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a  b  s  t  r  a  c  t

This  paper  shows  that  in  order  to solve  a probabilistic  load  flow  in  radial distribution  networks,  it  is
necessary  to  apply  effective  techniques  that  take  into  account  their  technical  constraints.  Among  these
constraints,  voltage  regulation  is  one  of the principal  problems  to be  addressed  in  photovoltaic  distributed
generation.  Probabilistic  load  flows  can  be solved  by analytical  techniques  as  well  as  the  Monte  Carlo
method.  Our  research  study  applied  an  analytical  method  that  combined  the  cumulant  method  with  the
Cornish–Fisher  expansion  to solve  this  problem.  The  Monte  Carlo  method  is used  to  compare  the  results
of analytical  method  proposed.

To  evaluate  the  performance  of  photovoltaic  distributed  generation,  this  paper  describes  a  probabilistic
model  that  takes  into  account  the  random  nature  of  solar  irradiance.  Therefore,  load  and  photovoltaic
onte Carlo method
robabilistic load flow

distributed  generation  are  modelled  as independent/dependent  random  variables.
The  results  obtained  show  that  the  technique  proposed  gave  a  better  performance  than  the  Monte  Carlo

method.  This  technique  provided  satisfactory  solutions  with  a smaller  number  of  iterations.  Therefore,
convergence  was  rapidly  attained  and computational  cost  was  lower  than  that  required  for  the  Monte
Carlo  method.  Besides,  the  results  revealed  how  the  Cornish–Fisher  expansion  had  a  better  performance
than  the  Gram–Charlier  expansion,  when  input  random  variables  were  non-Gaussian.
. Introduction

Until now, the main function of distribution networks has been
imited to connecting central generation and transmission net-

orks to the end consumers. As a result, distribution networks have
lways been regarded as passive networks. However, the wide use
f DG is in the process of transforming them and making them more
ctive [1].

DG can affect voltage profiles since when a generator operates
n a network, this causes the voltage to increase. Although, this
as the advantage of making the security margin greater and of
educing losses, it can also lead to overvoltages, especially in the
eighbourhood of the DG unit [2].

The connection rules and criteria for the penetration of DG are
ased on a deterministic steady state analysis. However, determin-

stic load flow analysis cannot objectively measure how often or

pecify the location where overvoltages or undervoltages will occur
n the network over a given time period. This can be accomplished
y using the probabilistic load flow based on analytical techniques
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or the Monte Carlo method [3].  Probabilistic load flow is described
in [4,5], and is further developed in [6,7]. A new simulation method
for a composite power system is proposed in [8] in order to evalu-
ate the probability distribution function of branch flows and node
voltage magnitudes.

Ref. [9] describes a study of probabilistic load flow using the
cumulant method combined with the Gram–Charlier expansion
to characterise the output random variables of the problem. The
cumulant method exploits the properties of the convolution of ran-
dom variables [10]. Another analytical technique for characterising
these variables is one that combines the cumulant method with
Von Mises functions [11]. Although this technique gives a better
approximation than the Gram–Charlier expansion, it comes with a
higher computational cost.

Despite the fact that they are somewhat less accurate, the
advantage of analytical techniques, as opposed to the Monte Carlo
method, is their lower computational cost.

Probabilistic techniques can also be effectively applied to anal-
yse the optimal power flow of the systems [12,13]. The point
estimate method is used in [14,15] to solve the probabilistic load

flow. In Refs. [16–18],  the probabilistic load flow is used in meshed
power systems with wind generation.

To evaluate the performance of PV generators in large radial
distribution networks, this paper proposes an analytical technique
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or probabilistic load flow based on the cumulant method com-
ined with the Cornish–Fisher expansion. Probabilistic load flow
as typically included the uncertainty of load, which is modelled
ith Gaussian PDFs. However, the PV energy growth poses new

hallenges, since the variability of PV power production is much
igher, and the PDF of the uncertainties is not Gaussian [19,20].
oreover, the uncertainties of PV power injections in geographi-

ally close PV generators are dependent on each other. As PV PDF
as not as yet been satisfactorily modelled, this paper proposes a
robabilistic PV model to be included in the probabilistic radial load
ow. The technique proposed is an improvement over the previous
pproach in [21,22] because there is a substantial enhancement in
he modelling of PV power production and loads. Although the time
nterval considered in this technique is 1 h, shorter intervals of time
an be considered by varying the correlation of PV dependence and
he distribution functions of load and PV power injection.

In general, the technique proposed in this paper combines dif-
erent approaches. However, it is based on the cumulant method,
eneralised for the case of dependent random variables. Addi-
ionally, a more refined method [23] to solve the load flow
n radial distribution systems is applied because the traditional
ewton–Raphson method produces convergence problems in

hese systems.

. Probabilistic PV system model

Solar irradiation on a horizontal surface inside the atmosphere
annot be accurately predicted since it depends on the irregular
resence of clouds. The randomness produced by clouds on terres-
rial irradiation is characterised by two random variables [24,25]:
he daily clearness index KT and the hourly diffuse fraction kd.

The characterisation of the behaviour of global irradiation
24,26–30] and of diffuse irradiation [25,27,31–33] makes it pos-
ible to construct a probability model (using PDFs and CDFs) for
ndexes, KT [24,27–29] and kd [25]. Thus, the statistical properties of
lobal irradiation are first described in terms of the daily clearness
ndex [24,27–30]:

T = Hg,d

H0,d
(1)

Hollands and Huget propose the following PDF for the random
ariable KT dependent only on K̄T [24]:

K (KT , K̄T ) = C1

(
KTu − KT

KTu

)
e�1·KT (2)

here C1 and �1 parameters are functions of KTu and K̄T .
The random variable, daily global irradiation Hg,d, obtained from

q. (1) is:

g,d = H0,d · KT (3)

The hourly global irradiation Hg,h is obtained from Hg,d with the
q. (4) [34]:

g = Hg,h

Hg,d
= H0,h

H0,d
· �(t) (4)

Secondly, the statistical properties of diffuse irradiation are
escribed in terms of the hourly diffuse fraction [25,31–33]:

d = Hd,h

Hg,h
(5)

Although most kd(kt) available correlations are deterministic, an

ffective approach [25,31] should consider the fact that this func-
ion is not deterministic. In other words, for a given kt, value, kd can
ake a range of values distributed around its mean, k̄d. Using the
xpected value approach of probability theory, Hollands and Crha
Fig. 1. Flowchart to evaluate C2, �2 and kdl parameters.

[25] gives a general-purpose expression for the PDF of the random
variable kd:

pK (kd, kd) = C2(kd − kdl) · (1 − kd)e�2·kd (6)

where C2, �2, and kdl parameters are functions of k̄d, as shown in
Fig. 1. The expression for pk(kd, k̄d) is independent of the actual
k̄d(kt) relation [25,31–33].

The random variable, hourly diffuse irradiation Hd,h, which com-
bines Eqs. (4) and (5),  is given by Eq. (7):

Hd,h = rg · Hg,h · kd (7)

The hourly global irradiance on a tilted surface Gg,h ˇ can be
calculated from the components of the incident irradiance beam
(Gb,h = Gg,h − Gd,h), diffuse irradiance (Gd,h), and ground-reflected
irradiance (Gr,h) on the horizontal plane [35]:

Gg,h ˇ = (Gg,h − Gd,h)RbFTb(�S)

+ Gd,h

[
(1 − k̄b)

1 + cos ˇ

2
FTd(ˇ) + Rbk̄bFTb(�S)

]

+ Gg,h�

(
1 − cos ˇ

2

)
FTr(ˇ) (8)
To determine the diffuse irradiance fraction, the Hay model [36]
for anisotropic skies is applied in Eq. (8).  Furthermore, the angular
losses of each radiation component, FTb(�s), FTd(ˇ), and FTr(ˇ), fol-
low Ref. [35]. The global, beam, and diffuse irradiance are assumed
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o remain constant and equal to the global, beam, and diffuse irra-
iation, respectively, for the integration period (hourly approach):

(g)(b)(d),h (Wh/m2) = G(g)(b)(d),h (W/m2) · 1h (9)

This assumption does not generate important errors, and avoids
aking integrations in the time domain. When the assumption of

q. (9) is included in Eq. (8),  and even though the random vari-
ble Gg,h � may  depend upon parameters other than the random

ariables Hg,h and Hd,h (e.g. ˇ, �, FTb (�s), FTd(ˇ), FTr(ˇ), Rb, k̄b),
hese parameters must be the same for each hour or they may  be
veraged. Therefore, the hourly global irradiance on a tilted sur-
ace is a new random variable, which is a linear combination of the
ndependent random variables, Hg,h and Hd,h:

g,h � = a1 · Hg,h + a2 · Hd,h (10)

here the coefficients ai in the linear combination are known (func-
ions of ˇ, �, FTb(�s), FTd(ˇ), FTr (ˇ), Rb and k̄b).

At this point, the cumulant method [37] allows the statistical
nformation mapping of predefined random variables, Hg,h and Hd,h,

ith the new random variable Gg,h �. This information is mapped
y means of a statistical measurement known as cumulants. Based
n the hourly global irradiance on the plane of the PV array, the
andom variable, hourly PV electrical power (DC side) Ppv,h, is cal-
ulated in the same way as [35,38]:

pv,h = �c · A · Gg,h ˇ (11)

This power depends on the PV cell’s electrical efficiency, which
as the following familiar linear form [38]:

c = �ref

{
1 − ˇref

[
Ta − Tref + Gg,h ˇ

GNOCT
(TNOCT − Ta)

]}
(12)

Assuming in Eq. (12) that the ambient temperature Ta is con-
tant for the hourly period (no random variable), Eq. (11) may  be
ewritten with coefficients b1 and b2 as shown in Eq. (13):

pv,h = (b1 + b2 · Gg,h ˇ) · Gg,h ˇ (13)

Eq. (13) must be linearised [11] if the cumulant method [37]
s used to obtain the statistical information of the new random
ariable Ppv,h:

pv,h = b3 + b4 · Gg,h ˇ (14)

here coefficients b3 and b4 are:

3 = b1 + 2 · b2 · Ḡg,h ˇ (15)

4 = −b2 · Ḡ2
g,h ˇ (16)

.1. Random generation of dependent PV power injections

The uncertainty of the PV power prediction of geographically
lose PV generators is correlated. The reason for this is that the PV
ower in all of them is due to similar meteorological conditions
39,40].  This dependence has not yet been modelled, but studies
uch as [41,42] show that there is spatial dependence between pro-
uction in a wide area. These values can be regarded as an estimate
f actual correlation values, but there is still much work to be done.

The method used to generate dependent PV power injections
s based on the generation of multivariate dependent random
umbers [18]. These numbers are used to numerically obtain the
umulants (moments) and crossed cumulants (moments) required
n the analytical technique described in this paper. The numbers
re also used for the Monte Carlo simulation process run to check

he results of the technique. The way of modelling this dependence
s through the correlation matrix of a multivariate normal variable.

The method begins by generating random numbers of a mul-
ivariate normal random variable with a given correlation matrix,
stems Research 89 (2012) 129– 138 131

thus forming the array Y1 ∈ �nrv,mrv . Secondly, a multivariate nor-
mal  transformation is performed of these values in order to obtain
a multivariate uniform distribution Y2, where Y2 = ˚(  Y1). The
third step involves transforming the multivariate uniform random
numbers obtained into series with the desired PV marginal distri-
butions Fppv,h

(ppv,h). Thus, the sample k of the new random variable

i, y3,ik is obtained as y3,ik = F−1
ppv,h

(y2,ik). The random numbers with
the desired distribution thus have correlations that are very close
to the original one of the normal multivariate distribution.

3. Probabilistic load model

The electric load of a power system has deterministic and
stochastic components. The two  main deterministic factors that
affect this load are time (multiple seasonal patterns: yearly, weekly
and intra-daily) and weather conditions. However, there is also a
random component in the load which cannot be modelled. This
component is the result of the random behaviour of energy con-
sumers. Consumers are classified by electric utilities into different
subjective classes [43,44].

Typical load patterns of consumer classes can be obtained from
the statistical analysis of historical data. Thus, Refs. [43,44] defined
TDPs for each consumer class, which contained information about
daily load profiles after the extraction of all exogenous information,
i.e. seasonal (yearly and weekly cycles) and weather information.
Additionally, Jardini et al. [43] applied statistical analysis methods
to the TDPs, which allowed them to construct a probability model
(using PDFs) capable of giving the probability that a value of a load
would be within specified limits. This approach treats the TDPs of
each jth consumer class Lj(m,h) as a normally distributed random
variable, which changes from month to month and hour to hour.
This means that its hourly mean value �j(m, h) and the correspond-
ing standard deviation �j(m,h) change over the 12-month and 24-h
period.

In this study, the Jardini approach was  followed to build the TDPs
of consumer classes, based on data from a Spanish electrical utility
[45]. However, seasonal information when TDPs are elaborated was
only partially extracted. Thus, for the jth consumer class two TDPs
were specified per month: one for weekends Lwe

j (m)  and another
one for working days Lwo

j (m). The one-year TDPs were arranged
in a two-dimensional layout with 12 columns representing the
12 months of the year and with 2 rows representing weekend or
working days.

When the TDPs of consumer classes are known, it is possible to
determine the random variable hourly active power consumed by
the kth node of a feeder at the mth month and hth hour PLk(m,h) by
adding the random variables Lj(m,h) corresponding to the individ-
ual consumption of all consumer classes. For example, for working
days:

Pwo
Lk (m, h) =

ncc∑
j=1

cnj,k · Lwo
j (m, h) (17)

Assuming a deterministic power factor, the relevant reactive
power consumed is the following:

Q Lk(m,  h) = PLk(m, h) · tan ϕ (18)

4. Probabilistic radial load flow

The method used in this study to solve deterministic load

flow for radial distribution systems is described in [23]. The
Newton–Raphson method does not satisfactorily solve the classical
load flow in radial distribution systems because it gives conver-
gence problems.
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The classical load flow is given by a system of nonlinear equa-
ions that represents it. They represent the steady-state balance in
he network between the power consumed and power produced:

Pi = Vi

Nn∑
k=1

[Vk(Gik cos ıik + Bik sen ıik)]

Qi = Vi

Nn∑
k=1

[Vk(Gik sen ıik − Bik cos ıik)]

(19)

These input values to the problem cannot be accurately deter-
ined in a probabilistic approach. However, one way to better

haracterise the sources of uncertainty of the system is to repre-
ent the input data as random variables in the problem. In this
espect, the Monte Carlo method [3] is an important simulation
echnique that makes it possible to continue using the determinis-
ic load flow algorithms. There are also analytical ways of dealing
ith the problem of probabilistic load flow [11]. Such techniques
se the properties of the convolution of random variables.

.1. Monte Carlo method

This method is the most straightforward method of solving the
robabilistic power flow. It is basically used to randomly select val-
es of input variables from their distribution functions, and with
hese values, solve a deterministic radial load flow, as explained
n [23]. After a certain number of simulations, the probabilistic
olution of the problem is reconstructed from deterministic data
btained for each simulation.

It should be underlined that the number of simulations needed
o obtain an accurate result with the Monte Carlo method is inde-
endent of system size [10]. For an accurate representation, many
imulations must be considered (approximately 10,000 [8,46]),
hich sometimes makes this approach impractical. Since the com-
utation time of the Monte Carlo method is longer as the number of
imulations increases, it is important to determine the accuracy of
he results. This can be quantified by means of the relative error of
he Monte Carlo method for a given number of simulations n [9,10]:

MC = 100
(nT − 1) · Nn

Nn∑
i=1

nT∑
j=2

|V̄ j−1
i

− V̄ j
i
|

V̄ j
i

(20)

here V̄ j
i

is the mean voltage at node ith for the test group jth (e.g.
econd test of a total test number nT equal to 50), given a num-
er of simulations n (e.g. 10,000 simulations). Thus, in Eq. (20), the
onte Carlo method is used to execute a given number of simu-

ations n (e.g. 10,000 simulations) several times nT (e.g. 50 times).
he solutions obtained are compared in such a way that for two
ifferent test groups of the same number of simulations n (e.g. first
est group of 10,000 simulations and second test group of 10,000
imulations), the error between both groups is relatively small. It
an be observed that for a certain n, even though the number of
imulations increases, the average values and standard deviation
btained do not sensibly change, and the difference between the
olutions of the groups is very small [9].

In the Monte Carlo method, the mean of a random variable x is
etermined by the following equation:
¯ = �x =
n∑

i=1

xi

n
(21)
stems Research 89 (2012) 129– 138

The standard deviation of a random variable x is determined by
the equation:

�x =

√∑n
i=1(xi − x̄)2

(n − 1)
(22)

4.2. Analytical technique

4.2.1. Linear approximation
The linearisation process of load flow equations (Eq. (19)) is

performed around the solution obtained with a deterministic load
flow, based particularly on the expected values of the system. These
expected values are obtained after solving the problem of the deter-
ministic radial load flow [23]. To illustrate this technique, two
random variables x and y are considered. At some point in the prob-
lem, these random variables are multiplied to give a third random
variable z:

z = x · y (23)

If the deviations of x and y are represented around their mean
values �x and �y by 
x  and 
y  respectively, the following can be
assumed:

x = �x + 
x  y = �y + 
y  (24)

When second-order terms are not considered, Eq. (25) is
obtained:

z ≈ �x · �y + �x · 
y  + �y · 
x  = �x · y + �y · x − �x · �y (25)

Therefore, if changes of random variables are small, the variable
z can be linearised since the expected values x and y are known.
This technique can be applied to the angles and voltages in the load
flow equations (Eq. (19)). Thus, the following results are obtained:

Pi =
Nn∑

k=1

[e′
ik + f ′

ik · ıi − f ′
ik · ık + g′

ik · Vi + h′
ik · Vk]

Qi =
Nn∑

k=1

[e′′
ik + f ′′

ik · ıi − f ′′
ik · ık + g′′

ik · Vi + h′′
ik · Vk]

(26)

where the coefficients e′, f′, g′, h′, e′′, f′′, g′′, and h′′ are calculated from
system parameters and expected values for the variables [10].

4.2.2. Moments and cumulants
The moments of a random variable x are the expected values of

certain functions of x [18,47,48].  These are a collection of descrip-
tive measurements that can be used to characterise the probability
distribution of x and to determine it if all the moments of x are
known. For example, for the case of a multivariate random vari-
able, X = ( x1, ..., xn) with a joint probability density function fX (
X), the third order moments are defined as [18]:

mijk
X = E[xixjxk] =

∫ ∫ ∫ ∞

−∞
xixjxkfX (X) dX (27)

Other moments are defined in a similar way. For instance, third-
order central moments can be expressed as:

�ijk
X = E[(xi − mi

X )(xj − mj
X )(xk − mk

X )]

=
∫ ∫ ∫ ∞

−∞
(xi − mi

X )(xj − mj
X )(xk − mk

X )fX (X) dX (28)
The cumulants of a random variable are a number of constants
that reveal the properties of x and determine its distribution func-
tion [48]. Despite the fact that moments and cumulants are related
[18,49], cumulants have a number of properties that make their
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anipulation even more useful when they are applied to a linear
ombination of random variables [49]. Thus, let z be a random vari-
ble that is a linear combination of a multivariate random variable,

 = (x1, ..., xnrv ), given by:

 =
nrv∑
i=1

ai · xi (29)

here ai is real constants.
For example, the third-order cumulant of the random variable z

an be expressed as a function of the cumulants of the multivariate
andom variable X as:

111
z =

nrv∑
i=1

·
nrv∑
j=1

·
nrv∑
k=1

ai · aj · ak · kijk
X (30)

In general, the cumulants of order r can be obtained as:

r︷︸︸︷
1...1
z =

nrv∑
i1=1

r︷︸︸︷· · ·
nrv∑

ir=1

ai1

r︷︸︸︷· · · air · ki1...ir
X (31)

In general, it is better to use cumulants instead of moments
ecause [49]:

For independent random variables, the cumulants of a sum are
the sums of cumulants.
For independent random variables, the cross cumulants are zero,
while not all the crossed moments are zero.
Cornish–Fisher expansion is better indicated using cumulants.

.2.3. Resolution technique of the probabilistic radial load flow
The technique used to solve the probabilistic radial load flow

ith the method proposed involves obtaining the cumulants of
he solution by solving the system of equations of the problem
or each order of the cumulants of the input variables [9].  Thus,
he cumulant method is used to replace the convolution of the
ependent/independent random variables by the linear combi-
ation of their cumulants [49]. For independent variables, the
rossed cumulants are zero. Cumulants and crossed cumulants of
ependent variables can be easily obtained in [18]. The cumulant
ethod allows the use of any random variables and not just normal

istributions. This technique reduces the computational burden
hich is one of the disadvantages of the Monte Carlo method

9,50].
When the cumulants of the distributions of output variables

re known, it is possible to reconstruct their CDFs by using the
ram–Charlier or Cornish–Fisher expansion.

In order to obtain the moments (cumulants) and crossed
oments (cumulants) of input-dependent PV variables, a set of sce-

arios is first obtained by generating correlated random numbers
s shown in Section 2.1 for the given PDF of the uncertainty. The
oments are then numerically obtained by the discretisation of Eq.

27), or its equivalent for moments of a different order. Cumulants
nd crossed cumulants are obtained from these values by using the
quations in [49].

.2.4. Gram–Charlier expansion
The Gram–Charlier expansion is a way to characterise the result-

ng random variables of the probabilistic load flow [9,51].  On the
asis of the central moments of a given distribution, this tech-

ique provides an approximation based on the normal distribution.

n practice, it extends to the seventh element of this expan-
ion [48], but its accuracy depends on the number of cumulants
21,22].
stems Research 89 (2012) 129– 138 133

Let  ς be a random variable with mean �� and standard deviation
��. According to the Gram–Charlier expansion, the cumulative dis-
tribution function Fx( x) and the probability density function fx( x)
of the normalised variable x = ς − ��/�� can be expressed as a series
composed of a standard normal distribution and their derivatives:

Fx(x) = ˚(x) + c1

1!
˚′(x) + c2

2!
˚′′′(x) + c2

3!
˚′′′(x) + · · · (32)

fx(x) = �(x) + c1

1!
�′(x) + c2

2!
�′′(x) + c2

3!
�′′′(x) + · · · (33)

where ˚( x) and �( x) are CDF and PDF, respectively, of a normal
N(0,1) distribution (�x = 0, �x = 1), and ˚′( x), �′( x), ˚′′( x), �′′( x)...
their successive derivatives.

The coefficients ck are constants that are defined by Eq. (34):

ck = (−1)k

∫ ∞

−∞
Hk(x) · fx(x) dx k = 1, 2, 3, . . . (34)

4.2.5. Cornish–Fisher expansion
The Cornish–Fisher expansion is a formula for approximat-

ing the q-quantile of a cumulative distribution function Fx( x) in
terms of the quantile of a normal N(0,1) distribution ˚(  x) and the
cumulants of the Fx( x). The cumulants of a random variable are con-
ceptually similar to its moments. Suppose a random variable x has a
mean of 0 and standard deviation of 1. Cornish and Fisher [51] pro-
vide an expansion for approximating the q-quantile, ˚−1

x (q), of x,
based upon its cumulants kr

x and the q-quantile of a standard normal
random variable ˚−1(q). For example, the Cornish–Fisher expan-
sion using the first five cumulants, is shown in Eq. (35) [16–18]:

˚−1
x (q) ≈ ˚−1(q) + ˚−1(q)2 − 1

6
k3

x + ˚−1(q)3 − 3˚−1(q)
24

k4
x

− 2˚−1(q)3 − 5˚−1(q)
36

(k3
x)

2 + ˚−1(q)4 − 6˚−1(q)2 + 3
120

k5
x

−˚−1(q)4 − 5˚−1(q)2 + 2
24

k3
x · k4

x

+12˚−1(q)4 − 53˚−1(q)2 + 17
324

(k3
x)

3
(35)

Although this equation applies only if x has mean of 0 and stan-
dard deviation of 1, it can still be used to approximate the q-quantile
if x has some other mean �x and standard deviation �x . The nor-
malisation of x can be simply defined as shown in Eq. (36):

x∗ = x −  �x

�x
(36)

which has a mean of 0 and a standard deviation of 1. Central
moments of x* can be calculated from central moments of x with:

�r
x∗ = �r

x

�r
x

(37)

When the Cornish–Fisher expansion is applied to obtain the q-
quantile x* of x*, the corresponding q-quantile x of x is as shown in
Eq. (38):

x = x∗ · �x + �x (38)

5. Case studies

The performance of this technique was tested on the IEEE 33-

node radial system [52,53] (Fig. 2) by using MATLAB. The computer
used in this study had a processor Intel (R) Pentium (R) Dual CPU,
1.60 GHz, 2 GB RAM. Table 1 shows the load data in the test system,
modelled as normal variables.
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Fig. 2. IEEE 33-node radial system [52,53].
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Table 1
Node loads for the IEEE 33-bus radial system for a summer working day at 12:00
a.m.

Node, k Type Real power Reactive power

�PLk
(pu) �PLk

�Q Lk
(pu) �Q Lk

1 Slack 0 0 0 0
2 PQ 0.0010 0.05 0.0006 0.04
3  PQ 0.0009 0.06 0.0004 0.06
4 PQ  0.0012 0.06 0.0008 0.06
5  PQ 0.0006 0.06 0.0003 0.06
6  PQ 0.0006 0.06 0.0002 0.06
7  PQ 0.0020 0.06 0.0010 0.06
8 PQ 0.0020 0.05 0.0010 0.04
9 PQ 0.0006 0.07 0.0002 0.04
10  PQ 0.0006 0.10 0.0002 0.10
11  PQ 0.00045 0.09 0.0003 0.09
12  PQ 0.0006 0.07 0.00035 0.08
13  PQ 0.0006 0.05 0.00035 0.07
14  PQ 0.0012 0.09 0.0008 0.09
15  PQ 0.0006 0.06 0.0001 0.06
16  PQ 0.0006 0.11 0.0002 0.09
17  PQ 0.0006 0.08 0.0002 0.045
18 PQ 0.0009 0.06 0.0004 0.06
19  PQ 0.0009 0.06 0.0004 0.06
20 PQ  0.0009 0.05 0.0004 0.04
21  PQ 0.0009 0.07 0.0004 0.04
22  PQ 0.0009 0.10 0.0004 0.10
23  PQ 0.0009 0.06 0.0005 0.06
24  PQ 0.0042 0.07 0.0020 0.08
25 PQ 0.0042 0.06 0.0020 0.06
26  PQ 0.0006 0.09 0.00025 0.09
27 PQ  0.0006 0.10 0.00025 0.10
28  PQ 0.0006 0.11 0.0002 0.09
29  PQ 0.0012 0.08 0.0007 0.045
30 PQ 0.0020 0.06 0.0060 0.06
31  PQ 0.0015 0.06 0.0007 0.06
32 PQ  0.0021 0.06 0.0010 0.06
33  PQ 0.0006 0.07 0.0004 0.04
In order to demonstrate the accuracy and efficiency of this
echnique, its results were compared with the analytical tech-
ique based on the Gram–Charlier expansion and the Monte Carlo
ethod with 10,000 trials, which was used as a reference. Thus, Fig.

 shows the results of error, Eq. (20), and the computation time of
he Monte Carlo method as a function of the number of simulations
or the test system without PV-DG. In this figure, the number of test
roups nT of the Monte Carlo method for each number of simula-
ions was 50. As can be observed in Fig. 3, the choice of 10,000
imulations for the Monte Carlo method guaranteed that its rela-
ive error was lower than 0.005%. In this way, the level of accuracy
equired of the reference method was achieved.
The test system was then modified including PV generators in
rder to improve its voltage profile. Five PV generators of the same
ize were connected to the system in nodes 12, 17, 21, 24 and 32
Fig. 2). The injected mean PV power was the 61.79% of the load in
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Fig. 3. Relative error and computation time of the Monte Carlo
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the base case. In what follows, the results refer to a working day

in summer (July) at 12:00 a.m. Fig. 4 shows the seven first cumu-
lants and the PDF of ppv,h. These PV generators were introduced as
negative loads [2]. Correlation coefficients between PV generators
were obtained heuristically from a nearby group of PV generators in
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 method for the 33-node radial system without PV-GD.
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ig. 4. PDF of the per unit real power for each PV generator on a working day in
ummer (July) at 12:00 a.m.

pain. Their values were purposely low, and the correlation matrix
as the following:

pv =

⎛
⎜⎜⎜⎜⎜⎜

1 0.15 0.18 0.16 0.13

0.15 1 0.25 0.22 0.14

0.18 0.25 1 0.17 0.23

⎞
⎟⎟⎟⎟⎟⎟ (39)
⎜⎝ 0.16 0.22 0.17 1 0.19

0.13 0.14 0.23 0.19 1

⎟⎠
able 2
ndividual (average) relative error of the first seven central moments of all PQ-node volta

ε�1
V i

ε�2
V i

ε�3
V i

Individual (average) relative error of the r-order central moment ε�r
V i

(ε�r
V

) (%)

V2 0.001 2.713 4.257 

V3 0.006 3.215 7.749 

V4 0.010 3.634 4.926 

V5 0.014 3.762 4.113 

V6 0.024 3.993 3.156 

V7 0.027 4.320 2.943 

V8 0.040 4.477 2.826 

V9 0.048 4.438 3.043 

V10 0.055 4.338 3.226 

V11 0.056 4.312 3.251 

V12 0.058 4.262 3.306 

V13 0.064 4.347 3.201 

V14 0.067 4.369 3.196 

V15 0.069 4.370 3.225 

V16 0.071 4.353 3.285 

V17 0.076 4.497 3.416 

V18 0.076 4.306 3.416 

V19 0.001 1.477 4.975 

V20 0.002 0.494 23.261 

V21 0.002 0.461 25.419 

V22 0.002 0.460 23.793 

V23 0.007 2.358 19.212 

V24 0.007 1.418 45.266 

V25 0.007 1.354 33.600 

V26 0.025 3.889 3.365 

V27 0.025 3.744 3.719 

V28 0.028 3.295 4.779 

V29 0.030 3.024 5.427 

V30 0.032 2.878 6.019 

V31 0.034 2.665 7.322 

V32 0.034 2.603 7.708 

V33 0.034 2.604 7.696 

ε�1
V

ε�2
V

ε�3
V

0.032 3.196 8.878 

emarks: the maximum value for each order r is shown in bold number; nodes with PV g
stems Research 89 (2012) 129– 138 135

In order to verify the accuracy of the analytical technique pro-
posed, this technique and the Monte Carlo method were first used
to obtain the results for the test system with PV-DG. Table 2 shows
the values of individual (average) relative error of the first seven
central moments of all the PQ-node voltages in the system. This
individual (average) relative error of the r-order central moment of
the analytical technique ε�r

V i

(ε�r
V

) was defined as [18]:

ε�r
V i

=
100 ·

∣∣∣�r, an
V i

− �r, MC
V i

∣∣∣
�r, MC

V i

ε�r
V

=
∑i=Nn

i=1 εr
V i

Nn
(40)

The values in Table 2 show the high level of accuracy of the pro-
posed technique for the mean and variance. The higher moments
however were less accurate. Regarding the individual relative error
of the r-order central moment for each node voltage, its maximum
value at each order r obviously occurred in the PV nodes or nearby
nodes: order #1 (node 18), #2 (node 17), #3 (node 24), #4 (node
17), #5 (node 24), #6 (node 25), #7 (node 24).

The next step was to analyse the optimal number of cumulants
to reconstruct the CDFs of the output variables (node voltages) by
using the Gram–Charlier or Cornish–Fisher expansion on the par-
ticular test system used with PV-GD. The error index selected to
evaluate the accuracy of the resulting CDFs with a different num-
error index statistic is a frequently used measure of the differences
between values predicted by a model or an estimator and the values
actually observed from the system being modelled or estimated.

ges in the test system with PV-DG.

ε�4
V i

ε�5
V i

ε�6
V i

ε�7
V i

6.893 8.409 7.463 7.735
8.692 9.128 6.994 13.499

10.209 5.738 6.550 9.700
10.791 4.879 6.337 9.175
11.636 4.155 6.058 9.002
12.722 4.720 5.742 10.819
13.988 6.565 5.204 16.189
14.081 7.168 5.100 17.253
13.948 7.531 5.088 17.701
13.888 7.560 5.099 17.676
13.772 7.619 5.121 17.636
14.374 7.908 4.906 18.079
14.604 8.049 4.823 18.287
14.796 8.199 4.748 18.462
14.993 8.403 4.667 18.734
15.264 8.729 4.545 19.120
15.268 8.722 4.545 19.095

4.775 5.379 7.802 8.018
4.867 8.145 7.558 2.267
4.820 8.659 7.564 2.417
4.784 8.252 7.579 2.138
6.483 19.932 7.498 29.343
5.128 29.733 7.701 41.201
4.793 24.435 7.810 34.936

11.320 3.898 6.145 8.011
10.932 3.647 6.247 6.829
10.003 3.070 6.484 3.866

9.630 3.129 6.564 2.975
9.476 3.383 6.586 2.785
9.393 4.188 6.558 3.031
9.363 4.436 6.552 3.126
9.364 4.432 6.552 3.128

ε�4
V

ε�5
V

ε�6
V

ε�7
V

10.470 8.069 6.194 12.882

enerators are shown in bold letters.
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Fig. 6. CDFs of apparent powers in lines 23–24 and 12–11.
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T
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ig. 5. Mean value of voltage at each feeder node with (without) PV-DG, �V i PV-DG

�V i without PV-DG).

he error index statistics for the Gram–Charlier expansion (εGC)
nd Cornish–Fisher expansion (εCF) were defined as [21,22,54]:

GC =

√∑Nx

i=1(GCi − MCi)
2/MCi

2

Nx
100 (41)

CF =

√∑Nx

i=1(GFi − MCi)
2/MCi

2

Nx
100 (42)

here GCi(CFi) and MCi are the value of the ith point on the
DF using the Gram–Charlier (Cornish–Fisher) expansion and the
onte Carlo method, respectively; and Nx is the number of points

onsidered in x-axis of CDF.
Table 3 shows the maximum Gram–Charlier (Cornish–Fisher)

rror of all node voltages when 3, 5, 7 and 9 cumulants were used
n relevant expansions. It can be seen that the more cumulants were
sed, the greater the accuracy was. However, as the computation
ime increased with the number of cumulants, a good level of accu-
acy with an acceptable computation time was achieved when 7
umulants were used in the Gram–Charlier expansion and 5 cumu-
ants in the Cornish–Fisher expansion. Computation times in both
ases were equivalent, though shorter than the 378.62 s required
n the Monte Carlo method.

PV support on critical operating variables of a feeder (e.g. losses,
raches load level, nodes voltage profile, etc.) is decisive as shown

n [2,45].  In the test system, the allocation of PV generators (Fig. 2)
nd their penetration level were optimised in order to achieve an
mprovement of node voltages. Thus, Fig. 5 shows the mean value
f voltage at each feeder node with (without) PV-DG, i.e. �V i PV-DG
�V i without PV-DG). The connection of PV-DG originated a mean volt-
ge rise in most of nodes. The new voltage profile in nodes was
moother and all voltages remained in their standard limits [55].

The last objective of the case studies was to show the accuracy of
he Cornish–Fisher and Gram–Charlier expansions. Thus, the CDFs
f apparent powers in lines 23–24 and 12–11 (those with the high-
st variations) with PV-DG are shown in Fig. 6. Additionally, the CDF

f node voltage 24 (the one with the highest variation) is shown
n Fig. 7. This last figure shows that at extreme voltage values,
he Gram–Charlier expansion gave a bad approximation, whereas
he Cornish–Fisher expansion fits better. This behaviour was also

able 3
aximum Gram–Charlier and Cornish–Fisher error in the reconstruction of the CDFs of a

Gram–Charlier expansion 

Maximum εGF of node voltages (%) Computation time

3 cumulants 0.389 0.218 

5  cumulants 0.098 0.301 

7  cumulants 0.033 0.388 

9  cumulants 0.031 0.437 
observed in CDFs of apparent powers, though the Cornish–Fisher
expansion fitting was slightly lower. This was  due to the higher
non-linearity of reactive power with respect to PV power injec-
tion. Both figures show how the proposed technique (Cumulants
& Cornish–Fisher expansion) worked better than the technique of
the Cumulants & Gram–Charlier expansion, when non-Gaussian
functions were involved.
ll node voltages and associated computation time.

Cornish–Fisher expansion

 (s) Maximum εCF of node voltages (%) Computation time (s)

0.234 0.195
0.025 0.238
0.021 0.315
0.019 0.398
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. Conclusions

This paper has described a study of voltage profile in radial
istribution networks from a stochastic perspective. The proba-
ilistic load flow based on analytical techniques and the Monte
arlo method was used to analyse the impact of the PV-DG.

The analytical method that combined the cumulant method
ith the Cornish–Fisher expansion was found to be more effec-

ive for the evaluation of the impact of the PV-DG on the voltage
rofiles in distribution networks. This technique gave a better per-
ormance than the Monte Carlo method, and provided satisfactory
olutions with a smaller number of iterations. Therefore, conver-
ence was rapidly attained and the computational cost was  lower
han that required for the Monte Carlo method. In addition, the
esults showed how the Cornish–Fisher expansion had a better per-
ormance that the Gram–Charlier expansion, when input random
ariables were non-Gaussian.

ppendix A.

ist of symbols
 PV generator surface area, m2

ik series susceptance of branch of node i to node k, pu
DF cumulative distribution function
nj,k consumer number who belong to the jth consumer class

for the kth node of a feeder
Fi value of the ith point on the CDF using the Cornish–Fisher

expansion
G distributed generation

ppv,h
(ppv,h) and Fppv,h

(ppv,h) PDF and CDF of random variable ppv,h
Tb(�s) angular loss of radiation beam component, pu
Td(ˇ), FTr(ˇ) angular losses of each radiation component (d: dif-

fuse, r: ground-reflected), pu
g,h, Gb,h, Gd,h, Gr,h hourly global, beam, diffuse and ground-

reflected (respectively) time-averaged irradiance on
horizontal plane, W/m2

g,h ˇ (Hg,h, Hd,h) time averaged hourly global irradiance on a sur-
face sloped at angle  ̌ to the horizontal, having hourly
global irradiation Hg,h, and hourly diffuse irradiation Hd,h,
W/m2

ik series conductance of branch node i to node k, pu
Ci value of the ith point on the CDF using the Gram–Charlier

expansion
 hour of day, h
0,d, Hg,d daily extraterrestrial and global (respectively) irradiation

on horizontal plane, MJ  × m−2 × day−1

0,h, Hg,h, Hd,h, Hr,h hourly extraterrestrial, global, diffuse and
ground-reflected (respectively) irradiation on horizontal
plane, MJ  × m−2 × h−1

k(x) Hermite’s polynomial of order k
¯

b hourly average anisotropy index (= Hb,h/H0,h), pu
t hourly clearness index (= Hg,h/H0,h), pu
d hourly diffuse fraction, pu
dl lower limit of hourly diffuse fraction, pu

¯
d(kt) expected value of hourly diffuse fraction for an event hav-

ing clearness index kt, pu
r
x cumulant of order r of the univariate random variable x

r︷︸︸︷
i1...ir
X cumulant of order r of the multivariate random variable
X
T daily clearness index, pu
Tu upper limit of daily clearness index, pu

¯ T monthly average daily clearness index, pu
stems Research 89 (2012) 129– 138 137

Lj(m,  h) TDP of the hourly active load for the jth consumer class at
mth month and hth hour, W

m month of the year
mrv sample size for a random variable
MCi value of the ith point on the CDF using the Monte Carlo

method
n number of simulations
nrv number of random variables
ncc number of consumer classes
nT test number of the Monte Carlo method for each number

given of simulations
Nn number of nodes of the system
Nx number of points in x-axis of CDF
NOCT normal operating cell temperature, ◦C
PV photovoltaic
PDF probability density function
(ppv,h) Ppv,h (per unit) hourly DC input power to a PV inverter, (pu)

W
pk(kd, k̄d) PDF of random variable hourly diffuse fraction kd for a

set of hourly events having mean diffuse fraction k̄d

pK(KT, K̄T ) PDF of random variable daily clearness index KT for a
set of daily events having mean clearness index K̄T

P
{

Q
}

L k
(m, h) hourly active {reactive} power consumed by the

kth node of a feeder at mth month and hth hour, W{var}
Pi real power injection at node i, pu
Qi reactive power injection at node i, pu
rg ratio of the hourly average to the daily average of the

global irradiation on a horizontal plane, pu
Rb ratio of beam radiation on the tilted surface to that on a

horizontal surface at any time, pu
Si−j apparent power flow between node i and j, pu
TDPs typical daily profiles
T temperature, ◦C, K
vw wind speed, m/s
Vi voltage at node i, pu, V
V̄ j

i
mean voltage at node ith for the test group jth, given a
number of simulations n, pu

xi value of the of the random variable x in each simulation

Greek symbols
ˇ  inclination of the module,◦; temperature coefficient, K−1

ıik phase angle of voltage from node i to node k, pu
εCF Cornish–Fisher error index statistic, %
εGC Gram–Charlier error index statistic, %
εMC relative error of the Monte Carlo method, %
ε�r

V i

individual relative error of the r-order central moment of

the node voltage i using the analytical technique, %
� PV cell’s electrical efficiency, pu
�x mean of the random variable x
�j(m,  h) hourly mean value of active load for the jth consumer class

at mth month and hth hour, W
�s irradiance angle of incidence on the tilted surface, ◦

�(t) function relating the hourly mean clearness index to the
daily mean clearness index, pu

�r
x r-order central moment of the univariate random variable

x

�

r︷︸︸︷
i1...ir
X r-order central moment of the multivariate random vari-

able X
�r,an

V i
r-order central moment of node voltage i found analyti-

cally

�r,MC
V i

r-order central moment of node voltage i obtained by the
Monte Carlo method reflectance of the ground, pu

�pv correlation matrix between PV generators
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x standard deviation of the random variable x
j(m,  h) hourly standard deviation of active load for the jth con-

sumer class at mth month and hth hour, W
( x) and �( x) CDF and PDF, respectively, of a normal N(0,1) dis-

tribution (�x = 0, �x = 1), and ˚′( x), �′( x), ˚′′( x), �′′( x). . .
their successive derivatives

−1
x (q) q-quantile of a random variable x
−1(q) q-quantile of a standard normal random variable

 phase angle between the current and voltage, pu

ubscripts
ambient
cell/module/generator

OCT at NOCT conditions
ef at reference conditions

uperscripts
 average value
e weekend days
o working days
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