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Point Estimate Schemes to Solve
the Probabilistic Power Flow

Juan. M. Morales, Student Member, IEEE, and Juan. Pérez-Ruiz, Member, IEEE

Abstract—This paper analyzes the behavior of Hong’s point
estimate methods to account for uncertainties on the probabilistic
power flow problem. This uncertainty may arise from different
sources as load demand or generation unit outages. Point estimate
methods constitute a remarkable tool to handle stochastic power
system problems because good results can be achieved by using the
same routines as those corresponding to deterministic problems,
while keeping low the computational burden. In previous works
related to power systems, only the two-point estimate method
has been considered. In this paper, four different Hong’s point
estimate schemes are presented and tested on the probabilistic
power flow problem. Binomial and normal distributions are used
to model input random variables. Results for two different case
studies, based on the IEEE 14-bus and IEEE 118-bus test systems,
respectively, are presented and compared against those obtained
from the Monte Carlo simulation. Particularly, this paper shows
that the use of the 2m + 1 scheme provides the best performance
when a high number of random variables, both continuous and
discrete, are considered.

Index Terms—Monte Carlo simulation, point estimate methods,
power flow analysis, power system modeling, uncertainty.

I. INTRODUCTION

MANY engineering problems are subject to uncertainty,
due to the inherent randomness of natural phenomena or

to the implicit and inaccurate assumptions related to the consid-
ered modeling approach. Computational methods which tackle
uncertainty allow engineers to propose solutions less sensitive to
environmental influences, while achieving simultaneously cost
reduction or reliability improvement. In power system analysis,
the use of techniques able to account for uncertainty is required
to control and minimize the risks associated with design and op-
eration [1].

Power flow studies [2], [3] help engineers to accomplish these
tasks by revealing the steady state of the system under consid-
eration for a specified set of power generations, loads, and net-
work conditions. In an open-access environment, this informa-
tion is not certain, and for this reason, it is desirable to assess
system variables (bus voltages and line flows) for a range of
load and generation conditions. Using deterministic power flow
routines, it is necessary to run them many times so as to en-
compass all, or at least the majority of, possible system states.

Manuscript received February 6, 2007; revised April 12, 2007. Paper no.
TPWRS-00078-2007.

J. M. Morales is with the Departamento de Ingeniería Eléctrica, Elec-
trónica, Automática y Comunicaciones, ETS Ingenieros Industriales, Uni-
versidad de Castilla-La Mancha, Ciudad Real E-13071, Spain (e-mail:
JuanMiguel.Morales@uclm.es).

J. Pérez-Ruiz is with the Departamento de Ingeniería Eléctrica, ETS Inge-
nieros Industriales, Universidad de Málaga, Málaga E-29013, Spain (e-mail:
jperez@uma.es).

Digital Object Identifier 10.1109/TPWRS.2007.907515

Hence, from a practical point of view, it turns out to be con-
venient to approach the power flow as a probabilistic problem.
This leads to the problem known as probabilistic power flow [4],
[5], where the state variables and output network quantities of
a power system are obtained as random variables, and thus, it
becomes easy to identify the possible ranges of the power flow
results.

In the technical literature, there are several techniques to deal
with problems under uncertainty. These techniques may be clas-
sified into the three main categories [6]: Monte Carlo simula-
tion, analytical methods, and approximate methods.

Monte Carlo simulation [7] randomly generates values for un-
certain input variables, and these values are taken into account to
solve a deterministic problem. This technique has been widely
used in power systems analysis to model uncertainty. The main
drawback of the Monte Carlo method is the great number of
simulations required to attain convergence. However, it uses de-
terministic routines to solve the problem in each simulation.

Analytical methods are computationally more effective, but
they require some mathematical assumptions in order to sim-
plify the problem. A multilinear model is used to handle net-
work nonlinearities [8], [9]. Likewise, convolution techniques
are used to obtain a mathematical description of the behavior
of output random variables. The fast Fourier transform is em-
ployed in [10], and the cumulant method is used to solve the
probabilistic power flow in [11]. The later is usually combined
with the Gram–Charlier expansion in order to estimate the prob-
ability functions of output random variables [12]. Von Mises
functions are introduced in [13] to handle discrete distributions.
The fuzzy load flow presented in [14] and methods which com-
bine analytical techniques and Monte Carlo simulation [15],
[16] may be pointed out as well.

Approximate methods provide an approximate description
of the statistical properties of output random variables. Within
these techniques, first-order second-moment method (FOSMM)
[17] and point estimate methods stand out.

In this paper, the point estimate method approach is used to
solve the probabilistic power flow problem. The main advan-
tages follow.

1) As Monte Carlo simulation, point estimate methods use
deterministic routines for solving probabilistic problems;
however, they require a much lower computational burden.

2) Furthermore, point estimate methods overcome the diffi-
culties associated with the lack of perfect knowledge of the
probability functions of stochastic variables, since these
functions are approximated using only their first few sta-
tistical moments (i.e., mean, variance, skewness, and kur-
tosis). Therefore, a smaller level of data information is
needed.
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TABLE I
QUALITATIVE DESCRIPTION OF POINT ESTIMATE METHODS

The aim of any point estimate method is to compute the mo-
ments of a random variable that is a function of random
input variables , i.e., . The first point
estimate method was developed by Rosenblueth in 1975 [18] for
symmetric variables and was later revisited in 1981 [19] to con-
sider asymmetric variables. Since then, several methods that im-
prove the original Rosenblueth’s method have been presented.
They basically differ on the type of random variables they con-
sider (symmetric or asymmetric, correlated or not) and on the
number of evaluations to be performed. Table I presents a qual-
itative description of the main point estimate methods ( is a
parameter depending on Hong’s method used).

In realistic size power system problems, the number of input
random variables involved is high. Hence, the Rosenblueth’s
original method, as well as recent and more accurate point esti-
mate methods based on the Rosenblueth’s approach [21]–[23],
are not suitable because the number of simulations could be even
greater than in the Monte Carlo simulation.

On the other hand, the number of simulations to be performed
by using the point estimate methods developed by Harr [24] or
Hong [25] grows linearly with the number of input random vari-
ables. However, although Harr’s method is suitable for corre-
lated variables, it is constrained to symmetric variables (skew-
ness equals zero).

In this paper, Hong’s point estimate methods are used to solve
the probabilistic power flow problem. Four different concentra-
tion schemes are presented and tested over two different case
studies of different size. Results are compared against those ob-
tained using Monte Carlo simulation. These case studies take
into account both continuous variables (with normal distribu-
tion) and discrete variables (with binomial distribution).

To the best of our knowledge, there is only one work [26],
later refined in [27], which applies a point estimate method
to solve the probabilistic power flow problem. The two-point
estimate method used in [27] is equivalent to the Hong’s
scheme. Besides this, a recent paper on probabilistic optimal
power flow [28] also uses the two-point estimate method. The
two-point estimate method, or scheme, does not provide
generally good results if the number of input random variables
is high, and thus, it is not adequate for power system problems
of realistic size. As it will be shown below, the scheme
is able to overcome this drawback by performing only one ad-
ditional evaluation of the function .

This paper is organized as follows. Hong’s point-estimate
methods are introduced in Section II, and two of the four
different schemes considered in this paper (the and
schemes) are developed, while the other two schemes (the

and schemes) are included in the Appendix. Section III
presents the application of these point estimate methods to
solve the probabilistic power flow problem. Results for two
case studies, based on the IEEE 14-bus and IEEE 118-bus
test systems, respectively, are presented and compared against
those obtained from the Monte Carlo simulation. Finally, in
Section V, some relevant conclusions are summarized.

II. HONG’S POINT ESTIMATE METHODS

Point estimate methods concentrate the statistical information
provided by the first few central moments of a problem input
random variable on points for each variable, named concen-
trations. By using these points and the function , which relates
input and output variables, information about the uncertainty as-
sociated with problem output random variables can be obtained.

The th concentration of a random variable can
be defined as a pair composed of a location and a weight

. The location is the th value of variable at which the
function is evaluated. The weight is a weighting factor
which accounts for the relative importance of this evaluation in
the output random variables.

By using Hong’s point estimate methods, the function
has to be evaluated only times for each input random
variable at the points made up of the th location

of the input random variable and the mean ( ) of
the remaining input variables, i.e., at the points

. In other words, the deterministic
problem has to be solved times for each input random
variable , and the difference among these problems is the
deterministic value assigned to , while the remaining
input random variables are fixed to their corresponding mean.
The number of evaluations to carry out depends on the
scheme used. Therefore, the total number of evaluations of
is .

Specific variants, or schemes, of Hong’s point estimate
method take into account one more evaluation of function
at the point made up of the input random variables means

. Hence, for these schemes, the
total number of evaluations of is .

Hong’s point estimate method is described with the aid of
Fig. 1. The concentrations of the input random
variables are obtained from the statistical input data (e.g., the
probability density function in Fig. 1).

The location to be determined is

(1)

where is the standard location, and and (input data)
are the mean and standard deviation of the input random variable

.
The standard location and the weight are obtained

by solving the nonlinear system of equations [25]

(2)
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Fig. 1. Hong’s point estimate methods.

where denote the th standard central moment of the random
variable with probability density function , that is

(3)

(4)

Note that equals zero, equals one, and and
are, respectively, the skewness and kurtosis of . The system
of (2) can be efficiently solved by the procedure developed by
Miller and Rice [29].

Once all the concentrations are obtained, the func-
tion is evaluated at the points
yielding , where is the vector of output random
variables. Finally, by using the weighting factors and
the values, the th raw moment of the output random
variables can be estimated according to the expression (5)

(5)

Detailed information about the estimation error involved in
(5) can be found in [30].

In this paper, four different concentration schemes are con-
sidered: two type schemes ( and ) and two

type schemes ( and ). The
scheme is not considered because normally distributed input
random variables yield non-real (complex) standard locations,
and hence, the concentration parameters are also
useless non-real values.

Solving analytically (2) to obtain the standard locations and
weights is only possible for the and schemes. These
two schemes are described below. On the other hand, the proce-
dure to obtain the standard locations and weights of the other
two schemes ( and ), which requires a numerical
non-analytical solution, is described in the Appendix.

A. Scheme ( )

This scheme only uses two concentrations for each input
random variable. From (2) for , the statistical infor-
mation supplied by the skewness is enough to achieve an

analytical solution for the standard locations and weights of
random variable

(6)
and

(7)

and then, taking into account the mean and standard deviation
of , the locations and can be computed from (1).

It should be noted in (6) that the standard locations, and
, depend on the number of input random variables. As

increases, the locations and move away from the mean
according to . Hence, the locations may be at points

where the probability distribution of is not well known, or
even fall outside its domain of definition. This drawback, shared
by all schemes, has been pointed out in [31].

On the other hand, the scheme has significant advan-
tages related to its simplicity, its low computational burden,
and the fact that it always provides real value solutions for the
concentrations.

B. Scheme ( , )

This is the first type scheme considered in this
paper. It requires only one additional evaluation of function
than the scheme. From a mathematical point of view, this
scheme arises from solving (2) for (see the scheme
in the Appendix) with one of the three standard locations
set to zero.

Let . Then, the standard locations and weights are:

(8)

(9)

It should be noted in (1) that setting yields
and so, of the locations are the same point

. Hence, it is enough to run only
one evaluation of function at this location, provided that the
corresponding weight is updated to the value

(10)

From (8), it can be seen that the standard location values of
the scheme do not depend on the number of input
random variables, as do the type schemes. Moreover,
this is a common feature of all the concentration
schemes.

The scheme is more accurate than the scheme be-
cause it takes into account the kurtosis of the input random
variables while only one additional evaluation of the function
is needed.
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Fig. 2. Flow diagram of the algorithm.

On the other hand, (8) indicate that this scheme yields non-
real locations when . However, for the prob-
ability distributions usually employed to model the uncertainty
in power system problems (normal, binomial, or uniform), the
locations are always real values.

III. APPLICATION OF HONG’S POINT ESTIMATE METHODS

TO THE PROBABILISTIC POWER FLOW

The algorithm to solve the probabilistic power flow problem
by means of Hong’s point estimate methods is shown in Fig. 2.

The power flow input data, variables and/or parameters are
modeled as random variables with a known probability distribu-

tion and, depending on the concentration scheme used, the loca-
tions and weights have to be computed as described previously.
It should be noted that the point estimate method allows mod-
eling as random variables both input variables of the power flow
problem (e.g., power injections) and input parameters (e.g., line
reactance). Therefore, in the probabilistic power flow problem,
the number of input random variables may be greater than the
number of output random variables.

A deterministic power flow must be run for each point
. Note that an ac deterministic

routine may be used to carry out the computations because only
deterministic values are involved. The solution of a power flow
problem is

(11)

where is the vector of output random variables associ-
ated to the th concentration of random variable , and repre-
sents the nonlinear relation between input and output variables
in the power flow problem. The total number of deterministic
power flow problems to be run depends on the concentration
scheme considered.

The vector is used to estimate the raw moments of the
output random variables

(12)

The algorithm ends once all the concentrations of all input
random variables are taken into account. Then, the estimated
raw moments of the output random variables are used to com-
pute the desired statistical information. In this paper, besides the
mean and the standard deviation, the Gram–Charlier expansion
[12], [32] is used to compute the probability density functions
(pdf) and the cumulative density functions (cdf) of the output
random variables.

In order to provide a general overview of the overall perfor-
mance of the different point estimate schemes, the following
error indices are defined for each output random variable :

(13)

(14)

where and are the mean and standard deviation cal-
culated with Monte Carlo simulation and, hence, taken as ref-
erence values. Similarly, and are the mean and
standard deviation estimated by a given point estimate method.
Likewise, the average error indices and are defined as
the mean values of and , respectively, for each set of
variables, where may refer to voltages ( ), angles ( ), ac-
tive power injections ( ), reactive power injections ( ), active
power line flow ( ), or reactive power line flow ( ).

IV. CASE STUDIES

Two case studies are presented to illustrate the overall per-
formance of the point estimate methods presented in this paper.
The probabilistic power flow problem is solved for the IEEE
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TABLE II
MEAN AND STANDARD DEVIATION RESULTS FOR THE IEEE

118-BUS TEST SYSTEM (SELECTED VALUES)

14-bus and IEEE 118-bus test systems [33]. The deterministic
data available in [33] are considered the base case, that is, the
location point associated with the mean of the input random
variables.

The probabilistic data for the IEEE 14-bus test system are
obtained from [11] and [34]. The probabilistic data for the IEEE
118-bus test system are determined as follows.

• Generation units. Each generation plant is divided into four
units with the same power production and a forced outage
rate of 0.09. A binomial distribution is used to model each
generation plant, and the mean of this input random vari-
able is set to the base case power production of the corre-
sponding generation plant. This condition is used to com-
pute the power production of the units.

• Load demand. The active and reactive power of the load
buses are modeled as normal distributions, whose means
equal the base case data, and whose standard deviations
are set arbitrarily as follows: 7% from bus #1 to bus #33,
4% from bus #34 to bus #59, 9% from bus #60 to bus #79,
and 5% from bus #80 to bus #118.

The accuracy and efficiency of the analyzed point estimate
schemes are tested by comparing the results obtained with those
derived from the Monte Carlo simulation with 10 000 samples.
This number of simulations is high enough to guarantee the
convergence of Monte Carlo method: the differences among
the solutions obtained by running several executions of the
Monte Carlo simulation with 10 000 samples are on the order of

per unit.For thepurposesof thispaper, thesedifferencesare
small enough to consider the results provided by the Monte Carlo
simulation with 10 000 samples as reference, or exact values.

The first result to stand out is the inappropriate behavior of the
scheme with binomial distributions. In both case studies, the

injected active power in generation plants, modeled as binomial
distributions, yields non-real (complex) concentration values.
This complex concentrations are useless, and thus, the results
over the scheme have been omitted.

Table II shows the mean and standard deviation results of the
118-bus case study for a selected set of output random variables,
which have been considered representative of the general results
obtained from the different point estimate schemes analyzed in
this paper. It can be observed that the two type
schemes provide good results compared with the Monte Carlo
values, both for the mean and the standard deviation. The
scheme mean results also yield acceptable values, except for

TABLE III
AVERAGE ERROR INDICES FOR IEEE 14-BUS TEST SYSTEM

TABLE IV
AVERAGE ERROR INDICES FOR IEEE 118-BUS TEST SYSTEM

; however, the differences grow up for the standard deviation
values, where only the variable presents a value similar to
the Monte Carlo simulation result.

By comparing the results of the two case studies of different
size, the effect of the number of input random variables on
the behavior of the different point estimate schemes analyzed
can be pointed out. In this sense, note that the number of input
random variables included in the 14-bus case study is 23, while
the probabilistic power flow run over the 118-bus case study
takes into account 170 input random variables.

Tables III and IV show the average error indices corre-
sponding to the estimations of the different point estimate
methods developed in this paper for the IEEE 14-bus and IEEE
118-bus test systems, respectively. The average error indices of
the scheme for the IEEE 14-bus test system (see Table III)
are as good as those of the and schemes. This
is due to the fact that the scheme concentrations depend
on the number of input random variables. This dependence
causes the estimation errors incurred by this scheme to increase
as does. Note, by comparing both tables, that the estimation
errors of the scheme increase when the total number of
input random variables goes from 23 in the IEEE 14-bus
system to 170 in the IEEE 118-bus test system. This effect is
also pointed out by the two previous works [27], [28] applying
point estimate methods to power systems reported in Section I.

However, the and schemes keep their good be-
havior when increases because their concentrations do not de-
pend on it. This stable behavior over the number of input random
variables is the reason why these type schemes pro-
vide better results than type schemes when a realistic
power system is considered.

Results for the IEEE 118-bus test system (see Table IV) also
show that the average errors of estimations incurred by schemes

and are much smaller than those corresponding
to the estimations of the scheme. For instance, with regard
to mean values calculated by schemes and , the



MORALES AND PÉREZ-RUIZ: POINT ESTIMATE SCHEMES TO SOLVE THE PROBABILISTIC POWER FLOW 1599

Fig. 3. Bus #21 voltage pdf and cdf.

largest average error corresponds to active power line flows and
does not exceed 1%. However, in the case of scheme , the
highest average error corresponds to reactive power line flows
and is about 50%. As for the standard deviations, the differences
between the estimations provided by the scheme and those
provided by schemes ( y ) are still more
remarkable. Note, for example, that the average error associated
with the estimations of scheme for the standard deviations
of reactive power injections is greater than 6000%, whereas this
error does not exceed 5% in the case of schemes and

.
It can also be noted that the standard deviation average er-

rors are greater than the mean ones in almost all the cases. This
makes evident that the accuracy of the point estimate methods
worsens as the order of the estimated statistical moment be-
comes higher. This difference is especially remarkable for the
case of the scheme applied to 118-bus test system. As an ex-
ample, the average error incurred by this scheme for the mean
of the reactive power injections is 39.1229%, while this error
reaches a value of 6174.6% for the corresponding standard devi-
ation. This very significant difference is even greater than what
could be expected due to the effect of the large number of input
random variables on the scheme.

Fig. 3 shows the pdf and cdf of the voltage of bus #21 ( )
for the IEEE-118 bus test system. To obtain these functions, the
Gram–Charlier expansion is used. Cumulative density functions
are also compared with those obtained using Monte Carlo sim-
ulation. In Fig. 3, the probability and cumulative density func-
tions corresponding to the scheme are almost not visible
because they coincide with those of , and both provide

TABLE V
CPU TIME (IN SECONDS)

TABLE VI
AVERAGE ERROR INDICES FOR THE MODIFIED IEEE 118-BUS

TEST CASE (ONLY NORMAL DISTRIBUTIONS)

good fitting to the cumulative density function obtained with the
Monte Carlo method. Fig. 3 also shows that the cumulative den-
sity function estimated by the scheme is different from the
others. This is another symptom of the bad behavior of the
scheme if the total number of input random variables is high: a
good fit for the mean, but a high estimation error for the stan-
dard deviation.

Table V presents the CPU time needed to compute the statis-
tical moments of output variables for each scheme considered,
as well as the Monte Carlo simulation with 10 000 evaluations.
The code was developed in the MATLAB environment, and
MATPOWER [35] was used to solve the deterministic power
flows on a Pentium Intel Centrino 1.6-GHz PC with 512 MB of
RAM.

The scheme exhibits the highest computational
burden due to the high number of deterministic power flow
solutions performed. However, it should be noted that the

scheme is faster than the scheme, even though
one additional deterministic power flow has to be solved. As
the total number of input random variables increases, the

scheme locations move away from the mean, and the
convergence of Newton–Rapshon method, used to solve the
deterministic power flows, becomes slower. It should be taken
into account that the output values obtained by solving the de-
terministic power flow for the mean values of all input variables
are considered the initial point for the iterative procedure.

Finally, to check the scheme performance, one more test
is presented. This scheme was not previously considered due to
the complex values obtained for the concentrations of the input
random variables modeled with binomial distributions. To over-
come this drawback, the generation plants probabilistic input
data for the case study based on IEEE-118 bus test system are
changed. Instead of binomial distributions, the generation of
each unit is considered normally distributed, and thus, all input
variables have the same distribution. Table VI shows the re-
sults obtained. It can be appreciated in this table that the
scheme average error indices match the ones. In fact,

saba
Highlight
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both schemes provide the same results because the scheme,
when only normal distributions are taken into account, chooses
the mean as one of the three locations, and thus, it turns out to
be the scheme.

V. CONCLUSION

Point estimate methods are appropriate tools to handle sto-
chastic power system problems because good results can be
achieved by using the same routines as in the associated deter-
ministic problems, while keeping low the computational burden
involved. The use of Hong’s point estimate methods provides
an appropriate solution for the tradeoff between the accuracy of
the results and the efficiency of the computational procedure for
large-scale power system problems.

The four different Hong’s point estimate schemes considered
in this paper have been tested on the probabilistic power flow
problem. Results over two different case studies have been pre-
sented and compared against those obtained from the Monte
Carlo simulation. Binomial and normal distributions are used
to model input random variables.

This paper shows that the use of the scheme provides
the best performance when a high number of input random vari-
ables, both continuous and discrete, is considered. Similar re-
sults are obtained by using the scheme, but it implies a
considerably higher computational burden. The scheme ac-
curacy decreases as the total number of input random variables
increases, and thus, it seems not to be adequate for large-scale
power system problems. Finally, the scheme usually pro-
vides useless complex concentration values when the Binomial
distribution is used to model input data uncertainty. On the other
hand, if input data uncertainty modeling is reduced to normally
distributed random variables, the scheme becomes the

scheme, but it does not include an analytical solution for the
concentrations, and additional deterministic power flows
must be computed.

Although this paper focuses on solving the probabilistic
power flow problem, the presented procedure can be applied
to other power system problems affected by uncertainty, even
those that include optimization algorithms, such as the proba-
bilistic optimal power flow.

APPENDIX

In this appendix, the and schemes are described.
Scheme ( ): Solving analytically (2) for

for the standard locations and weights is not possible. By ap-
plying the Miller and Rice’s procedure [29], the standard loca-
tions are the roots of the following third-order polynomial

, whose coefficients are com-
puted from

(15)

and then, the concentration weights are given by the expression

(16)

This concentration scheme provides theoretically a higher
accuracy than the scheme because it takes into account a
more detailed statistical information of the random variable (the
fourth and fifth central moments are also considered), and like-
wise, three points for each input random variable, instead of
only two, are considered. However, as additional evaluations
of function must be carried out, the scheme requires a
greater computational effort.

Scheme ( , ): This scheme is derived
from the scheme by setting to zero one of the five standard
locations (let ). As in the scheme, there is not an
analytical formula to compute the concentration values.

The other four standard locations are the roots of the
fourth-order polynomial

, whose coefficients are the solution of the system of linear
equations

(17)

Once the standard locations are obtained, the weights are de-
termined by solving the linear system

(18)

and taking into account that the weight (which corresponds
to ) is given by

(19)

Once again, it should be noted in (1) that setting
yields , and therefore, of the locations are the
same . Hence, the weight of this
concentration must be updated to the value

(20)

For the above reason, the scheme can be viewed as
a scheme with a computational burden reduction of
evaluations of .

The higher the number of points used by a point estimate
method, the more accurate estimation of the statistical moments
of the output random variables is achieved. Nevertheless, if the
number of points increases, more information about the input
random variables is required, a greater computational burden is
needed, and the probability of obtaining non-real solutions, or
even an infinite set of solutions, raises.
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