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Probabilistic Load Flow Computation Using the
Method of Combined Cumulants and Gram-Charlier
Expansion
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Abstract—Open access transmission has created a deregulated
power market and brought new challenges to system planning.
This paper proposes a new method to compute a probabilistic
load flow in extensive power systems for the purpose of using
it as a quick screening tool to determine the major investment
on improving transmission system inadequacy. This innovative
method combines the concept of Cumulants and Gram-Charlier
expansion theory to obtain probabilistic distribution functions
of transmission line flows. It has significantly reduced the com-
putational time while maintaining a high degree of accuracy.
This enables probabilistic analysis of power flow problems to be
treated objectively and allows quantitative assessment of system
reliability.

Index Terms—Cumulants, Gram-Charlier expansion, open ac-
cess transmission and deregulated power market, power system,
probabilistic load flow, probability distribution function, transmis-
sion planning.

1. INTRODUCTION

ECENT changes in the U.S. electric power industry has
Rcaused dramatic increases in the use of the transmission
system. Transmission planning has become an increasingly im-
portant topic due to the fact that federally mandated open ac-
cess transmission has created a larger and more competitive bulk
power market place. This competitive market place brings great
challenges to the system planning field [1].

Computation of power flows in the electric power system is
one of the major tasks facing power system planners. Determin-
istic load flow study requires specific values for loads, genera-
tion inputs and network conditions. In an open access environ-
ment, this information is not as certain as it used to be when
the power system was a vertically integrated system. In system
planning, it is desirable to assess bus voltages and line flows
for a range of load and generation conditions. To carry out con-
ventional load flow computations for every possible or prob-
able combination of bus loads and generating unit outages is
completely impractical because of the extremely large computa-
tional effort required. Performing probabilistic load flow studies
gives system planning engineers a better feel of future system
conditions and will provide more confidence in making judg-
ments concerning investment.
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Application of probabilistic analysis to the power system load
flow study was first proposed by Borkowa in 1974 [2]. Since
then, there are two ways of adopting probabilistic approach to
study load flow problems: Stochastic Load Flow (SLF) [3]-[6]
and Probabilistic Load Flow (PLF) [7]-[12]. In SLF study, the
load and generation at an instant time ¢; are treated as random
variables. SLF investigates the impact of this uncertainty to the
output of conventional power flow at each instant of time. Con-
sequently, SLF deals with short time uncertainties and is useful
for system operation. Since this paper investigates the effects of
load and generation uncertainty over a long-term period on the
adequacy of transmission network, we adopt Probabilistic Load
Flow approach for planning study purpose.

In PLF study, many researchers have addressed the same
question: what is the most efficient and sufficiently accurate
method of obtaining the probabilistic density function (PDF)
and/or statistical moments of the state vectors and line flows?

Monte Carlo simulation is one of the methods to obtain the
PDF of the state vector and line flows. This technique involves
a repeated selection of the value of input variables from their
probability distribution and then for selected value of these input
variables (active power and reactive power) obtaining the values
of the state vector exactly in the same way as deterministic anal-
ysis. The final step is to obtain the probabilistic description of
the state vector from the results of the repeated simulations. To
obtain meaningful results, thousands of Monte Carlo simula-
tions are usually required. The computation burden makes this
process unattractive.

Previous researchers recognized that, although Monte Carlo
Simulation method is able to provide accurate results, the com-
putation is really time consuming, therefore is not suitable to
handle practical systems. Most of researchers only use it for
comparison purpose. The conventional convolution technique
is another method to obtain the PDF of line flows and has been
adopted by [7]-[13]. By applying linearization methods, the
state vector and line power flows are represented as a linear
combination of input variables. Therefore, assuming indepen-
dence of all the variables, a convolution technique can be ap-
plied to obtain the PDF’s of the desired variables. References
[71, [8] extended probabilistic analysis techniques to handle ac
load flow by modifying the linearization formulation. The con-
volution method was not changed.

The major problem in the conventional convolution method is
to compute the equivalent discrete function since a function rep-
resented by 7 impulses convolved with another represented by s
impulses will have r times s impulses. Reference [11] clearly
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stated that, even to obtain the PDF of a single line flow, the
final number of discontinuous points could be extremely large
when the number of discontinuous curve to be convoluted are
large or each curve is represented by a large number of points.
This process requires a large amount of storage and time espe-
cially when there are many functions involved due to large sys-
tems. Reference [11] proposed to calculate the expected value
and standard deviation of the power flows initially in order to
determine the optimum step size and appropriate number of
points for injected powers at each node. Then, the complete den-
sity function of the power flow is computed. Reference [12]
used a discrete frequency domain convolution techniques by
applying Fast Fourier Transforms to reduce the computation
time. Although, [11], [12] realized the problems of convolution
method and tried to improve its efficiency. However, they are
constrained by the convolution technique and can not essentially
solve the problem. In addition, in order to obtain the Cumula-
tive Distribution Function (CDF) of each line flow, integration
of PDF over the range of line flow needs to be computed.

This paper proposes a new method to compute the PDF and
CDF of line flows. This method combines the concept of Cu-
mulants and Gram-Charlier expansion theory to compute the
PDF and CDF of line flows in a systematic way. Compared
with other methods used by previous researchers [7]-[12], the
method proposed in this paper avoids complex convolution cal-
culation and replaces them with simple arithmetic process due
to unique properties of Cumulants. Moreover, this new method
is able to obtain the PDF and CDF of line flows with one run.
This method significantly reduces the storage since low order
Gram-Charlier expansion is able to achieve enough accuracy to
approximate PDF and CDF of line flows. Therefore, the new
method is able to handle large practical systems. Study results
have shown that the new method can calculate the probability
distribution accurately with much less computation effort. Con-
sequently, system planning engineers are able to use it as a quick
screening tool to determine the major investment on improving
system adequacy.

II. PROBABILISTIC LOAD FLOW FORMULATION

The load flow study computes the steady-state solution of
the power system. In a deterministic load flow study, the known
quantities are the injected active powers (F;) at all busbars
(where P and Q or P and V are known) except the slack bus, the
injected reactive powers (Q;) at all load busbars (where P and
Q are known) and the voltage magnitude (V;) at all generator
busbars (where P and V are known).

P,j:91(61,62...(5n,V1,V2,...Vn) (1)
Qi:hi<617527"'6n7‘/17v2---Vn> (2)
wherei = 1,2,...,n.

Since (1) and (2) are nonlinear in terms of the voltage mag-
nitudes and angles (considered as state variables in this paper),
the numerical solution must be based on an iterative method.

In probabilistic load flow (PLF) studies, the input variables
P; and Q; are defined by probabilistic density functions. It is
preferable to apply linear approximation to (1) and (2) so that the
state variables could be solved as a linear combination of input

variables. This, in turn, will not only allow us to solve load flow
equations through fast direct methods but will also permit ap-
plication of convolution techniques to arrive at the probabilistic
description of the variables of interest.

In long term system planning, the main problem is to locate
transmission and generation facilities in the appropriate places
and in time to satisfy the customer’s real power demand. Voltage
problem is usually local problem when the system is adequate.
Based on these considerations, this paper adopted dc load flow
in the formulation of PLF problems. Since this program is used
as a quick screening tool to determine the major investment on
improving transmission system inadequacy, contingency anal-
ysis will be next step in system planning. Probabilistic contin-
gency analysis will be our future research interest.

In addition, this paper mainly focuses on the methodology of
computing probabilistic distribution functions of line flows. Al-
though there are several other linearization methods applicable
to PLF study, the methodology proposed in this paper is not re-
stricted by the particular linearization formulation of PLF. It can
be easily modified to study a.c. load flow.

Assume V; = Vi, = 1 p.u., G4 = 0 and Sind;;, = 6;x

Pizz% 3)

where X, is the reactance of the line joining bus i and k. The
above equation can be formed in terms of a matrix expression

P=Y$é “

where Y, = (1/Xi), Y = Z#k(l/Xik) in which the slack
bus row and column are deleted. This equation is known as a dc
form of the load flow problem. Therefore,

§=Y 'P=2ZP 3)

where Y is the admittance matrix and Z is the impedance ma-
trix.
The power flow in the line joining the buses i and k becomes

b=
=7

Py, (6)
The line flows can be represented as a function of voltage angles
at busbars:

Prine = Té @)
Replacing 4 using (5), the line flows can be expressed as:
PLine = TZP = HP ®)

The matrix H contains network distribution factors. The no-
tation “(ik)j” represents the element of H in the row corre-
sponding to line ik and in the column corresponding to bus j.
An element H;y); of H represents the amount of real power
flowing in line ik as a result of injection of 1 MW at bus j (with
1 MW absorbed by the slack bus). The distribution factors are
obtained by

X C))

Hiryj =
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in which, if node j is the slack bus, H;z); = 0.

III. THEORETICAL BACKGROUND
A. Definition of Moments

If, for a positive integer v, the function X" is integrable with
respect to F(x) over (—oo, +00), the integral

—ner= [

is called the moment of order v or the vth moment of the distri-
bution [14].

The moments about the mean, m, are often called the central
moments

+o0
m:Em—mwzf (z -

J —oo

z'dF(x) (10)

m)'dF(z)  (11)

In the case of a linear function n = aa + b, the vth moment
of the variable 7 is given by the expression

al = E[(a’f—i_b)v] = a'vav'i' <11)> av_lbav—l'i" : +bv (12)

B. Definition of Cumulants

The mean value of the particular function e**¢ will be written

400
olt) = B = [

— 00

" dF (x) (13)
This is a function of the real variable t, and will be called the
characteristic function of the variable £ [14].

If the £ th moment of the distribution exists, the character-
istic function can be developed in MacLaurin’s series for small
values of t:

k
Ay .\
o(t) =1+ 21: E(zt) + o(tF) (14)
Yo (it

log (t) v+ o(th) (15)

v!

=

The coefficients v, were introduced by Thiele and are called the
semi-invariants or cumulants of the distribution.

The cumulants v/, of a linear function n = a£+b are obtained
from the development:

k
bzt § :
1

(16)

= |§\

log[e Yt o(th)

Therefore,

vy =ay1+b and 4, =a’y, forv>1 a7
C. Relationship Between Moments and Cumulants

The relationship between the moments and the cumulants can
be deduced by substituting ¢(t) in (14) to (15),

k

k
log (1 +y %(it)") = %(z’t)” + o(t*)

1

(18)
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It is seen that +,, is a polynomial in a1, ..., a,, and conversely
v, 1s a polynomial in 71, ..., 7y,. In particular,

Y1 =01 =

Yo =2 — o}

Y3 = az — 3aias + 2(1‘;’
Yy =y — 304% —4daias + 12a%a2 — Ga%

(19)

where m denotes the mean value.
In terms of the central moments 3, the expressions of the -,
become

Y1=m
Yo = =07
v3 =3
V4 = B4 — 303

v5 = B5 — 108233
Y6 = B — 1503201 — 10533 + 3055

...... (20)
where o denotes standard deviation and conversely

B1=0

Bo = =0’

B3 =13

Ba=1+37;

B5 =75 + 107273

6 = 76 + 157274 + 1003 + 1573

...... (21)

D. Property of Cumulants

Let ¢ and 7 be independent random variables with known
cumulative function F; and F5. The cumulative function F'(z)
of the sum of two independent variables is given by

+o0 +o0
F(w):[m Fl(x_Z)sz(Z):[w Fy(x — 2)dFy(2)
(22)
(23)

For the sum &3 + & + - - -
cumulative function

+ &, of n independent variables, the

F=F «Fyx---xF, (24)

Let ¢1(t), p2(t), and ¢(t) denote the characteristic function
of &, n, and & + 7 respectively.

o(t) = B [e"€0] = Bl Ble™] = o1(1) +pa(t) (25)

If &1,&9, ..., &, are independent variables with the character-
istic function 1 (t), w2(t) . .. @n(t), the characteristic function
o(t) of the sum &; + - - - + &, is thus given by [9]:

(26)

p(t) = @r(t) * pa(t) * - * on(t)
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The multiplication theorem for characteristic functions gives

log @(t) = log @1 (t) +logpa(t) + --- +logp,(t)  (27)
Therefore,
Yo =9+ (28)
According to (20), it can be observed that
m=mi+mz+---+my
2 _ 2 2 2
oc°=0]+o05+--+o0, (29)

E. Gram-Charlier Expansion

Consider any random variable £ with a distribution of a con-
tinuous type and denote the mean value as m and the standard
deviation as o. For the standardized variable ({ — m)/(0), its
cumulative function and density function are denoted as F'(z)
and f(x) respectively.

According to Gram-Charlier expansion, the cumulative and
the density functions can be written as [14]:

F(z) = (@) + T (@) + 3 0"(2) + 500 (2) 4 -
| | ] o

F(@) = o)+ T/ (@) + 59" (@) + 5P (@) + -
(€29)

where ®(x) and ¢(z) represent the cumulative distribution
function (CDF) and probabilistic density function (PDF) of
normal distribution with m = 0 and ¢ = 1;¢, are constant
coefficients.

60:1

01202:0

e = -2
Pa

==_3

Cy 0_4

Cs —ﬂ—g—i-l()&
o o3

cﬁ_ﬂ—g—lsﬂ—j+30
g g

.......... (32)
In this paper, we tested and compared Gram-Charlier series ex-
pansions from order 3 to 9 in order to identify which order(s)
yield the highest accuracy for approximating the PDF of line
flows using the combined Cumulants and Gram-Charlier expan-
sion method.

IV. COMPUTATION PROCEDURE

Based on the above theories, the procedure of calculating
PDF of line flows is summarized as follows,

1) Given the probabilistic description of generation and
load, calculate the moments of injected active power
according to (10).

2) Compute the cumulants of injected power according
to the relationship between cumulants and moments
expressed using (19).

3) Compute the cumulants of line flow according to the fol-
lowing equations:

For the ith line flow,

Prinei = hinPL + hipPo + -+ + hin Py

For the cumulants related with the sth line flow,

Yo = BV + By 3 + - b

where v = 1,2,...,9.

4) Compute central moments of each line based on (21).

5) Calculate the Gram-Charlier expansion coefficients using
(32).

6) The cumulative distribution function and probabilistic
density function of line flows can be obtained using (30)
and (31) respectively.

V. CASE STUDY AND RESULT COMPARISON

The method described in the preceding sections is applied to
a WSCC (Western Systems Coordinating Council) test system,
which consists of 179 buses and 263 lines. The network diagram
s TEO‘())Vr er lt:cl)g'dlc’rr{cl)gl'trate accuracy and efficiency of this
method, it is compared with Monte Carlo simulation. Monte
Carlo simulation repeats the process of deterministic load
flow computation using, in each simulation, a particular set of
values of the random variables generated in accordance with
the corresponding probability distributions. Two simulations
have been undertaken for different purposes. In order to
compare calculation efficiency with the new method proposed
in this paper, one simulation sets the termination criteria as the
maximum difference of the mean values to all line flows less
than 1 MW consecutively for three successive trials. Based on
this criterion, Monte Carlo simulation converges at 753 trials.
With consideration of accuracy comparison, another simulation
sets the number of trials at 5000.

Table I lists the calculation time using each method. It can be
seen that, depending on the order of Gram-Charlier expansion,
the new method proposed in this paper is about 20-30 times
faster than Monte Carlo Simulation with 753 iterations.

Fig. 2 shows the cumulative distribution curves of line flow
LOS BANOS to MIDWAY, which is one of the two lines in Path
15 (the well-known bottleneck between southern and northern
California). In order to display the graph clearly, we only show
3rd, 6th, and 9th orders of combined Cumulants and Gram-
Charlier Expansion method. It can be seen that, with comparison
of Monte Carlo Simulation, combined Cumulants and Gram-
Charlier Expansion method can precisely calculate the CDF of
line flows.



680

Fig. 1. WSCC Test System Diagram.

TABLE 1
COMPUTATION TIME COMPARISON

Methods Computation Time

(seconds)

Monte Carlo (753 iterations) 203.44
Monte Carlo (5000 iterations) 941.59
Cumulants & Gram-Charlier (3rd) 8.84
Cumulants & Gram-Charlier (4™) 9.77
Cumulants & Gram-Charlier (5™ 10.44
Cumulants & Gram-Charlier (6™) 11.48
Cumulants & Gram-Charlier (7%) 12.08
Cumulants & Gram-Charlier (8") 12.96
Cumulants & Gram-Charlier (9™) 13.84

In order to demonstrate the accuracy of this method, Average
Root Mean Square (ARMS) error is computed using the Monte
Carlo 5000 iteration results as reference. ARMS is defined as:

VX (CGi - Moy
N

ARMS = (33)

where
CG; is the ith point’s value on the cumulative distribution
curve calculated using the method of combined Cumu-
lants and Gram-Charlier expansion;
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Cumulative Distribution Curve of Line LOS BANOS

- MIDWAY
120.00%
100.00% WW
> 80.00%
| 60.00%
Q2
[
T 40.00%
20.00%
.00% - — ,
= 3 8 8 3 3
2 % mw ° 8

—«&— Monte Carlo (5000) —ii— Cumulants (3rd)
e GuMUlants (6th)

96 Cumulants (9th)

Fig. 2. Cumulative Distribution Curves of Line LOS BANOS-MIDWAY.

TABLE 11
ARMS oOF LINE FLOwW FROM L0OS BANOS TO MIDWAY

Methods ARMS
Cumulants & Gram-Charlier (3rd) 0.099%
Cumulants & Gram-Charlier (4th) 0.104%
Cumulants & Gram-Charlier (5th) 0.104%
Cumulants & Gram-Charlier (6th) +0.102%
Cumulants & Gram-Charlier (7th) 0.102%
Cumulants & Gram-Charlier (8th) 0.102%
Cumulants & Gram-Charlier (9th) 0.102%

Cumulative Distribution Curve of Line CASTAI4G

- CASTAIC
120.00%
100.00%
2 -80.00%
:é 60.00%
8
o 40.00% A
20.00% - y
.00% +—€—r T T T T T T
88RS$§2 R8BS 22
' MW
—e— Monte Carlo (5000) —@— Cumulants (3rd)
g Cumulants (6th)  ~3¢- Cumulants (9th)
Fig. 3. Cumulative Distribution Curves of Line CASTAI4G-CASTAIC.

MC; is the ith point’s value on the cumulative distribution

curve calculated using the Monte Carlo method;

N represents the number of points.

The relevant ARMS results of power flow on the line LOS
BANOS to MIDWAY are shown in Table II.

Fig. 3 shows the cumulative distribution curves of line
flow from CASTAI4G to CASTAIC calculated using different
methods. In our simulation, we assume that there is only one
generator located at CASTI4G with 200 MW output capability
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TABLE III TABLE 1V
ARMS oF LINE FLow FrROM CASTI4G TO0 CASTAIC ARMS OF LINE FLow FROM JOHNDAY 500 TO JOHNDAY 138
Methods ARMS Methods ARMS
Cumulants & Gram-Charlier (3rd) 3.259% Cumulants & Gram-Charlier 0.079%
Cumulants & Gram-Charlier (4th) 1.964% (3rd)
Cumulants & Gram-Charlier (5th) 1.824% Cumulants & Gram-Charlier 0.078%
Cumulants & Gram-Charlier (6th) 1.693% (4th)
Cumulants & Gram-Charlier (7th) 1.809% Cumulants & Gram-Charlier 0.078%
Cumulants & Gram-Charlier (8th) 1.812% (5th)
Cumulants & Gram-Charlier (9th) 2.334% Cumulants & Gram-Charlier 0.081%
(6th)
Cumulants & Gram-Charlier 0.082%
Cumulative Distribution Curve of Line (7th)
JOHNDAY500 - JONHDAY138 Cumulants & Gram-Charlier 0.082%
120.00% (8th)
100.00% — = Cgu}x;nulants & Gram-Charlier 0.081%
Z 80.00% : A Oth)
E 60.00%
<] 40.00% TABLE V
e R )// ‘ MW VALUE OF 10% AND 90% CONFIDENCE LEVEL OF LINE FLOow FROM
20.00% - Los BANOS TO MIDWAY
00% —W"M , :
8 8 8 8 8 8 8 B B8 B Methods MW MW
& 8 &§ ¢ 8 3 83 R 3 B (10%) (90%)
' ‘MW Monte Carlo (753 iterations) -106 77
—e— Nonte Carlo (5000) —s— Cumulants (3rd) Monte Carlo (5000 iterations) -109 87
g CUMMUIANES (6th) ~3é— Cumulants (9th) Cumulants & Gram-Charlier (Brd) -109 84
Cumulants & Gram-Charlier (4th) -109 84
Fig. 4. Cumulative Distribution Curves of Line Cumulants & Gram-Charlier (5th) -109 84
JOHNDAY500-JOHNDAY 138. Cumulants & Gram-Charlier (6th) -109 84
Cumulants & Gram-Charlier (7th) -109 84
in total. Line CASTAI4G-CASTAIC is the sole line connecting ~ _Cumulants & Gram-Charlier 8th) | -109 84
that generator with the whole system. Cumulants & Gram-Charlier (9th) -109 84

Table III shows the ARMS of power flow on line
CASTI4G-CASTAIC. We can observe that the method pro-
posed in this paper can approximate Cumulative Distribution
Function (CDF) of line flow from LOS BANOS to MIDWAY
more accurately than the ones of line CASTAI4G-CASTAIC.
This is due to the fact that line CASTAI4G-CASTAIC is
located near the generator at CASTI4G and therefore its CDF
is dominated by that generator’s probabilistic distribution
pattern. Since we usually use binomial distribution modeling
the PDF’s of generators, the PDF of the generator at CASTI4G
is a discrete function. Because the Gram-Charlier expansion
method is derived from Central Limit theory, it provides better
approximation when the number of independent variables tends
to infinity and the probability distribution function of each vari-
able is continuous rather than discrete. This leads to the better
approximation of the CDF of line LOS BANOS-MIDWAY.

Fig. 4 shows the cumulative distribution curves of line
JOHNDAY500-JOHNDAY 138 where 10 generators are lo-
cated at bus JOHNDAY 138. The ARMS of this line flow is
shown in Table IV. Results shown in this figure and this table
have proved that the accuracy of Gram-Charlier expansion
method improves as the number of independent variables
increases.

In planning, we are interested in the 10% and 90% confidence
levels that the line flow will not exceed because this would
indicate roughly the desired capacity of the path. Consequently,
accurate estimation of MW value at 10% and 90% confidence
levels has important meaning to system planning engineers.
For example, the MW value at 10% and 90% confidence levels
of line LOS BANOS-MIDWAY is calculated using different
methods and displayed in Table V.

In conclusion, computation results have proved that the com-
bined Cumulants and Gram-Charlier expansion method enables
system planners to estimate 10% and 90% confidence levels ac-
curately enough to determine the security level and the max-
imum power rating of the line with confidence.

VI. CONCLUSION

Open access of transmission systems brings many uncertain-
ties into system planning. Compared with deterministic load
flow studies, probabilistic load flow studies give system plan-
ning engineers the ability to appraise the system in a much wider
sense and enables quantitative assessment to be made in relia-
bility studies.
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The combined Cumulants and Gram-Charlier expansion
method proposed in this paper provides a new way of computing
probabilistic distribution functions of line flows for reliability
evaluations in system expansion planning. With the comparison
of Monte Carlo 5000 iteration results, the new method is able
to accurately approximate the cumulative distribution function
of transmission line flows. More importantly, this method is a
significant improvement in reducing storage, therefore is able
to handle extensive system. Results have shown that it is 20-30
times faster than Monte Carlo simulation. Theoretically, the
method will not increase computation burden dramatically with
increase of system size. Future research will consider applying
this method to larger size systems.

Based on our observation, order 6 of combined Cumulants
and Gram-Charlier method gives better approximation to the
entire CDF curve. However, order 7 provides better estimation
results at the tail ends (e.g., 10% and 90% confidence levels) of
the distribution. Since it is more important for planning engi-
neers to estimate the reasonable upper range of line flows, we
recommend that the combined Cumulants and Gram-Charlier
expansion method be applied with 7th order.

In summary, this method enables system planners to obtain
the possible ranges of power flow and the probability of oc-
currence quickly enough to meet planning requirements in the
deregulated power markets. With this information, the prob-
ability of any line being overloaded can be easily computed.
Therefore, objective decisions can be made with regard to re-
inforcement plans.
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