m

ig. 21(d) presents the result of the reduction of false positives using

BSCAN. And Fig. 21(e) contains the result of the reduction of false

ositives by phylogenetic trees, LBP and SVM.

.2.4. Fourth case: failure in the detection of masses

The fourth case, presented in Fig. 22, is an example of failure in

he detection. Fig. 22(a) presents the original image. Fig. 22(b) con-

ains the result of the pre-processing. Next, the candidates selected

n the segmentation (Fig. 22(c)). Fig. 22(d) contains the candidates

elected in the reduction of false positives using DBSCAN and, finally,

ig. 22(e) presents the result of the reduction of false positives using

hylogenetic trees, LBP and SVM. The region marked in blue is the re-

ion classified by the SVM as a mass, and in red is the region pointed

y the DDSM.

Although the ROI on the mass was not removed in the reduction of

alse positives, o SVM could not classify it correctly, discarding it and

ointing as mass a region which actually corresponds to a non-mass.

his case illustrates the occurrence of a false negative (mass classi-

ed as non-mass, in red) and a false positive (non-mass classified as

ass, in blue). Among the possible causes for this failure, one is re-

ated to the fact that the segmented ROI has too many healthy areas of

he breast, and this affected the extraction of features, and therefore,

he SVM. The ROI erroneously marked as mass probably presented a

exture pattern similar to a mass, influencing SVM.

.2.5. Fifth case: segmentation failure

The fifth case, presented in Fig. 23, is an example of segmentation

ailure. The region marked in red in Fig. 23(b) contains a mass. This

arking was retrieved from the DDSM. In Fig. 23(c), the region corre-

ponding to a mass was not segmented. This failure can be explained
y tones of the pixels of the lesion, which are very similar to healthy

egions of the breast.

.2.6. Sixth case: failure in the reduction of false positives

The sixth case, presented in Fig. 24, is an example of failure in the

eduction of false positives. The region marked in red in Fig. 24(a)

ontains a mass. This marking was retrieved from the DDSM. In

ig. 24(b), the region corresponding to a lesion was also segmented.

ig. 24(c) is the result of the reduction of false positives using DB-

CAN, in which ROI on the specialist’s marking was removed.

This failure may have occurred because the ROI containing the

ass had the mean of the gray tones below the majority of the other

Vahid
Highlight
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Fig. 24. Failure in the reduction of false positives (case A_1045). (a) Pre-processed image. (b) The region in red indicates an area containing a mass. (c) Result of the segmentation.

(d) Result of the reduction of false positives. (e) In blue, the region erroneously detected, and in red, the mass indicated by the DDSM. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article)

Table 17

Comparison of the performances of the methodologies presented the related works

section. The performance is measured by sensitivity (S), specificity (Sp), accuracy (Acc),

area under the ROC curve, area under the FROC curve and false positives per image

(FP/i).

Work Base S Sp Acc ROC FROC FP/i

(Masotti et al., 2009) DDSM 70 – – – – 0.92

(Bajger et al., 2010) Private – – – 0.9 – –

(Bajger et al., 2010) DDSM – – – 0.96 – –

(Moayedi et al., 2010) MIAS – – 91.52 – – –

(Abdalla et al., 2011) DDSM – – 95.85 – – –

(Al Mutaz, Dress, & Zaki,

2011)

DDSM 91.67 84.17 – – – –

(Banik et al., 2011) Private 90 – – – – 8.1

(Hu, Gao, & Li, 2011) MIAS 91.3 – – – – 0.71

(Liu et al., 2011) DDSM 76.8 – – – – 1.36

(Sampaio et al., 2011) DDSM 80 – – – – 0.84

(Deepak et al., 2012) MIAS 100 97 98.9 0.98 – –

(Berbar et al., 2012) DDSM – – 98.63 – – –

(Tai et al., 2014) DDSM 90.0 – – 0.97 – 4.8

(Agrawal et al., 2014) MIAS – – – 0.89 – –

(Lin et al., 2014) Private 0.86 – – – – –

(Kuo et al., 2014) MIAS – – 94.44 – – –

(Anitha & Peter, 2015) MIAS 92.25 83.83 93.48 – – –

(Dong et al., 2015) DDSM 94.78 91.76 93.24 – – 0.95

(Jen & Yu, 2015) MIAS 89.0 84.0 – – – –

(Jen & Yu, 2015) DDSM 86.0 84.0 – – – –

(Oliveira et al., 2015) MIAS 98.60 98.88 98.85 – – –

Our work (non-dense) DDSM 92.99 – – – 0.96 0.15

Our work (dense) DDSM 83.70 – – – 0.85 0.19
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ROIs and, in this case, the DBSCAN considered it similar to the major-

ity of the texture of the breast, that is, a healthy region.

Fig. 24(d) contains o result of the second reduction of false pos-

itives, and Fig. 24(e) contains the marking of the mass indicated by

the DDSM, in red, and in blue, the marking erroneously indicated by

the methodology. Even reducing the number of false positives seg-

mented, the analysis of texture of the second reduction of false posi-

tives did not remove all the non-masses.

The next section discusses the main points of the proposed

methodology.

4.3. Discussion

The proposed methodology presents a superior performance in

the analysis of non-dense breasts. This may occur because, in dense

breasts, segmented healthy structures are dense too, and this may

affect the texture descriptors. Another factor is the number of struc-

tures segmented in dense breasts, which implies in the higher num-

ber of false positives that will be analyzed in the stages of reduction

of false positives. This performance difference between the densities

can be corrected by the use of distinct image processing and pattern

recognition techniques for each density.

The combination of phylogenetic trees and LBP generates a tex-

ture descriptor capable of differentiating between masses and non-

masses efficiently. This performance can be explained by the fact that

the phylogenetic trees extract indexes that relate diversity, richness

and the parenthood among the species under analysis. On the other

hand, the LBP codes allow the analysis of the topological relations

among the gray levels locally and in various directions.

The use of internal masks produce superior results, compared to

the other analyses. This fact highlights the importance of texture in-

formation thats follow the border of the ROI.

The large number of parameters empirically found is a negative

point of the methodology. So, new studies must focus on finding these

parameters automatically, when possible.

The μAG can produce good training models, which leads to good

results in tests, even with a long processing time.

From all the stages that form the proposed methodology, the ones

with higher time consumption are those that create the training mod-

els, that is, estimation of the density-training models and estimation

of the texture-training models.

The time necessary to create the density-training models is about

30 min. The texture-training models, in turn, take from 3 to 5 h, de-

pending on the number of features analyzed and the number of vec-

tors. The higher the number of features that form each model, longer

the time needed to create them will be.

We stress that, after the training, the classification runs faster, tak-

ing about 10 min to classify the whole sample. The other stages of the

methodology take less than one minute per image.
.4. Comparison with other related works

This subsection brings a comparison between the results of the

elated works describe in Section 1 with the results achieved by the

roposed methodology. The comparison is synthesized in Table 17,

hich lists the performances measured by sensitivity (S), specificity

Sp), accuracy (Acc), area under the ROC curve, area under the FROC

urve and mean false positives per image (FP/i).

Compared to the works presented in the Table 17, the proposed

methodology found, in general, a similar performances. As explained

before, it is not possible to state which of the works has a superior

performance.

. Conclusion

This work presents a methodology for detection of masses in

ammography by means of image processing techniques, pattern

ecognition and evolutionary algorithms which automatically adapt

he density of each breast under analysis.
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The proposed methodology uses images from DDSM, a public im-

ge database. However, other databases can be used, which will re-

uire only the adjustment of some parameters needed by the stages

f the methodology. Besides the images, extra information is neces-

ary, such as markings of the regions that contain masses and type of

ensity of the breast under analysis.

The stage for detection of the density of the breast had a good

erformance, achieving 100% rates of sensitivity, specificity and accu-

acy in the validation of the training model and, in the test set, 98,10%

ensitivity, 98,52% specificity and 98,26% accuracy. This indicates that

GA managed to create good training models, which allowed a good

eneralization capability for new cases.

In the test set, the segmentation could separate 96,73% of the

asses, with 2031 non-masses, in non-dense breasts; and 94.07% of

he masses, with 1337 non-masses, in dense breasts. In the parameter

stimation (training) set, the segmentation could separate 97.41% of

he masses, with 9613 non-masses, in non-dense breasts; and 94.48%

f the masses, with 9933 non-masses, in dense breasts.

These numbers are satisfactory, but the proportion of non-masses

reated is from 9.81 to 13.06 times bigger than the proportion of

asses correctly segmented, which indicates the necessity of a stage

or reducing the number of non-masses.

The reduction of false positives using DBSCAN also had a good per-

ormance, since it successfully reduced from 3.64 to 4.17 times the

umber of non-masses, without an excessive loss of masses.

We must emphasize that the combination of Phylogenetic Trees,

BP, division of the ROIs into sub-regions for extraction of texture

eatures created good texture descriptors, which influenced the

erformance of the training models in the second reduction of false

ositives. This good performance is due to the contributions of

he information about richness, diversity and phylogenetic relation

mong species, produced by the phylogenetic trees; local spatial

exture relations produced by the LBP codes; and regional spatial

elations produced by the division of the ROIs into sub-regions.

This work presents a series of contributions applied in several

tage of the methodology, as follows.

Method for removal of the background and segmentation of the

reast. This method allows the segmentation of the breast, in such a

ay that the line that separates the skin and the background of the

mage is kept, with a good performance. It also loses just a few pixels

f the internal area of the breast, and also segmenting just a few pix-

ls of the background, together with the breast. The efficiency of this

ethod is explained by its capability to adapt to each image under

nalysis.

Method for detection of the density. This method presents a high

erformance at the detection of the density of the breast. This perfor-

ance is achieved by the combination of the μGA, good descriptors

nd the efficiency of the SVM.

Method for creation of the training models optimized by the μGA.

his method allows the creation of good training models for the SVM,

ptimizing its performance, by reducing noisy and redundant infor-

ation.

Efficient method for describing texture based on the combination

f Phylogenetic Trees, LBP and analysis in sub-regions. This technique

elates an efficient information extractor, globally, to the phylogenetic

nformation, and locally, to the LBP codes.

Adjustment of parameters according to the density classification

f the breast. Allows the creation of a set of parameters applied to the

pecific density of each breast.

Method for segmentation of masses using the μGA. Allows the

stimation of the texture proximity window adapted to each image

nder analysis, in order to segment regions whose textures are no

ommon in the image under analysis.

Method for reduction of false positives using DBSCAN. This tech-

ique allows efficiently removing non-masses, losing just a few

asses, through a texture proximity ranking.
cknowledgments
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