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This paper shows that in order to solve a probabilistic load flow in radial distribution networks, it is
necessary to apply effective techniques that take into account their technical constraints. Among these
constraints, voltage regulation is one of the principal problems to be addressed in photovoltaic distributed
generation. Probabilistic load flows can be solved by analytical techniques as well as the Monte Carlo
method. Our research study applied an analytical method that combined the cumulant method with the
Cornish-Fisher expansion to solve this problem. The Monte Carlo method is used to compare the results
of analytical method proposed.

To evaluate the performance of photovoltaic distributed generation, this paper describes a probabilistic
model that takes into account the random nature of solar irradiance. Therefore, load and photovoltaic
distributed generation are modelled as independent/dependent random variables.

The results obtained show that the technique proposed gave a better performance than the Monte Carlo
method. This technique provided satisfactory solutions with a smaller number of iterations. Therefore,
convergence was rapidly attained and computational cost was lower than that required for the Monte
Carlo method. Besides, the results revealed how the Cornish-Fisher expansion had a better performance
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than the Gram-Charlier expansion, when input random variables were non-Gaussian.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Until now, the main function of distribution networks has been
limited to connecting central generation and transmission net-
works to the end consumers. As a result, distribution networks have
always been regarded as passive networks. However, the wide use
of DG is in the process of transforming them and making them more
active [1].

DG can affect voltage profiles since when a generator operates
in a network, this causes the voltage to increase. Although, this
has the advantage of making the security margin greater and of
reducing losses, it can also lead to overvoltages, especially in the
neighbourhood of the DG unit [2].

The connection rules and criteria for the penetration of DG are
based on a deterministic steady state analysis. However, determin-
istic load flow analysis cannot objectively measure how often or
specify the location where overvoltages or undervoltages will occur
in the network over a given time period. This can be accomplished
by using the probabilistic load flow based on analytical techniques
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or the Monte Carlo method [3]. Probabilistic load flow is described
in [4,5], and is further developed in [6,7]. A new simulation method
for a composite power system is proposed in [8] in order to evalu-
ate the probability distribution function of branch flows and node
voltage magnitudes.

Ref. [9] describes a study of probabilistic load flow using the
cumulant method combined with the Gram-Charlier expansion
to characterise the output random variables of the problem. The
cumulant method exploits the properties of the convolution of ran-
dom variables [10]. Another analytical technique for characterising
these variables is one that combines the cumulant method with
Von Mises functions [11]. Although this technique gives a better
approximation than the Gram-Charlier expansion, it comes with a
higher computational cost.

Despite the fact that they are somewhat less accurate, the
advantage of analytical techniques, as opposed to the Monte Carlo
method, is their lower computational cost.

Probabilistic techniques can also be effectively applied to anal-
yse the optimal power flow of the systems [12,13]. The point
estimate method is used in [14,15] to solve the probabilistic load
flow. In Refs. [16-18], the probabilistic load flow is used in meshed
power systems with wind generation.

To evaluate the performance of PV generators in large radial
distribution networks, this paper proposes an analytical technique
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for probabilistic load flow based on the cumulant method com-
bined with the Cornish-Fisher expansion. Probabilistic load flow
has typically included the uncertainty of load, which is modelled
with Gaussian PDFs. However, the PV energy growth poses new
challenges, since the variability of PV power production is much
higher, and the PDF of the uncertainties is not Gaussian [19,20].
Moreover, the uncertainties of PV power injections in geographi-
cally close PV generators are dependent on each other. As PV PDF
has not as yet been satisfactorily modelled, this paper proposes a
probabilistic PV model to be included in the probabilistic radial load
flow. The technique proposed is an improvement over the previous
approach in [21,22] because there is a substantial enhancement in
the modelling of PV power production and loads. Although the time
interval considered in this technique is 1 h, shorter intervals of time
can be considered by varying the correlation of PV dependence and
the distribution functions of load and PV power injection.

In general, the technique proposed in this paper combines dif-
ferent approaches. However, it is based on the cumulant method,
generalised for the case of dependent random variables. Addi-
tionally, a more refined method [23] to solve the load flow
in radial distribution systems is applied because the traditional
Newton-Raphson method produces convergence problems in
these systems.

2. Probabilistic PV system model

Solar irradiation on a horizontal surface inside the atmosphere
cannot be accurately predicted since it depends on the irregular
presence of clouds. The randomness produced by clouds on terres-
trial irradiation is characterised by two random variables [24,25]:
the daily clearness index K7 and the hourly diffuse fraction k.

The characterisation of the behaviour of global irradiation
[24,26-30] and of diffuse irradiation [25,27,31-33] makes it pos-
sible to construct a probability model (using PDFs and CDFs) for
indexes, K1[24,27-29]and k4 [25]. Thus, the statistical properties of
global irradiation are first described in terms of the daily clearness
index [24,27-30]:

Hgq
Kr Ho.q (1)

Hollands and Huget propose the following PDF for the random

variable Ky dependent only on Ky [24]:

= Ky, — K
N e e L (2)
Kty
where C; and A; parameters are functions of Ky, and K.
The random variable, daily global irradiation Hg 4, obtained from
Eq. (1) is:

Hg,d :HO,d -I(T (3)

The hourly global irradiation Hg, is obtained from Hg 4 with the
Eq. (4) [34]:

H H,
g.h 0,h
rg = &% = 1 g(0) (4)
£ " Hgq Houd

Secondly, the statistical properties of diffuse irradiation are
described in terms of the hourly diffuse fraction [25,31-33]:

Hy p
ky = 20h (5)
d Ay

Although most k;(k;) available correlations are deterministic, an
effective approach [25,31] should consider the fact that this func-
tion is not deterministic. In other words, for a given k;, value, k4 can
take a range of values distributed around its mean, k4. Using the
expected value approach of probability theory, Hollands and Crha
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Fig. 1. Flowchart to evaluate C;, A, and kg parameters.

[25] gives a general-purpose expression for the PDF of the random
variable kg:

Pr(Ka, kq) = Co(kg — kgp) - (1 — kq)e*2*a (6)

where G, Ay, and kg parameters are functions of kg, as shown in
Fig. 1. The expression for py(kq, k4) is independent of the actual
kq(ke) relation [25,31-33].

The random variable, hourly diffuse irradiation Hg ,, which com-
bines Egs. (4) and (5), is given by Eq. (7):

Hyp=rg -Hgp kg (7)
The hourly global irradiance on a tilted surface Ggp, g can be
calculated from the components of the incident irradiance beam

(Gppn=Ggn —Gqp), diffuse irradiance (Ggp), and ground-reflected
irradiance (G, ) on the horizontal plane [35]:

Gg.h_p = (Gg n — Ga,n)RyFTp(6s)

+Gy,p {(1 - kb)wﬁd(ﬂ) + Rk, FT}(65)
+ Gy (“;"Sﬂ> FT(B) (8)

To determine the diffuse irradiance fraction, the Hay model [36]
for anisotropic skies is applied in Eq. (8). Furthermore, the angular
losses of each radiation component, FTj,(6s), FT4(8), and FT;(p), fol-
low Ref. [35]. The global, beam, and diffuse irradiance are assumed
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to remain constant and equal to the global, beam, and diffuse irra-
diation, respectively, for the integration period (hourly approach):

Higybyay,n (Wh/m?) = Gigybyayn (W/m?)-1h (9)

This assumption does not generate important errors, and avoids
making integrations in the time domain. When the assumption of
Eq. (9) is included in Eq. (8), and even though the random vari-
able Gg,h,B may depend upon parameters other than the random
variables Hgp, and Hgy (e.g. B, p, FTy, (0s), FT4(B), FT:(B), Rb, k),
these parameters must be the same for each hour or they may be
averaged. Therefore, the hourly global irradiance on a tilted sur-
face is a new random variable, which is a linear combination of the
independent random variables, Hg, and Hg p:

Gg,h,B = -Hg,,,+a2-Hd,,, (10)

where the coefficients g; in the linear combination are known (func-
tions of B, p, FTj(65s), FTa(B), FTr(B), Ry and kp).

At this point, the cumulant method [37] allows the statistical
information mapping of predefined random variables, Hg , and Hg
with the new random variable Gy g. This information is mapped
by means of a statistical measurement known as cumulants. Based
on the hourly global irradiance on the plane of the PV array, the
random variable, hourly PV electrical power (DC side) Ppyp, is cal-
culated in the same way as [35,38]:

va,h=§c'A'Gg,h,ﬂ (11)

This power depends on the PV cell’s electrical efficiency, which
has the following familiar linear form [38]:

G
Ec = Eref {1 - IBref [Ta - Tref + Gg hp (TNOCT - Ta):| } (12)

NocT

Assuming in Eq. (12) that the ambient temperature T, is con-
stant for the hourly period (no random variable), Eq. (11) may be
rewritten with coefficients by and b, as shown in Eq. (13):

va,ll =(b1+bz- Gg,h,ﬂ) : Gg,h,ﬁ (13)

Eq. (13) must be linearised [11] if the cumulant method [37]
is used to obtain the statistical information of the new random
variable Py p:

va,ll =bs +by- Gg,h,ﬁ (14)
where coefficients b; and by are:

b3 :b1+2‘b2'ég,h,ﬂ (15)
by =—by - Cé,h,ﬂ (16)

2.1. Random generation of dependent PV power injections

The uncertainty of the PV power prediction of geographically
close PV generators is correlated. The reason for this is that the PV
power in all of them is due to similar meteorological conditions
[39,40]. This dependence has not yet been modelled, but studies
such as [41,42] show that there is spatial dependence between pro-
duction in a wide area. These values can be regarded as an estimate
of actual correlation values, but there is still much work to be done.

The method used to generate dependent PV power injections
is based on the generation of multivariate dependent random
numbers [18]. These numbers are used to numerically obtain the
cumulants (moments) and crossed cumulants (moments) required
in the analytical technique described in this paper. The numbers
are also used for the Monte Carlo simulation process run to check
the results of the technique. The way of modelling this dependence
is through the correlation matrix of a multivariate normal variable.

The method begins by generating random numbers of a mul-
tivariate normal random variable with a given correlation matrix,

thus forming the array Y € W™, Secondly, a multivariate nor-
mal transformation is performed of these values in order to obtain
a multivariate uniform distribution Y,, where Y;=®( Y;). The
third step involves transforming the multivariate uniform random
numbers obtained into series with the desired PV marginal distri-
butions Fopn (Ppv.n)- Thus, the sample k of the new random variable

i, ¥3 is obtained as ys j = Fl;pl . (V2,ik)- The random numbers with

the desired distribution thus have correlations that are very close
to the original one of the normal multivariate distribution.

3. Probabilistic load model

The electric load of a power system has deterministic and
stochastic components. The two main deterministic factors that
affect this load are time (multiple seasonal patterns: yearly, weekly
and intra-daily) and weather conditions. However, there is also a
random component in the load which cannot be modelled. This
component is the result of the random behaviour of energy con-
sumers. Consumers are classified by electric utilities into different
subjective classes [43,44].

Typical load patterns of consumer classes can be obtained from
the statistical analysis of historical data. Thus, Refs. [43,44] defined
TDPs for each consumer class, which contained information about
daily load profiles after the extraction of all exogenous information,
i.e. seasonal (yearly and weekly cycles) and weather information.
Additionally, Jardini et al. [43] applied statistical analysis methods
to the TDPs, which allowed them to construct a probability model
(using PDFs) capable of giving the probability that a value of a load
would be within specified limits. This approach treats the TDPs of
each jth consumer class Lj(m,h) as a normally distributed random
variable, which changes from month to month and hour to hour.
This means that its hourly mean value n;(m, h) and the correspond-
ing standard deviation oj(m,h) change over the 12-month and 24-h
period.

In this study, the Jardini approach was followed to build the TDPs
of consumer classes, based on data from a Spanish electrical utility
[45]. However, seasonal information when TDPs are elaborated was
only partially extracted. Thus, for the jth consumer class two TDPs
were specified per month: one for weekends L;"e(m) and another
one for working days L}""(m). The one-year TDPs were arranged
in a two-dimensional layout with 12 columns representing the
12 months of the year and with 2 rows representing weekend or
working days.

When the TDPs of consumer classes are known, it is possible to
determine the random variable hourly active power consumed by
the kth node of a feeder at the mth month and hth hour Py, (m,h) by
adding the random variables Lj(m,h) corresponding to the individ-
ual consumption of all consumer classes. For example, for working
days:

Nee
Pﬂ’(m,h):chj,k-L]‘.”"(m,h) (17)
j=1
Assuming a deterministic power factor, the relevant reactive
power consumed is the following:

Qi (m, h) = Py(m, h) - tan ¢ (18)
4. Probabilistic radial load flow

The method used in this study to solve deterministic load
flow for radial distribution systems is described in [23]. The
Newton-Raphson method does not satisfactorily solve the classical
load flow in radial distribution systems because it gives conver-
gence problems.
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The classical load flow is given by a system of nonlinear equa-
tions that represents it. They represent the steady-state balance in
the network between the power consumed and power produced:

Nn
P = ViZ[Vk(Gik €os i + By sen )]
k=1

Np
Q= ViZ[Vk(Gik sen &y, —

k=1

Bjk cos &)l

These input values to the problem cannot be accurately deter-
mined in a probabilistic approach. However, one way to better
characterise the sources of uncertainty of the system is to repre-
sent the input data as random variables in the problem. In this
respect, the Monte Carlo method [3] is an important simulation
technique that makes it possible to continue using the determinis-
tic load flow algorithms. There are also analytical ways of dealing
with the problem of probabilistic load flow [11]. Such techniques
use the properties of the convolution of random variables.

4.1. Monte Carlo method

This method is the most straightforward method of solving the
probabilistic power flow. It is basically used to randomly select val-
ues of input variables from their distribution functions, and with
these values, solve a deterministic radial load flow, as explained
in [23]. After a certain number of simulations, the probabilistic
solution of the problem is reconstructed from deterministic data
obtained for each simulation.

It should be underlined that the number of simulations needed
to obtain an accurate result with the Monte Carlo method is inde-
pendent of system size [10]. For an accurate representation, many
simulations must be considered (approximately 10,000 [8,46]),
which sometimes makes this approach impractical. Since the com-
putation time of the Monte Carlo method is longer as the number of
simulations increases, it is important to determine the accuracy of
the results. This can be quantified by means of the relative error of
the Monte Carlo method for a given number of simulations n [9,10]:

nr 1 j
100 \Za ]
EMC= Y, E g (20)

i=1 j=2

where \7{ is the mean voltage at node ith for the test group jth (e.g.
second test of a total test number ny equal to 50), given a num-
ber of simulations n (e.g. 10,000 simulations). Thus, in Eq. (20), the
Monte Carlo method is used to execute a given number of simu-
lations n (e.g. 10,000 simulations) several times ny (e.g. 50 times).
The solutions obtained are compared in such a way that for two
different test groups of the same number of simulations n (e.g. first
test group of 10,000 simulations and second test group of 10,000
simulations), the error between both groups is relatively small. It
can be observed that for a certain n, even though the number of
simulations increases, the average values and standard deviation
obtained do not sensibly change, and the difference between the
solutions of the groups is very small [9].

In the Monte Carlo method, the mean of a random variable x is
determined by the following equation:

n
X l
= T]x = n
i=1

The standard deviation of a random variable x is determined by
the equation:

n '_—2
o= Za(# (22)

4.2. Analytical technique

4.2.1. Linear approximation

The linearisation process of load flow equations (Eq. (19)) is
performed around the solution obtained with a deterministic load
flow, based particularly on the expected values of the system. These
expected values are obtained after solving the problem of the deter-
ministic radial load flow [23]. To illustrate this technique, two
random variables x and y are considered. At some point in the prob-
lem, these random variables are multiplied to give a third random
variable z:

zZ=Xx-Yy (23)

If the deviations of x and y are represented around their mean
values nx and 1y by Ax and Ay respectively, the following can be
assumed:

X=nx+Ax y=ny+ Ay (24)

When second-order terms are not considered, Eq. (25) is
obtained:

ZRNx Ny +Nx- AV +1y - AX=1x -y + 1y - X —1x - Ny (25)

Therefore, if changes of random variables are small, the variable
z can be linearised since the expected values x and y are known.
This technique can be applied to the angles and voltages in the load
flow equations (Eq. (19)). Thus, the following results are obtained:

Nn
Pi= L€+ S8 =i S g Vit hiy Vi

k=1 (26)

Q= Z[e +fie 8 = Fie - O+ i Vi Mg Vil

where the coefficientse’,f,g’, ', e”,f’,g",and h” are calculated from
system parameters and expected values for the variables [10].

4.2.2. Moments and cumulants

The moments of a random variable x are the expected values of
certain functions of ¥ [18,47,48]. These are a collection of descrip-
tive measurements that can be used to characterise the probability
distribution of x and to determine it if all the moments of x are
known. For example, for the case of a multivariate random vari-
able, X=( xq, ..., ®n) with a joint probability density function fx(
X), the third order moments are defined as [18]:

mX = E[xxjx] = /// xiXixifx (X (27)

Other moments are defined in a similar way. For instance, third-
order central moments can be expressed as:

M;J(k = E[(x; — mi)(x; — m’)'()(xk - my)]

= / / / (x; — i )(x; — M (% — M fx(X) dX (28)

The cumulants of a random variable are a number of constants
that reveal the properties of x and determine its distribution func-
tion [48]. Despite the fact that moments and cumulants are related
[18,49], cumulants have a number of properties that make their
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manipulation even more useful when they are applied to a linear
combination of random variables [49]. Thus, let z be a random vari-
able that is a linear combination of a multivariate random variable,
X = (X1, ..., Xn,,, ), given by:

Nry

Z= Za,- - X (29)

i=1

where g; is real constants.

For example, the third-order cumulant of the random variable z
can be expressed as a function of the cumulants of the multivariate
random variable X as:

Nry Nry Nry

111 ijk

k! =E E E a;-a;-ag - ky (30)
i=1  j=1 k=1

In general, the cumulants of order r can be obtained as:

r

A~ ~ npy ' Ny r
AT _ ~
’ =

ST e, T kg (31)

i1=1 ir=1

In general, it is better to use cumulants instead of moments
because [49]:

¢ For independent random variables, the cumulants of a sum are
the sums of cumulants.

e For independent random variables, the cross cumulants are zero,
while not all the crossed moments are zero.

e Cornish-Fisher expansion is better indicated using cumulants.

4.2.3. Resolution technique of the probabilistic radial load flow

The technique used to solve the probabilistic radial load flow
with the method proposed involves obtaining the cumulants of
the solution by solving the system of equations of the problem
for each order of the cumulants of the input variables [9]. Thus,
the cumulant method is used to replace the convolution of the
dependent/independent random variables by the linear combi-
nation of their cumulants [49]. For independent variables, the
crossed cumulants are zero. Cumulants and crossed cumulants of
dependent variables can be easily obtained in [18]. The cumulant
method allows the use of any random variables and not just normal
distributions. This technique reduces the computational burden
which is one of the disadvantages of the Monte Carlo method
[9,50].

When the cumulants of the distributions of output variables
are known, it is possible to reconstruct their CDFs by using the
Gram-Charlier or Cornish-Fisher expansion.

In order to obtain the moments (cumulants) and crossed
moments (cumulants) of input-dependent PV variables, a set of sce-
narios is first obtained by generating correlated random numbers
as shown in Section 2.1 for the given PDF of the uncertainty. The
moments are then numerically obtained by the discretisation of Eq.
(27), or its equivalent for moments of a different order. Cumulants
and crossed cumulants are obtained from these values by using the
equations in [49].

4.2.4. Gram-Charlier expansion

The Gram-Charlier expansion is a way to characterise the result-
ing random variables of the probabilistic load flow [9,51]. On the
basis of the central moments of a given distribution, this tech-
nique provides an approximation based on the normal distribution.
In practice, it extends to the seventh element of this expan-
sion [48], but its accuracy depends on the number of cumulants
[21,22].

Let ¢ be arandom variable with mean 7y and standard deviation
0. According to the Gram-Charlier expansion, the cumulative dis-
tribution function Fx( x) and the probability density function fx( x)
of the normalised variable x = ¢ — ny/oy canbe expressed as a series
composed of a standard normal distribution and their derivatives:

C J C " C "
Fx(x):Cb(x)—i-]—]!q?(x)-i- zilqb (x)+3ilq> (X)+ - (32)

fu(®) = $(2) + T10) + S2¢7) + () + - (33)

where @( x) and ¢( x) are CDF and PDF, respectively, of a normal
N(0,1) distribution (nx =0, ox=1), and @'( x), ¢'( x), D"( X), ¢"( X)...
their successive derivatives.

The coefficients ¢ are constants that are defined by Eq. (34):

ck:(—l)"/ He(®)-fu(®)dx k=1, 2, 3,... (34)

o0

4.2.5. Cornish-Fisher expansion

The Cornish-Fisher expansion is a formula for approximat-
ing the g-quantile of a cumulative distribution function Fy( x) in
terms of the quantile of a normal N(0,1) distribution @( x) and the
cumulants of the Fy( x). The cumulants of arandom variable are con-
ceptually similar to its moments. Suppose a random variable x has a
mean of 0 and standard deviation of 1. Cornish and Fisher [51] pro-
vide an expansion for approximating the g-quantile, @5 '(q), of x,
based uponits cumulants kf, and the g-quantile of a standard normal
random variable ®~1(q). For example, the Cornish-Fisher expan-
sion using the first five cumulants, is shown in Eq. (35) [16-18]:

@-1(q)® —3971(q)
24

P'(q) — 6070 +3,5
120 *

P 1(qP -1
6

D ()~ P71 (q) + ki + Ky

2071(q)° —507(q), 32
- 36 (k3)" +

& 1(q)* - 50 1(q)* +2
B 24

. 120-1(q)* - 530-1(q)* + 17
324

3 14
ky - ky

(k2 (35)

Although this equation applies only if ¥ has mean of 0 and stan-
dard deviation of 1, it can still be used to approximate the g-quantile
if x has some other mean 7y and standard deviation ox. The nor-
malisation of ¥ can be simply defined as shown in Eq. (36):

* __ X—Nx
b = on (36)

which has a mean of 0 and a standard deviation of 1. Central
moments of x* can be calculated from central moments of x with:

uh
Mys = ?f (37)

When the Cornish-Fisher expansion is applied to obtain the g-
quantile x* of x*, the corresponding g-quantile x of x is as shown in
Eq. (38):

X=X"0Ox+1x (38)

5. Case studies

The performance of this technique was tested on the IEEE 33-
node radial system [52,53] (Fig. 2) by using MATLAB. The computer
used in this study had a processor Intel (R) Pentium (R) Dual CPU,
1.60GHz, 2 GB RAM. Table 1 shows the load data in the test system,
modelled as normal variables.
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Fig. 2. IEEE 33-node radial system [52,53].

In order to demonstrate the accuracy and efficiency of this
technique, its results were compared with the analytical tech-
nique based on the Gram-Charlier expansion and the Monte Carlo
method with 10,000 trials, which was used as a reference. Thus, Fig.
3 shows the results of error, Eq. (20), and the computation time of
the Monte Carlo method as a function of the number of simulations
for the test system without PV-DG. In this figure, the number of test
groups ny of the Monte Carlo method for each number of simula-
tions was 50. As can be observed in Fig. 3, the choice of 10,000
simulations for the Monte Carlo method guaranteed that its rela-
tive error was lower than 0.005%. In this way, the level of accuracy
required of the reference method was achieved.

The test system was then modified including PV generators in
order to improve its voltage profile. Five PV generators of the same
size were connected to the system in nodes 12, 17, 21, 24 and 32
(Fig. 2). The injected mean PV power was the 61.79% of the load in

Table 1
Node loads for the IEEE 33-bus radial system for a summer working day at 12:00
a.m.

Node, k Type Real power Reactive power

ey, (pu) Opy Nay, (Pu) oy
1 Slack 0 0 0 0
2 PQ 0.0010 0.05 0.0006 0.04
3 PQ 0.0009 0.06 0.0004 0.06
4 PQ 0.0012 0.06 0.0008 0.06
5 PQ 0.0006 0.06 0.0003 0.06
6 PQ 0.0006 0.06 0.0002 0.06
7 PQ 0.0020 0.06 0.0010 0.06
8 PQ 0.0020 0.05 0.0010 0.04
9 PQ 0.0006 0.07 0.0002 0.04
10 PQ 0.0006 0.10 0.0002 0.10
11 PQ 0.00045 0.09 0.0003 0.09
12 PQ 0.0006 0.07 0.00035 0.08
13 PQ 0.0006 0.05 0.00035 0.07
14 PQ 0.0012 0.09 0.0008 0.09
15 PQ 0.0006 0.06 0.0001 0.06
16 PQ 0.0006 0.11 0.0002 0.09
17 PQ 0.0006 0.08 0.0002 0.045
18 PQ 0.0009 0.06 0.0004 0.06
19 PQ 0.0009 0.06 0.0004 0.06
20 PQ 0.0009 0.05 0.0004 0.04
21 PQ 0.0009 0.07 0.0004 0.04
22 PQ 0.0009 0.10 0.0004 0.10
23 PQ 0.0009 0.06 0.0005 0.06
24 PQ 0.0042 0.07 0.0020 0.08
25 PQ 0.0042 0.06 0.0020 0.06
26 PQ 0.0006 0.09 0.00025 0.09
27 PQ 0.0006 0.10 0.00025 0.10
28 PQ 0.0006 0.11 0.0002 0.09
29 PQ 0.0012 0.08 0.0007 0.045
30 PQ 0.0020 0.06 0.0060 0.06
31 PQ 0.0015 0.06 0.0007 0.06
32 PQ 0.0021 0.06 0.0010 0.06
33 PQ 0.0006 0.07 0.0004 0.04

Base (MVA) Base (kV)
100 12.66

the base case. In what follows, the results refer to a working day
in summer (July) at 12:00 a.m. Fig. 4 shows the seven first cumu-
lants and the PDF of ppy, . These PV generators were introduced as
negative loads [2]. Correlation coefficients between PV generators
were obtained heuristically from a nearby group of PV generators in

Test number of the Monte Carlo method (n ) =50

1 1,000
Relative error
Computation time '
3 o014 - L1000 @
P 2
2 £
o 8
o g
= 3
s £
& 8
0.01 + r 10
0.001 - ey —t - el |
10 100 1,000 10,000

Number of simulations (n)

Fig. 3. Relative error and computation time of the Monte Carlo method for the 33-node radial system without PV-GD.
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500r
Cumulants (p.u.):
400 k, . =0.0054
k. =1.6994 -6
300 k,  =-2.51le-9
a ki =3.6023¢-12
200 k, . =1.0676e-15
k,  =—4.8422¢-17
100f k, . =27181e-19
1 2 3 4 5 6 1

Ppvn(p-u) x 107

Fig. 4. PDF of the per unit real power for each PV generator on a working day in
summer (July) at 12:00 a.m.

Spain. Their values were purposely low, and the correlation matrix
was the following:

1 0.15 0.18 0.16 0.13
015 1 025 022 0.14
0.17 0.23 (39)

0.16 0.22 0.17 1 0.19

ppp=1 018 025 1

0.13 0.14 0.23 0.19 1

Table 2

In order to verify the accuracy of the analytical technique pro-
posed, this technique and the Monte Carlo method were first used
to obtain the results for the test system with PV-DG. Table 2 shows
the values of individual (average) relative error of the first seven
central moments of all the PQ-node voltages in the system. This
individual (average) relative error of the r-order central moment of
the analytical technique Eur, (8%) was defined as [18]:

1

100 - [y " — M:},Mc Z':iNn e
Eur, = ; MC : Epur, = %\/, (40)
i MV,- n

The values in Table 2 show the high level of accuracy of the pro-
posed technique for the mean and variance. The higher moments
however were less accurate. Regarding the individual relative error
of the r-order central moment for each node voltage, its maximum
value at each order r obviously occurred in the PV nodes or nearby
nodes: order #1 (node 18), #2 (node 17), #3 (node 24), #4 (node
17), #5 (node 24), #6 (node 25), #7 (node 24).

The next step was to analyse the optimal number of cumulants
to reconstruct the CDFs of the output variables (node voltages) by
using the Gram-Charlier or Cornish-Fisher expansion on the par-
ticular test system used with PV-GD. The error index selected to
evaluate the accuracy of the resulting CDFs with a different num-
ber of cumulants was the average-root-mean-square error. This
error index statistic is a frequently used measure of the differences
between values predicted by a model or an estimator and the values
actually observed from the system being modelled or estimated.

Individual (average) relative error of the first seven central moments of all PQ-node voltages in the test system with PV-DG.

Ep_‘lli 8“%/, 8}1‘3“ 8“3[ EP_‘SIi 8“(‘5/1 8“?/]-
Individual (average) relative error of the r-order central moment Eur, (8% ) (%)
Vo 0.001 2.713 4257 6.893 8.409 7.463 7.735
V3 0.006 3.215 7.749 8.692 9.128 6.994 13.499
Vs 0.010 3.634 4.926 10.209 5.738 6.550 9.700
Vs 0.014 3.762 4.113 10.791 4.879 6.337 9.175
Ve 0.024 3.993 3.156 11.636 4.155 6.058 9.002
Vs 0.027 4.320 2.943 12.722 4.720 5.742 10.819
Vs 0.040 4.477 2.826 13.988 6.565 5.204 16.189
Vo 0.048 4.438 3.043 14.081 7.168 5.100 17.253
Vio 0.055 4.338 3.226 13.948 7.531 5.088 17.701
Vit 0.056 4.312 3.251 13.888 7.560 5.099 17.676
Vi2 0.058 4.262 3.306 13.772 7.619 5.121 17.636
Vis 0.064 4.347 3.201 14.374 7.908 4.906 18.079
Vig 0.067 4.369 3.196 14.604 8.049 4.823 18.287
Vis 0.069 4.370 3.225 14.796 8.199 4.748 18.462
Vie 0.071 4.353 3.285 14.993 8.403 4.667 18.734
Va7 0.076 4.497 3.416 15.264 8.729 4.545 19.120
Visg 0.076 4.306 3.416 15.268 8.722 4.545 19.095
Vig 0.001 1.477 4.975 4.775 5.379 7.802 8.018
Vao 0.002 0.494 23.261 4.867 8.145 7.558 2.267
Vi 0.002 0.461 25.419 4.820 8.659 7.564 2417
Voo 0.002 0.460 23.793 4.784 8.252 7.579 2.138
Va3 0.007 2.358 19.212 6.483 19.932 7.498 29.343
Vs 0.007 1.418 45.266 5.128 29.733 7.701 41.201
Vas 0.007 1.354 33.600 4.793 24.435 7.810 34.936
Vas 0.025 3.889 3.365 11.320 3.898 6.145 8.011
Va7 0.025 3.744 3.719 10.932 3.647 6.247 6.829
Vg 0.028 3.295 4.779 10.003 3.070 6.484 3.866
Vag 0.030 3.024 5.427 9.630 3.129 6.564 2.975
V3o 0.032 2.878 6.019 9.476 3.383 6.586 2.785
V31 0.034 2.665 7.322 9.393 4.188 6.558 3.031
V3, 0.034 2.603 7.708 9.363 4.436 6.552 3.126
Va3 0.034 2.604 7.696 9.364 4.432 6.552 3.128

8#‘1, 8“6 8}1‘3/ 8“3 8/L‘sl e/lf/ SM?/

0.032 3.196 8.878 10.470 8.069 6.194 12.882

Remarks: the maximum value for each order r is shown in bold number; nodes with PV generators are shown in bold letters.
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Fig. 5. Mean value of voltage at each feeder node with (without) PV-DG, nv, pv-nc
(UVX without PV-DG )

The error index statistics for the Gram-Charlier expansion (g¢c)
and Cornish-Fisher expansion (&cr) were defined as [21,22,54]:

\/ S (GG - MG)? /MG
Ecc = N 100 (41)
X

\/ S (GF, — MG /MC?
Nx

where GC;(CF;) and MC; are the value of the ith point on the
CDF using the Gram-Charlier (Cornish-Fisher) expansion and the
Monte Carlo method, respectively; and Ny is the number of points
considered in x-axis of CDF.

Table 3 shows the maximum Gram-Charlier (Cornish-Fisher)
error of all node voltages when 3, 5, 7 and 9 cumulants were used
inrelevant expansions. It can be seen that the more cumulants were
used, the greater the accuracy was. However, as the computation
time increased with the number of cumulants, a good level of accu-
racy with an acceptable computation time was achieved when 7
cumulants were used in the Gram-Charlier expansion and 5 cumu-
lants in the Cornish-Fisher expansion. Computation times in both
cases were equivalent, though shorter than the 378.62 s required
in the Monte Carlo method.

PV support on critical operating variables of a feeder (e.g. losses,
braches load level, nodes voltage profile, etc.) is decisive as shown
in [2,45]. In the test system, the allocation of PV generators (Fig. 2)
and their penetration level were optimised in order to achieve an
improvement of node voltages. Thus, Fig. 5 shows the mean value
of voltage at each feeder node with (without) PV-DG, i.e. nv,pv-pc
(Mv, without pv-bG )- The connection of PV-DG originated a mean volt-
age rise in most of nodes. The new voltage profile in nodes was
smoother and all voltages remained in their standard limits [55].

The last objective of the case studies was to show the accuracy of
the Cornish-Fisher and Gram-Charlier expansions. Thus, the CDFs
of apparent powers in lines 23-24 and 12-11 (those with the high-
estvariations) with PV-DG are shown in Fig. 6. Additionally, the CDF
of node voltage 24 (the one with the highest variation) is shown
in Fig. 7. This last figure shows that at extreme voltage values,
the Gram-Charlier expansion gave a bad approximation, whereas
the Cornish-Fisher expansion fits better. This behaviour was also

ecp = 100 (42)

Table 3

1 -
— Gram-Charlier|
0.8}F — Cornish-Fisher| E
2 — Monte Carlo
S 0.6 .
]
©
©
A 04 i
0.2 i
00 1 2 4 5 6
81324 (p-u.) x10”
1 T T T T
08k — Gram-Charlier| i
— Cornish-Fisher
> — Monte Carlo
Eoel .
<
©
2 04f .
-9
021 E
00 0.002 0.004 0.006 0.008 0.01 0.012
Si2. (pw)
Fig. 6. CDFs of apparent powers in lines 23-24 and 12-11.
I T T T ——
—Monte Carlo
081 — Cornish-Fisher |
— Gram-Charlier
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= 0.6 |
2
ey
204 1
-9
0.2 1
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Fig. 7. CDF of node voltage 24.

observed in CDFs of apparent powers, though the Cornish-Fisher
expansion fitting was slightly lower. This was due to the higher
non-linearity of reactive power with respect to PV power injec-
tion. Both figures show how the proposed technique (Cumulants
& Cornish-Fisher expansion) worked better than the technique of
the Cumulants & Gram-Charlier expansion, when non-Gaussian
functions were involved.

Maximum Gram-Charlier and Cornish-Fisher error in the reconstruction of the CDFs of all node voltages and associated computation time.

Gram-Charlier expansion

Cornish-Fisher expansion

Maximum &g of node voltages (%)

Computation time (s)

Maximum é&cr of node voltages (%) Computation time (s)

3 cumulants 0.389 0.218
5 cumulants 0.098 0.301
7 cumulants 0.033 0.388

9 cumulants 0.031 0.437

0.234 0.195
0.025 0.238
0.021 0.315
0.019 0.398




FJ. Ruiz-Rodriguez et al. / Electric Power Systems Research 89 (2012) 129-138 137

6. Conclusions

This paper has described a study of voltage profile in radial
distribution networks from a stochastic perspective. The proba-
bilistic load flow based on analytical techniques and the Monte
Carlo method was used to analyse the impact of the PV-DG.

The analytical method that combined the cumulant method
with the Cornish-Fisher expansion was found to be more effec-
tive for the evaluation of the impact of the PV-DG on the voltage
profiles in distribution networks. This technique gave a better per-
formance than the Monte Carlo method, and provided satisfactory
solutions with a smaller number of iterations. Therefore, conver-
gence was rapidly attained and the computational cost was lower
than that required for the Monte Carlo method. In addition, the
results showed how the Cornish-Fisher expansion had a better per-
formance that the Gram-Charlier expansion, when input random
variables were non-Gaussian.

Appendix A.

List of symbols

A PV generator surface area, m2

Bik series susceptance of branch of node i to node k, pu

CDF cumulative distribution function

cnjg consumer number who belong to the jth consumer class
for the kth node of a feeder

CF; value of the ith point on the CDF using the Cornish-Fisher
expansion

DG distributed generation

fppv’h (Ppv,n)and Fp, , (Pyy,n) PDF and CDF of random variable p,, 5

FTy(6s) angular loss of radiation beam component, pu

FT4(B), FT(B) angular losses of each radiation component (d: dif-
fuse, r: ground-reflected), pu

Ggn» Gph, Ggn» Grp hourly global, beam, diffuse and ground-
reflected (respectively) time-averaged irradiance on
horizontal plane, W/m?

Ggn.g (Hgn, Hgp) time averaged hourly global irradiance on a sur-
face sloped at angle 8 to the horizontal, having hourly
global irradiation Hg;, and hourly diffuse irradiation Hg,

W/m?

Gik series conductance of branch node i to node k, pu

GG value of the ith point on the CDF using the Gram-Charlier
expansion

h hour of day, h

Hoq4,Hgq daily extraterrestrial and global (respectively)irradiation
on horizontal plane, MJ x m—2 x day !

Hopn, Hgp, Hyn, Hep hourly extraterrestrial, global, diffuse and
ground-reflected (respectively) irradiation on horizontal
plane, MJ x m2 x h!

H(x) Hermite’s polynomial of order k

I_<b hourly average anisotropy index (=Hp,p/Ho ), pu

ke hourly clearness index (= Hgp/Ho ), pu

kg hourly diffuse fraction, pu

kap lower limit of hourly diffuse fraction, pu

kq(k:)  expected value of hourly diffuse fraction for an event hav-
ing clearness index k¢, pu

k% cumulant of order r of the univariate random variable x

r
=

k;} I cumulant of order r of the multivariate random variable
X

Kt daily clearness index, pu

Kry upper limit of daily clearness index, pu

Kr monthly average daily clearness index, pu

Li(m, h) TDP of the hourly active load for the jth consumer class at
mth month and hth hour, W

m month of the year

My sample size for a random variable

MCG; value of the ith point on the CDF using the Monte Carlo
method

n number of simulations

Ny number of random variables

Nee number of consumer classes

nr test number of the Monte Carlo method for each number
given of simulations

Np number of nodes of the system

Ny number of points in x-axis of CDF

NOCT  normal operating cell temperature, °C

PV photovoltaic

PDF probability density function
(Ppv,i) Ppyn (per unit) hourly DC input power to a PV inverter, (pu)
W

pi(kq, kg) PDF of random variable hourly diffuse fraction kg for a
set of hourly events having mean diffuse fraction ky

px(Kr, Kr) PDF of random variable daily clearness index Kr for a
set of daily events having mean clearness index Ky

P{Q}Lk(m, h) hourly active {reactive} power consumed by the
kth node of a feeder at mth month and hth hour, W{var}

P; real power injection at node i, pu

Q; reactive power injection at node i, pu

g ratio of the hourly average to the daily average of the
global irradiation on a horizontal plane, pu

Rp ratio of beam radiation on the tilted surface to that on a
horizontal surface at any time, pu

Si_j apparent power flow between node i and j, pu

TDPs typical daily profiles

T temperature, °C, K

Uw wind speed, m/s

Vi voltage at node i, pu, V

\_/{ mean voltage at node ith for the test group jth, given a
number of simulations n, pu

Xi value of the of the random variable x in each simulation

Greek symbols

B inclination of the module,’; temperature coefficient, K1

Sik phase angle of voltage from node i to node k, pu

ECF Cornish-Fisher error index statistic, %

e Gram-Charlier error index statistic, %

EMc relative error of the Monte Carlo method, %

Eur, individual relative error of the r-order central moment of

l the node voltage i using the analytical technique, %
& PV cell’s electrical efficiency, pu
Nx mean of the random variable x

nj(m, h) hourly meanvalue of active load for the jth consumer class
at mth month and hth hour, W

0 irradiance angle of incidence on the tilted surface, °

o(t) function relating the hourly mean clearness index to the
daily mean clearness index, pu

738 r-order central moment of the univariate random variable
x

,
Yo

u;} ' 1 order central moment of the multivariate random vari-
able X

u{)fa“ r-order central moment of node voltage i found analyti-
cally

;L;,MC r-order central moment of node voltage i obtained by the

Monte Carlo method reflectance of the ground, pu
Ppv correlation matrix between PV generators
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Ox standard deviation of the random variable ¥

oj(m, h) hourly standard deviation of active load for the jth con-
sumer class at mth month and hth hour, W

&( x)and ¢( x) CDF and PDF, respectively, of a normal N(0,1) dis-
tribution (nx =0, 0x=1),and @'( x), ¢'( x), D"( x), ¢"( X). ..
their successive derivatives

@;'(q) g-quantile of a random variable x

®-1(q) g-quantile of a standard normal random variable
) phase angle between the current and voltage, pu
Subscripts

a ambient

c cell/module/generator

NOCT  at NOCT conditions

ref at reference conditions

Superscripts

- average value

we weekend days

wo working days
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