
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3393

SPECIAL ISSUE PAPER

An efficient graph data processing system for large-scale social
network service applications‡

Wei Zhou1,2, Jizhong Han1,*,† , Yun Gao1,2 and Zhiyong Xu3

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2University of the Chinese Academy of Science, Beijing,100049, China

3Department of Math and Computer Science Suffolk University, Boston, MA 02114

SUMMARY

Trust in social network draws more and more attentions from both the academia and industry fields. Pub-
lic opinion analysis is a direct way to increase the trust in social network. Because the public opinion
analysis can be expressed naturally by the graph algorithm and graph data are the default data organiza-
tion mechanism used in large-scale social network service applications, more and more research works
apply the graph processing system to deal with the public opinion analysis. As the data volume is grow-
ing rapidly, the distributed graph systems are introduced to process the large-scale public opinion analysis.
Most of graph algorithms introduce a large number of data iterations, so the synchronization require-
ments between successive iterations can severely jeopardize the effectiveness of parallel operations, which
makes the data aggregation and analysis operations become slower. In this paper, we propose a large-
scale graph data processing system to address these issues, which includes a graph data processing model,
Arbor. Arbor develops a new graph data organization format to represent the social relationship, and
the format can not only save storage space but also accelerate graph data processing operations. Fur-
thermore, Arbor substitutes time-constrained synchronization operations with non-time-constrained control
message transmissions to increase the degree of parallelism. Based on the system, we put forward two
most frequently used graph applications on Arbor: shortest path and PageRank. In order to evaluate
the system, we compare Arbor with the other graph processing systems using large-scale experimental
graph data, and the results show that it outperforms the state-of-the-art systems. Copyright © 2014 John
Wiley & Sons, Ltd.

Received 19 February 2014; Revised 31 July 2014; Accepted 25 August 2014

KEY WORDS: public opinion analysis; graph processing; graph analysis

1. INTRODUCTION

In recent years, with the growing popularity of Facebook [1], Twitter [2], Renren [3], and so on,
social network service (SNS) applications achieve great successes. These applications draw more
and more attentions from academia and industry communities. Ordinary users are getting used to

*Correspondence to: Jizhong Han, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China.
†E-mail: zhouwei@iie.ac.cn
‡The original version of this paper is included in the proceeding of 15th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC 2013). This paper is the extended version. Compared with the original
version, there are four main differences. First, the introduction of this paper starts with the trust in social network and
public opinion analysis, and then the graph processing system is suitable for them, while the original version empha-
sizes the graph computing model in the system. Second, in the background section, this paper discusses more about the
graph representation model, including simple graph and hyper graph. Third, this paper introduces two important public
opinion analysis algorithms based on the programming model in the original version, which play important role in the
public opinion analysis. Lastly, this paper shows the experimental results for the two algorithms in the experimental,
shortest path and PageRank, while the original version only introduces the evaluation results of shortest path.

Copyright © 2014 John Wiley & Sons, Ltd.



W. ZHOU ET AL.

share their stories and feelings with SNS, and it quickly becomes a commodity service in our daily
life. However, it has serious security issues. Many criminals aim to use the information provided
in SNS applications to create inflammatory remarks. Such activities greatly endanger the public
safety and social security [4]. It jeopardizes the mutual trusts among users and impedes the further
development of SNS applications.

Various mechanisms have been proposed to enhance the trust in social networks. Among them,
public opinion analysis plays an important role. It aims to excavate the useful information hidden
inside large-scale SNS data. This information includes but is not limited to finding the opinion
leader, community detection, and friend recommendation [5]. Because of the rapid increasing num-
ber of users and user interactions/activities in SNS applications, not only the total volume of data
but also the quantity and complexity of hidden information boost dramatically.

In order to discover hidden information, we need to describe the SNS data in a systematical
way and then design an appropriate data processing strategy on it. For SNS applications, the graph
data model is the de facto data organization format [6–9]. Research and industry communities have
developed various data analysis software to discover useful information disseminated in the graph.
While data analysis operations on large-scale graph data have been well studied in graph data pro-
cessing systems such as Pregel [10], Twister [11], Trinity [12], and Hama [13], the larger data
sizes and more complex relationships in today’s graph data make these operations becoming more
and more time consuming with these existing techniques. It becomes extremely difficult to obtain
useful information with timely responses. Developing an efficient graph processing model is in
great need.

The state-of-the-art data analysis systems can be categorized into two types: graph database
and graph data processing system. In the first approach, graph data are stored in database. The
graph database can provide efficient query models on graph data with the mature techniques
in databases such as transaction, indexing, query language, and traverses on graph. However,
these systems can only carry query and aggregation functionalities. They do not provide high
performance parallel computing strategies in the graph. In the second approach, the graph data
processing system applies master–slave framework. Slaves are the worker nodes, which exe-
cute the tasks assigned by the master. The master node is in charge of splitting the graph jobs
into multiple tasks; thus, the graph jobs are executed by the slaves in parallel. Clearly, this
approach can fit the needs of graph data processing tasks for scalable processing requirements.
As a result, the researches on graph processing systems draw more and more attentions, and
many systems are developed and widely used nowadays, including Twister [11], HaLoop [14],
Pregel [10], and so on. However, this approach also has severe problems. For example, the data
synchronization requirement between two consecutive processing steps impairs the benefits of par-
allel processing. The master node has to send synchronization messages to the slave nodes and
waits for their replies. This process adds extra overheads and slows down the data operations
significantly.

Based on the previous discussion, we conclude the key issues in the large-scale graph data
processing system as follows.

� I/O accesses on graph data are frequent, especially for the large-scale data analysis tasks.
Apparently, keeping as much data as possible in the physical memory storage space can
enhance the access efficiency. However, the amount of physical memory is limited, and it
cannot hold all the processing data in most scenarios.
� In the emerging systems, the data processing tasks can only progress to the next super step

after all the tasks in the current super step are finished. Clearly, the system overall perfor-
mance is restrained by the slowest work node. Furthermore, the master node has to conduct
data synchronization operations between two consecutive super steps, which is the bottleneck.
It increases the workload on the master node and reduces the effectiveness of the parallel
processing significantly.

In this paper, we propose an efficient large-scale graph data processing framework. In our
model, first, we propose a novel graph data organization strategy to reduce storage consumption.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

It integrates the advantages of both hyper graph (HG) and simple graph (SG) by introducing
extended simple graphs (ESGs). Second, for graph data analysis operations, our system replaces data
synchronization coordinations with a control message mechanism. Third, we introduce two opti-
mization methods to further improve the efficiency in messages transmission operations. Overall,
the paper has the following contributions:

� Designing a novel data storage mechanism. The main idea is to organize graph data with ESGs.
ESG can replace complete connected subgraphs in the original data with hyper edges. It can
significantly reduce the storage consumption overhead.
� Replacing synchronization operation between data iterations with a novel message mechanism.

A slave node can advance to the next iteration once the control message received from the
other slaves matches its own record. It does not have to communicate with the master node for
synchronization any more. It greatly reduces the overhead on the master node.
� Implementing an efficient real-time distributed graph data processing model, named Arbor,

based on the previous ideas. We evaluate Arbor with extensive simulations, and the results
show that, compared with the widely used open-source systems Hama and HyperGraphDB, it
can achieve significantly higher performance.

The rest of this paper is organized as follows. Section 2 introduces the bulk synchronous par-
allel (BSP) model, the different representation of graph data, and the standard graph algorithms.
Section 3 describes the system design and presents the technical details. Section 4 discusses two
basic public opinion analysis applications based on the proposed processing system Arbor. Section 5
depicts simulation configurations and analyzes experimental results compared with other systems.
Section 6 gives the related works. Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1. BSP model

BSP model is a parallel computation model proposed by an English scientist Viliant [15]. The key
component in BSP is super step, which is the minimum computation unit. A super step consists of
multiple slave nodes with associated workloads. Each round, only when the assigned tasks on all
the slave nodes are finished, the system can proceed to the next super step. The process of checking
whether the tasks are finished or not is called synchronization, which is the most time-consuming
operation in BSP. If the tasks are not well distributed on the slave nodes, the overall processing
speed is restrained by the slowest slave node. As a result, the synchronization requirements seriously
jeopardize the efficiency of parallel processing paradigm. To illustrate this issue, Figure 1 shows an
example with two consecutive super steps. Clearly, no slave node can advance to the second super
step before all tasks in the first step finish.

There are many distributed processing systems applying BSP as the data analysis model, such as
Apache Hama [13], Google Pregel [10], and Microsoft Trinity [12]. Because of the nature of graph
data analysis, in each iteration, the system can only obtain the local optimal results instead of global
ones. In order to refine the results, multiple graph data iterations are unavoidable. For example, in
the single-source shortest path (SSSP) problem, initially, each vertex receive a minimum distance
information from its neighbor vertexes. However, it is based on the most recent information from
its neighbor vertexes, and they are not likely the global optimal minimum distance yet. Each vertex
compares this information with the current values and makes updates (if smaller than the current
distance). It then sends messages containing updated distance information to its own neighbor ver-
texes in the next iteration. The neighbor vertexes can start comparisons and send the updated results
to their own neighbors. In the consecutive rounds, each vertex keeps receiving messages containing
distance information and updates their own accordingly. The whole process continues until no new
results are generated. During this process, the delivering messages are not likely to be received by
the neighbor vertexes simultaneously. In order to ensure the correctness, a synchronization operation
is necessary between iterations. The system cannot move to the next step until the vertexes receive
all the messages from their neighbors.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

Figure 1. Bulk synchronous parallel model.

Figure 2. Simple graph (SG) and hyper graph (HG).

Clearly, BSP model is suitable for off-line graph data processing systems because the super
step cannot go on until all the vertexes in this super step are finished, which is time consuming.
For on-line processing, because of synchronization requirements, the system performance is deter-
mined by the slowest node. It is a great challenge to apply BSP model on real-time on-line
graph data processing system and achieve satisfactory performance, especially for large-scale
SNS applications.

2.2. Simple graph and hyper graph

We can choose two data organization mechanisms to store the graph data: SG (Simple Graph) and
HG (Hyper Graph). They are applied on different applications. For example, HG is mainly used in
image processing [16], human action recognition [17] applications, and so on. SG can be applied
on network organization [18], human brain analysis [19] applications, and so on. However, both of
them have pros and cons.

As Figure 2 displays, an SG consists of vertexes and simple edge only. A simple edge is an
edge that can only connect two vertexes, for example, AB. According to the directional information,
simple edges can be further divided into two types: directed edges and undirected edges. Based on
that, two classes of SGs can be constructed: directed graph and undirected graph.

The description of HG is also shown in Figure 2. Same as SG, an HG consists of vertexes and
edges. However, edges in an HG are hyper edges. A hyper edge is an edge that can connect more
than two vertexes. For example, the hyper edge C1 connects four vertexes, A, B, C, and D. Here, all
hyper edges are undirected edges.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

3. GRAPH DATA PROCESSING SYSTEM DESIGN

In this paper, we propose an efficient graph data processing model called Arbor to address the
aforementioned problems in data analysis tasks for SNS applications. Arbor introduces a new data
organization format to reduce storage consumption and offer fast I/O accesses. In order to simplify
the programming burden for data analysis system programmers, Arbor also provides an easy-to-use
programming model (API). Thus, users only need to implement the specific interfaces following the
predefined rules, and they can leave other jobs to Arbor framework. Users submit the graph jobs to
the graph data analysis engine in Arbor for processing. When a job finishes and the final result is
generated, the engine returns it to the corresponding user. Arbor applies master–slave framework to
handle and execute the graph jobs. The master is responsible for analyzing and dividing the job to
several tasks and assigning them to different slave nodes. Then, the slave nodes execute the tasks
and return the results back to the master node.

In our system, we use ESGs, which replace simple edges with hyper edges in the storage
layer. It can greatly reduce the number of edges to be stored and save space. In order to allevi-
ate the effects of the slowest slave nodes and mitigate the scheduling and maintenance overhead
on the master node, Arbor eliminates synchronization operations by using a novel control mes-
sage mechanism. It also introduces several optimization strategies to improve message transmission
performance.

3.1. Programming model

We design the programming model for Arbor as depicted in Figure 3. There are only two interfaces
needed to be implemented by the users. One is the split interface, and the other is the computation
interface. If the user chooses not to implement its own split method, then a default implementation
can be chosen. It splits the vertexes based on their IDs with a hash function. The computation
method corresponds to the data analysis application specifications as shown in Algorithm 1. It has
to be provided by the users. No default one is offered.

Algorithm 1 Arbor Programming Model
Require:

input W msgs
1: valueD compute(msgs)
2: edgeD getOutEdgeIterator()
3: for each i 2 edge do
4: sendMessage(edge[i],message)
5: end for

Figure 3. The programming model in Arbor.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

In the algorithm, the message transmission model is embedded inside the Arbor system. As a
result, the programming model is based on ‘think as a vertex’, and only the compute.msgs/ needs
to be implemented by users. The users can only think about what computations are needed, which
greatly simplifies the distributed computation complexity in data analysis tasks.

3.2. Graph data storage

In SNS applications, subgraphs of completely connected vertexes are very common, especially
for triangle, a special type of completely connected subgraph. For example, as Table I shows, we
take three public data sets for analysis, and we find out that the number of those subgraphs is
reasonably large.

In SNS data analysis tasks, the users in the same groups or communities can be considered as
a completely connected subgraph because they can contact each other directly. Usually, users in
the same group have common interests or have similar service requirements, such as ‘slave trade
transaction group’ and ‘electronic books reading club’. Other examples include ‘students from the
same class’, ‘office workers in the same department’ [8, 9], and so on.

Clearly, for graph applications, the complex relationships among users, groups, and communi-
ties have to be reflected in graph data organizations. It must support many-to-many and directional
relationships simultaneously. Both SG and HG are not able to meet the requirements at the
same time because SG can only represent one-to-one relationship, while the standard HG has
no directional edges. To address this issue, in Arbor, we introduce a new graph data organiza-
tion format, named ESG. In ESG, Arbor groups vertexes that are intensely connected with super
vertexes. Fundamentally, ESG means that the graph is SG. However, the simple edge in SG
is replaced by hyper edge in ESG. Therefore, the graph can represent many-to-many relation-
ships with hyper edges, and at the same time, it keeps the characteristics of directions in simple
edges.

As shown in Figure 4, the left side is the original graph data. If we use SG representation, four
vertexes and eight directed edges are needed. Here, three vertexes A, B, and C are completely con-
nected with six directed edges. To save space and simplify the representation, we can put them
together and create a hyper edge to replace all the three nodes and six edges. As shown in the right
portion of Figure 4, using ESG, one directed edge is defined to connect from D to the combination
node of (A, B, and C) with just one hyper edge. Only one vertex, one directed edge, and one hyper
edge are needed. Clearly, by combining hyper edges with SGs, the number of edges needed in ESG
is reduced significantly. In Arbor, hyper edges are represented as key-value pairs. The ESG ID is
used as the key. An example is shown in Figure 5.

Table I. The number of completely
connected subgraphs of three data sets.

Graph Number of triangles

Collaboration 173361
Email 727044
Flickr 3985776

Figure 4. Extended simple graph in Arbor.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

Figure 5. Key-value representation of super vertex in extended simple graph.

3.3. Graph data analysis

In order to dig out the useful hidden information, the system has to conduct graph data analysis
operations, which involves complex computations and multiple iterations.

Arbor adopts BSP model for graph data analysis tasks. However, to achieve higher performance,
we make significant changes in the original model and develop an efficient message mechanism to
eliminate the time-consuming synchronization operations. In addition, we introduce several opti-
mization approaches including Check Before Sending, and Avoid Unnecessary Messages to reduce
the overhead even more.

3.3.1. Graph processing framework. In the traditional BSP model, the synchronization time is
determined by the operations on the slowest slave. During this period, all the other slave nodes are
idle. In our experiments, we found out that in most data analysis tasks, for each iteration, the slow-
est slave node that finishes the tasks is not always the same. As a result, the task on a certain slave
node can process if all of its dependent tasks are finished already, and it does not have to wait until
the slowest task to finish. Using this approach, the operations on the slowest slave nodes in multiple
iterations (super steps) overlap, and the effects of those slowest tasks reduce a lot. Another advan-
tage of this approach is that the master node does not have to coordinate the synchronizations any
more, which greatly reduces the scheduling overhead.

In Arbor, we use a novel control message mechanism for this purpose. Arbor splits the orig-
inal graph data and records the corresponding information such as which partitions containing
related tasks. During data processing period, this information is used to determine if the compu-
tation tasks on a slave node should communicate with other tasks or not. For example, suppose
the number of messages that a vertex should received is 2, and if it receives a message from
one of its neighbors, the number is modified to 1, representing that there is only one more
message needed to be received to continue this task. When this number reduces to 0, the cor-
responding slave node can advance to the next super step; no instruction from the master node
is needed.

(a) Task Distribution
Before the graph data processing starts, Arbor preprocesses the original graph data and

checks the legality. The relationships between vertexes and edges are recorded. For example,
if vertexes A and B are connected with each other by an edge, this information is recorded as
a control message, and it will be used later.

Next, to achieve good load balancing, Arbor task scheduling module carefully examines
the requirements of the coming tasks and distributes them onto the slave nodes according to
the available resources on those nodes. The algorithm used in task distribution is shown in
Equation 1. Arbor takes two factors into accounts, the load balance and the independence,
when distributing the tasks. Independence means that the distribution should result in fewer
relationships between groups of tasks. After distribution, groups of tasks are assigned on
different slave nodes.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

The communications between the master and slave nodes are implemented by heartbeat
messages. The slave nodes record the load information including the CPU, memory usages,
and the number of tasks assigned and report to the master node periodically. When there are
too many tasks from one job assigned to a slave node, the master node can migrate some of
the tasks to other light-loaded slave nodes. The description is shown in Equation 1.

Q D Pd � Vd C Pl � Vl (1)

Q identifies how suitable for a node to execute a certain task; the higher the better. Pd is
the data weight factor. Vd represents whether a piece of data is requested, and it is either 1 or
0. Pl is the load balancing weight factor, and Vl is the value of load balance. Pd and Pl are
both within [0; 1], and their sum is 1. Vl is greater than 0, and how to determine it is discussed
in Equation 2. In most situations, the values of Pd and Pl are chosen upon experiences.
If a job is computationally intensive, Pl should be higher. If it is I/O intensive, Pd should
be larger.

Vl D 1=...Mu=Mt / � .Cu=Ct //=..Mu=Mt /C .Cu=Ct /// (2)

where Mu and Mt are the used memory and total memory. Cu and Ct are the used CPU and
total CPU, respectively.

Arbor is a distributed framework that can handle multiple SNS jobs at the same time. In
Arbor system, we define a two-layer architecture to trace load balancing status. When the
jobs submitted by users are received, the master node tries to assign these jobs to different
nodes based on their requirements and currently available resources in the whole cluster. The
purpose is to achieve certain level of load balancing. Next, Arbor checks tasks in each given
SNS job. If the tasks from the same job become unbalanced, the dynamic scheduling module
is triggered. The system migrates the tasks on the heavy-loaded slave nodes to some other
light-loaded nodes for execution. With such a strategy, Arbor achieves both static and dynamic
load balancing with minimal overhead.

The task distribution algorithm is shown in Algorithm 2.

Algorithm 2 The Task Distribution Algorithm
Require:

weight : data intensive or computing intensive job
slaves: the load on all the slave nodes

Ensure:
Qp: the slave nodes selected to execute a task

1: for each i 2 slaves do
2: Qi D Pdi � Vdi C Pli � Vli
3: end for
4: Qs D Sort.Q/
5: Qp D P ick.TaskNum;Qs/

As Figure 6 displays, there are two vertexes in task1 that have directed edges with the
vertexes in task2. Thus, we denote that the control message from task1 to task2 has a message
number 2. Similarly, the number of messages from task2 to task1 is also 2. Thus, we can
initialize that the control message number from task2 to task1 is 2 as well.

(b) Control message
The control messages generated earlier are associated with the corresponding tasks. Each

task has to update the control messages as the data processing moves from one super step
to the next one. The format of a control message is [source task, destination task, iteration
number, message number], where the iteration number is the super step ID that the message
should be transferred. For example, when task1 is first launched, the master node sends a

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

Figure 6. Example of graph data split.

Figure 7. Control messages in Arbor.

message [1,2,1,2] to task2. It means that, in the super step 1, task1 sends a control message to
task2 and the message number is 2.

When a slave node receives a message, it checks whether the destination ID in the message
matches its task ID or not as shown in Figure 7. If they are the same, the control message
reaches the destination. The slave node checks the message number information, which repre-
sents how many data messages (explained next) that the destination task should receive from
the source task.

(c) Data Message
Besides the control messages, Arbor uses data messages to transfer the actual data and

information from one task to other tasks between successive super steps. The format of the
data message is [source task, destination task, iteration number, value], which is similar to the
control message. The value field maintains the actual data that the source task should send
to the destination task. It will be used in the following iteration (super step). For example,
assume task1 sends a message [1,2,1,45] to task2. When task2 receives this message, it sets
the parameter (the number of the received messages) to 1. It is not equal to 2 in the control
message. The destination node, which is executing task1, keeps waiting for the next data mes-
sage. After a while, tasks1 sends another data message [1,2,1,56] to task2. Now, the number
of the received messages is updated to 2, and it is equal to the number in the control message.
Thus, the destination node knows that it receives both messages, and it can proceed to the next
super step now.

(d) Iteration Message
During the graph data processing, some vertexes may obtain the final results earlier than

other vertexes and do not have to be involved in later iterations. During the iterations, to reduce
the computation overhead, the master node updates the computation information by remov-
ing the edges connected to the vertexes that obtained the final results from the computations.
Thus, unnecessary messages are eliminated, and the total number of messages to be trans-
mitted in the later super steps can be reduced significantly. Thus, it can further speed up the
overall performance.

Arbor implements this strategy using the following approach. Before starting a new data
iteration super step, on each vertex, the system checks the information of neighboring ver-
texes and marks all the vertexes that already obtain the final results. Those vertexes should
be excluded from future data message transmissions. It then modifies the control messages
accordingly. For example, as Figure 7 shows, if one of the two connected vertexes AJ or
EG already obtained the final result, this edge is removed from later iterations. Thus, the
corresponding control messages are updated to [1,2,2,1] and [2,1,2,1], respectively.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

Figure 8. Example of Avoid Unnecessary Messages in Arbor.

3.3.2. Optimization strategies. In SNS applications, because of the complex relation-
ships/interactions among users, a large number of data messages have to be transferred between
slave nodes. It has a great impact on the overall system performance. Arbor introduces two
optimization strategies to reduce the overhead.

(a) Check Before Sending
During the data processing, a slave node sends the final result of a vertex when obtaining it.

However, sometimes, the messages do not have to be sent under certain conditions. In Arbor,
when a slave node receives a data message, if the value in the data message is invalid, it drops
the message immediately. For example, in SSSP algorithm, a smaller value means that there
is a closer path from the source vertex to the current vertex. If a slave node receives a message
containing a larger value than the current value, the message is useless and should be dropped.
For example, when a slave node receives a data message that contains value 5, while the stored
value is only 4, the message is dropped.

(b) Avoid Unnecessary Messages
In the graph data processing, a data iteration super step may only involve a subset of the

vertexes. Other vertexes have to wait until certain messages are received before sending out
their own messages. Arbor takes this factor into consideration and avoids generating unnec-
essary messages. Taking SSSP as an example, assume the source vertex is A and we are
calculating the shortest distances from A to all other vertexes. As Figure 8 shows, in the
first iteration, only nodes B, C, and D should be involved because they are the direct neigh-
bor nodes of A. No message needs to be sent for other vertexes. In the second iteration,
only the direct neighbors of B, C, and D should be involved. All the other vertexes are not
touched yet.

4. APPLICATIONS

In this section, we describe how to use Arbor framework to develop the algorithms for real-world
problems. The two sample applications are PageRank and shortest path. These two applications are
the basic for public opinion analysis tasks. For example, PageRank can be used to calculate the
influence importance of each user in the SNS. Based on this operation, the system can discover the
opinion leader information.

4.1. PageRank

PageRank is a widely used graph algorithm. It can be applied on the applications such as web
analysis [20], human protein interactome [21], and influence maximization in the social network
[22]. An Arbor-based implementation of PageRank algorithm is shown in Algorithm 3.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

Algorithm 3 PageRank Algorithm with Arbor
Require:

input W msgs
1: sumW 0
2: superstepW 0
3: if superstep > 0 then
4: superstep D superstep + 1
5: while !msgs.isEmpty() do
6: sumD sum + (Integer)msgs.getNextValue()
7: value D 1=VertexNum
8: value D 0:15 � value C 0:85 � sum
9: end while

10: end if
11: if superstep < 20 then
12: for each i 2 outEdges do
13: OutedgeNum D i:getDest./:si´e./
14: SendMessage(i.getDest(),value=OutedgeNum)
15: end for
16: end if

At the beginning, the super step ID is set to 0 when the algorithm starts. The initial value
on each vertex is set to 1=VertexNum. Then, in each of the first 20 super steps (20 is a
threshold to stop the computation, and it can be any positive number according to the applica-
tion specifications), each vertex sends the data messages containing this value to its neighbor
vertexes through the outgoing edges. When a vertex receives messages from all its neigh-
bor vertexes, it adds up the values and stores them in sum. It updates its current value
using the formula 0:15 � VertexNum C 0:85 � sum and then moves to the next super step.
Here, 0.15 and 0.85 are weights defined by the users according to the specific application
requirements; they can be changed accordingly. When the number of super steps reaches 20,
the graph data processing stops, and the current final result represents the ranks for all the
web pages.

The algorithm is related to the number of edges because the messages are transferred by the edges.
As a result, the time complexity is O.m/, where m is the number of edges. The space complexity
corresponds to the message number because the messages consume the memory space and the
message number is related to the number of edges.

4.2. Single-source shortest path

The shortest path problem is one of the well-known problems in graph theory [23, 24]. The appli-
cations based on it are very common in our daily life, for example, the geographic navigation
systems. There are many variants, among which SSSP is the most popular one. It aims to find
the shortest path from the source s to the destination t. An Arbor-based SSSP algorithm is shown
in Algorithm 4.

As shown in Algorithm 4, the value associated with each vertex is initialized to INF, which is
larger than any possible distance from the source to any destination. When the computation starts,
each vertex sends its value to the neighbors. Meanwhile, it waits for the new values sent from other
vertexes. When a vertex receives a new value from a neighbor, it compares with its own and updates
with the minimum one. Clearly, in the first super step, only the source vertex needs to update its
value, changing it from INF to zero and sending this value to its neighbors. In the second super
step, when one of its neighbors receives the value, the neighbor vertex updates its own value and
forwards to its neighbors in the following super step. The algorithm continues until there are no more
updates occurring. After the process finishes, the value in each vertex is the shortest distance to the
source vertex.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

Algorithm 4 Shortest Path Algorithm with Arbor
Require:

input W msgs
1: initialNumW 1000
2: superW 0
3: mindistW Integer:valueOf .value/
4: tempDistW mindist
5: if superstep==0 then
6: mindistD isSource(Integer.valueOf(vertexId))? 0 :initialNum
7: lastValue D String.valueOf(initialNum)
8: end if
9: while !msgs.isEmpty() do

10: tempValues D (String)msgs.getNextValue()
11: arr D tempValues:spli t.“;00 /
12: valueNum D arr:length
13: for each i 2 Œ1valueNum� do
14: mindist D min.mindist; arrŒi �/
15: end for
16: end while
17: for each i 2 outEdges do
18: SendMessage(i.getDest(),mindist+value)
19: end for
20: value D mindist
21: lastValue D value

5. EXPERIMENTAL EVALUATION

In this section, we present Arbor performance analysis results. In our experiments, we use a pseudo
graph data set, which is generated with the similar characteristics as the real SNS graph data
[25]. We compare Arbor with Hama, one of the most popular graph data processing systems, and
HyperGraphDB, a typical graph database implementation.

5.1. Experiment configurations

The pseudo test graph data used in our simulations contain of up to 10M vertexes. In the data set,
the vertexes are represented by their IDs.

All the experiments are conducted on a cluster consisting of six Sugon X8DTL servers. These
machines are connected with gigabyte networks. One of the servers is chosen as the master node,
and the others are used as slave nodes. We installed the distributed memory storage system Redis
[26] on all the machines, and the master node is also the master of Redis. The storage layer
used in Arbor is Hadoop Distributed File System. The detailed environmental settings are listed
in Table II.

Table II. The experimental environmental settings.

Type Model or performance metrics

CPU number Intel(R) Xeon(R) CPU E5620@2.4 GHz
Memory size 12 G
Disk size 267 G
Internet connection Gigabyte bandwidth connections between nodes
Operation system CentOS 505, Linux 2.6.18
Software HyperGraphDB 1.0.0, Hama 0.4.0, Redis 2.0.4

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

5.2. Graph data organization performance

The storage layer keeps the graph data and provides the data access interface. It has a direct impact
on the system overall performance. In the first experiment, we examine the average response time
and storage space consumption metrics in those systems.

5.2.1. Average response time. The average response time of graph data analysis tasks is a key metric
to measure the storage layer performance. It determines how fast the final answers can be generated
and returned to the users. First, we check the performance of read operations because the majority
of data accesses in data analysis tasks are reads. We compare Arbor with HyperGraphDB, and the
results are shown in Figure 9. Here, we do not include Hama for comparison because it integrates
the storage and computation operations together; no direct result can be obtained on its storage
layer only.

From the results, we can observe that, in both Arbor and HyperGraphDB, the average response
time becomes larger as the number of vertexes in the graph data increases. However, in all scenarios,
Arbor has significantly smaller response time than HyperGraphDB. For example, when there are
100 vertexes, the average response time in Arbor is 33 ms while it is 3100 ms in HyperGraphDB.
The average response time in Arbor is only 1:06% of that in HyperGraphDB. When the number
of vertexes becomes 10 million, the average response time is 108 ms in Arbor, while it is 6300 ms
in HyperGraphDB. The performance in Arbor is still much better than that of HyperGraphDB. We
believe that the smaller storage requirement in Arbor is the major contribution factor for the superior
performance. Arbor can easily place all or most of the data to be processed in the cache while it is
not possible for HyperGraphDB.

5.2.2. Extended simple graph performance. Arbor uses the extended SG as the de facto data orga-
nization format in its storage layer, in which a group of vertexes can be replaced by a single hyper
edge. Because of this, Arbor can significantly reduce the number of edges to be stored and thus
reduce the storage space requirements. Additionally, with less edges, the graph partition operations
can be executed in a smaller scale, which further speeds up the process. In this experiment, we
measure the benefits of using hyper edges.

As shown in Figure 10, with the usage of hyper edges, the number of edges needed to be gen-
erated in Arbor is much smaller than the original graph data with SG representation. The number
of edges in Arbor is only 9% of the original graph representation when the total number of ver-
texes is 100. While with 10 million vertexes, it achieves even better performance. The number of
edges in Arbor is almost 99% less compared with the original data organization. A direct impact
of the reduction on the number of edges is that Arbor uses much less storage space to keep the
data, the graph data representations are much simpler, and data analysis operations can be executed
much faster.

1 10 100 1K 10K 100K 1M 10M
10−2

10−1

100

101

102

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

Arbor

HyperGraphDB

Figure 9. Response time comparison of HyperGraphDB and Arbor. The x-axis is the number of vertexes.
The y-axis is the response time (in second).

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

1 10 100 1K 10K 100K 1M 10M
100

105

1010

1015

Number of Vertex
N

um
be

r 
of

 E
dg

e

Super Edge
Simple Edge

Figure 10. Storage consumption comparison with super vertexes. The x-axis is the number of super vertexes.
The y-axis is the number of edges.

1 10 100 1K
0

1

2

3

4

5

6

7

8

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

10K 100K 1M 10M
0

100

200

300

400

500

600

700

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

Hama
Arbor

Figure 11. Response time comparison of shortest path application.

5.3. Graph data analysis

Finally, we evaluate the graph data analysis performance in Arbor and compare it with Hama.
Again, we use the average response time as the major metric for comparison. We also com-
pare the total number of super steps needed to fulfill a data analysis operation. The test case we
choose is finding the closest person to Rose in the pseudo SNS data set. It can be solved as the
SSSP problem. In this experiment, HyperGraphDB is not used because it is a graph database
implementation. It only provides data storage, and no distributed graph processing functionality
is offered.

As Figure 11 shows, the average performance in Arbor is much higher than that of Hama. In
all scenarios, the average response time in Arbor is at least 59% lower than Hama. As the number
of vertexes increases, the performance difference becomes larger. With 100K number of vertexes,
Arbor achieves the biggest performance gain, and it only consumes 14.25% of the average response
time in Hama. Apparently, Arbor has better scalability and is able to generate the final results much
faster than Hama.

Figure 12 compares the average number of super steps needed to execute a graph data analysis
operation. In this figure, the example is PageRank. Again, we can observe the similar trend. In all
situations, Arbor outperforms Hama significantly. It takes much less number of iterations to generate
the final result than Hama. For example, when the vertex number reaches one million, the iteration
number of Arbor is 2134, while Hama needs 3324. The iteration number is only 64.2% of Hama.

In addition, we compare the two systems using PageRank information, which can reflect the
contributions of each vertex in the graph.

As shown in Figure 13, the average performance is much higher in Arbor than in Hama. In all
scenarios, the average response time in Arbor is at least 17% lower than Hama. As the number

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

1 10 100 1K
0

2

4

6

8

10

Number of Vertex

N
um

be
r 

of
 S

up
er

S
te

p

10K 100K 1M 10M
0

1,000

2000

3000

4000

Number of Vertex

N
um

be
r 

of
 S

up
er

S
te

p

Arbor
Hama

Figure 12. The number of super steps comparison of data analysis.

0 1 10 100 1K 0
0

5

10

15

20

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

0 10K 100K 1M 10M 0
0

200

400

600

800

1000

1200

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

Hama

Arbor

Figure 13. Response time comparison of PageRank.

Table III. The number of messages comparison using
Check Before Sending optimization.

Vertex number 1 10 100 1K

Check before sending 0 15 2398 226548
No check before sending 0 21 2767 281254

of vertexes increases, the performance difference becomes larger. With 10M number of vertexes,
Arbor achieves the biggest performance gain, and it only consumes 75.34% of the average response
time in Hama. Similar to Figure 11, Arbor offers higher scalability. We also compare the number
of super steps (iterations) to generate the final results. The similar trend shown in Figure 12 can
be obtained.

From the previous experiments, we can draw the conclusion that Arbor reduces the maintenance
overhead for synchronization operations significantly with the introduced control message strategy.
As mentioned, Arbor also introduces several improvements to further increase the performance. In
the following experiments, we evaluate their effectiveness.

5.3.1. Check Before Sending. In Arbor, this technique allows the system to check the validity of the
received messages and avoids unnecessary message transmissions.

As Tables III and IV show, this method works very well. In all scenarios, the system reduces the
number of messages to be transmitted significantly. Furthermore, this method does not result in the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

Table IV. The number of messages comparison using Check Before Sending optimization.

Vertex number 10K 100K 1M 10M

Check before sending 1974623 436315798 404325654 3267907535
No check before sending 2976769 504587439 556734543 4333286385

0 1 10 100 1K
0

0.5

1

1.5

2

2.5

3

3.5

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

0 10K 100K 1M 10M 5
0

50

100

150

200

250

Number of Vertex
R

es
po

ns
e 

T
im

e(
se

c)

Check before send

Non−Check before send

Figure 14. Check Before Sending optimization performance.

Table V. The number of messages comparison using Avoid
Unnecessary Messages optimization.

Vertex number 1 10 100 1K

Send for the first time 0 15 2770 260454
Non-sending for the first time 0 9 2574 273467

Table VI. The number of messages comparison using Avoid Unnecessary Messages optimization.

Vertex number 10K 100K 1M 10M

Send for the first time 3148769 504587439 556734532 4333286385
Non-sending for the first time 2964347 487567849 531467389 4276643376

increases on the number of super steps. As Figure 14 shows, using this technique, Arbor always
has a lower average response time under different numbers of vertexes. The larger the number of
vertexes, the more the average response time reduction we can acquire.

5.3.2. Avoid Unnecessary Messages. As we discussed in previous sections, some messages are
meaningless and should not be sent to neighbors. In Arbor, each node carefully examines the
received messages and abandons those unnecessary messages.

Tables V and VI compare the number of total messages sent with different methods. Avoid
Unnecessary Messages method always has a less number than the original approach. However, this
reduction does not always result in better performance. As shown in Figure 15, when the number of
vertexes is small, this strategy helps. However, when the number of vertexes is larger than 1000, it
has a negative effect and actually increases the response time. The main reason of this phenomenon
is that although it can reduce the number of messages to be sent, it turns out to add more data
iterations and consequently increases the average response time. Thus, as the number of vertexes
increases, the benefits it achieves cannot compensate the associated overhead any more. The system
performance becomes worse.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

0 1 10 100 1K
0

0.5

1

1.5

2

2.5

3

3.5

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

1 10 100 100
0

50

100

150

200

Number of Vertex

R
es

po
ns

e 
T

im
e(

se
c)

Send first time
Non−Send first time

Figure 15. Avoid Unnecessary Messages optimization performance.

6. RELATED WORKS

With the popularity of SNS applications, many large-scale graph processing systems are proposed,
such as MapReduce [27, 28]. Although MapReduce is a very good fit for a wide range of computing
problems and sometimes is used for large graphs, it has suboptimal performance and usability issues.
If a user wants to use MapReduce for the graph data processing, it has to implement the iterative
MapReduce by itself. In order to reduce the complexity of the iterative implementation, there are
emerging open-source implementations proposed, such as HaLoop [14] and Twister [11]. Twister
[11] is a system of iterative MapReduce [29], which is suitable for the graph processing because
the graph analysis involves multiple iterations. However, Twister is limited by the MapReduce [29]
architecture, which is designed for off-line analysis purpose. HaLoop [14] is another variant of
MapReduce. In HaLoop, the master node has to handle the synchronization for each iteration, and
it is also suitable for off-line analysis only.

Novel large-scale graph data processing systems have been introduced to relieve the issues.
These systems can be divided into two types: the graph database and the graph data process-
ing system. The graph database provides direct database type organization for the graph data
storage and simple data access interface. It includes HyperGraphDB [30], Neo4J [31], Infinite-
Graph [32], and so on. Graph database is important in the development of graph data processing.
With the growing volume of the graph data in SNS applications, this approach gains more atten-
tions. Among all the graph database, HyperGraphDB is the most popular one. HyperGraphDB
is a generally used, scalable, portable storage mechanism. It is designed for artificial intelligence
and semantics web applications. It uses Berkeley DB as the storage layer. HyperGraphDB can
support graph data storage and SG data queries and analysis. However, HyperGraphDB is a single-
node database, which cannot support the large-scale graph data aggregation and complex data
analysis tasks.

The graph data processing systems, such as Google Pregel [10], Apache Hama [13], and
Microsoft Trinity [12], manage the system main memory with the underlying storage layer together.
Such an integration mechanism can speed up data processing operations. Pregel [10] is a large-
scale off-line graph data processing framework. It adopts BSP model for synchronization. However,
Pregel only supports graph data analysis instead of graph query and aggregation. It is designed for
Google internal applications and may not suitable for other applications. Trinity is a query and anal-
ysis system. It provides two main functions: graph data query and graph data analysis. However, it
is used for off-line batch processing tasks and does not satisfy the on-line requirement. Furthermore,
Trinity does not support the graph data aggregation. Hama [13] is a distributed system designed for
graph data processing. However, in Hama, the synchronization of two super steps is performed by
the Zookeeper, which is time consuming. Furthermore, it is an off-line batch processing system and
does not fit the on-line graph data processing requirements.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe



W. ZHOU ET AL.

7. CONCLUSION

In this paper, we first summarize the key problems in the existing large-scale graph data processing
systems. Then, we propose a novel graph data processing system called Arbor to address these
problems. Arbor introduces a new data organization model called ESG, which uses hyper edges
to reduce the data representation complexity. It cuts the storage consumption greatly and speeds
up graph data processing operations. Arbor also proposes a novel control message mechanism to
replace expensive synchronization operations during data iterations. It is proven to be very effective,
especially for large-scale graph data processing tasks. Furthermore, Arbor designs two optimization
strategies including Check Before Sending and Avoid Unnecessary Messages to further improve
the efficiency. The evaluation results show clearly that Arbor is superior than the state-of-the-art
systems.

ACKNOWLEDGEMENTS

This research is supported in part by the National High Technology Research and Development Program
of China (863 Program) under grant 2012AA01A401, and the Strategic Priority Research Program of the
Chinese Academy of Sciences under grant XDA06030200.

REFERENCES

1. FaceBook. Available from: http://www.facebook.com/ [Accessed on 10 June 2013].
2. Twitter. Available from: http://www.twitter.com/ [Accessed on 10 June 2013].
3. Renren. Available from: http://www.renren.com/ [Accessed on 19 May 2013].
4. Huohuo Q. Available from: http://zh.wikipedia.org/wiki/Qinhuohuo [Accessed on 13 August 2013].
5. Chen W, Cheng S, He X, Jiang F. InfluenceRank: an efficient social influence measurement for millions of users in

microblog. 2012 Second International Conference on Cloud and Green Computing (CGC), Xiangtan, Hunan, China,
2012; 563–570.

6. Hido S, Kashima H. Graph similarity calculation system, method, and program 2012. EP Patent 2,442,239.
7. Fire M, Katz G, Elovici Y, Shapira B, Rokach L. Predicting student exam’s scores by analyzing social network data.

Active Media Technology 2012:584–595.
8. Yuehua Y, Junping D, Yingmin J, Zengqi S. Study on SNS graph generation and prediction. 2010 International

Conference on Control Automation and Systems (ICCAS), KINTEX, Gyeonggi-do, Korea, 2010; 1188–1191.
9. Wakita K, Tsurumi T. Finding community structure in mega-scale social networks. arXiv preprint cs/0702048, 2007.

10. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski G. Pregel: a system for large-scale
graph processing. Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, 2010;
135–146.

11. Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, Fox G. Twister: a runtime for iterative MapReduce. Pro-
ceedings of the 19th ACM International Symposium on High Performance Distributed Computing, Chicago, Illinois,
2010; 810–818.

12. The graph processing system form Microsoft, called Trinity. Available from: http://research.microsoft.com/en-us/
projects/trinity/ [Accessed on 12 September 2013].

13. Graph computation system from Apache hama.
14. Bu Y, Howe B, Balazinska M, Ernst MD. HaLoop: efficient iterative data processing on large clusters. Proceedings

of the VLDB Endowment 2010; 3(1–2):285–296.
15. The introduction of BSP. Available from: http://baike.baidu.com/view/757269.htm [Accessed on 15 April 2013].
16. Yu J, Tao D, Wang M. Adaptive hypergraph learning and its application in image classification. IEEE Transactions

on Image Processing 2012; 21(7):3262–3272.
17. Celiktutan O, Wolf C, Sankur B, Lombardi E. Real-time exact graph matching with application in human action

recognition. Human Behavior Understanding 2012:17–28.
18. Bossard A, Kato T, Masuda K. Supporting reconstruction of the blood vessel network using graph theory: an abstrac-

tion method. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), San Diego, California, USA, 2012; 5470–5473.

19. Vertes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET. Simple models of human brain
functional networks. Proceedings of the National Academy of Sciences 2012; 109(15):5868–5873.

20. Polyak BT, Timonina A. PageRank: new regularizations and simulation models. World Congress 2011; 18(1):
11202–11207.

21. Du D, Lee CF, Li XQ. Systematic differences in signal emitting and receiving revealed by pagerank analysis of a
human protein interactome. PLOS One 2012; 7(9):e44872. Public Library of Science.

22. Luo ZL, Cai WD, Li YJ, Peng DA. PageRank-based heuristic algorithm for influence maximization in the social
network. In Recent Progress in Data Engineering and Internet Technology. Springer, 2012; 485–490.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://www.facebook.com/
http://www.twitter.com/
http://www.renren.com/
http://zh.wikipedia.org/wiki/Qin huohuo
http://research.microsoft.com/en-us/projects/trinity/
http://research.microsoft.com/en-us/projects/trinity/
http://baike.baidu.com/view/757269.htm


AN EFFICIENT GRAPH DATA PROCESSING SYSTEM FOR LARGE-SCALE SNS APPLICATIONS

23. Cherkassky BV, Goldberg AV, Radzik T. Shortest paths algorithms: theory and experimental evaluation. Mathemat-
ical Programming 1996; 73:129–174.

24. Gross JL, Yellen J. Graph Theory and Its Applications (2nd edn). Chapman and Hall/CRC, CRC press, 2005.
25. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. Graphlab: a new framework for parallel

machine learning. arXiv preprint arXiv 1006. 4990, 2010.
26. The Homepage of Redis. Available from: http://redis.io/ [Accessed on 7 January 2014.
27. Cohen J. Graph Twiddling in a MapReduce World. Comparative in Science and Engineering 2009; 11(4):29–41.
28. Kung U, Tsourakakis CE, Faloutsos C. Pegasus: a peta-scale graph mining system – implementation and

observations. Proceedings of International Conference in Data Mining, Miami, Florida, USA, 2009; 229–238.
29. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of the ACM 2008;

51(1):2008.
30. Graph Database HyperGraphDB. Available from: http://www.open-open.com/open316576.htm [Accessed on 19

November 2013].
31. Graph Database Neo4J. Neo4J. http://neo4j.org/ [Accessed on 19 May 2013].
32. Graph Database Infinitegraph. Available from: http://www.infinitegraph.com/ [Accessed on 7 December 2013].
33. Sherchan W, Nepal S, Paris C. A survey of trust in social networks. ACM Computing Surveys (CSUR) 2013;

47(4):1–13.
34. Social Network Service. Available from: http://newsroom.fb.com/Key-Facts [Accessed on 2 December 2013].
35. Ghemawat S, Gobioff H, Leung ST. The Google file system. ACM SIGOPS Operating Systems Review 2003;

37(5):29–43.
36. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: a

distributed storage system for structured data. ACM Transactions on Computer Systems(TOCS) 2008; 26(2):4.
37. Yuehua Y, Junping D, Yingmin J, Zengqi S. Study on SNS graph generation and prediction. 2010 International

Conference on Control Automation and Systems (ICCAS), KINTEX, Gyeonggi-do, Korea, 2010.
38. Khetrapal A, Ganesh V. Hbase and hypertable for large scale distributed storage systems. Department of Computer

Science, Purdue University, 2006. http://www.uavindia.com/ankur/downloads/HypertableHBaseEval2.pdf.
39. The Home Page of Sina Weibo, it is a widely used SNS platform in China. Available from: http://weibo.com

[Accessed on 12 April 2013].
40. iResearch report about the SNS in China, The speedup of chinese SNS and weibo platform, 2011.
41. Borthakur D. The Hadoop Distributed File System: Architecture and Design. Hadoop Project Website 2007; 11:21.
42. Frischbier S, Margara A, Freudenreich T, Eugster P, Eyers D, Pietzuch P. ASIA: application-specific integrated

aggregation for publish/subscribe middleware. Proceedings of the Posters and Demo Track, ACM New York, NY,
USA, 2012.

43. Ausiello G, Franciosa P, Italiano G, Ribichini A. Computing graph spanners in small memory: fault-tolerance and
streaming. Discrete Mathematics, Algorithms and Applications 2010; 2(04):591–605. World Scientific.

44. Lou YS, Zhang WY, Xu F, Wang Y, Chen S. Parallel implementation of single-source shortest path algorithm based
on haloop. Applied Mechanics and Materials 2012; 220:2428–2432.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://redis.io/
http://www.open-open.com/open316576.htm
http://neo4j.org/
http://www.infinitegraph.com/
http://newsroom.fb.com/Key-Facts
http://www.uavindia.com/ankur/downloads/HypertableHBaseEval2.pdf
http://weibo.com

	An efficient graph data processing system for large-scale social network service applications132133167182
	Summary
	INTRODUCTION
	BACKGROUND
	BSP model
	Simple graph and hyper graph

	GRAPH DATA PROCESSING SYSTEM DESIGN
	Programming model
	Graph data storage
	Graph data analysis
	Graph processing framework
	Optimization strategies


	APPLICATIONS
	PageRank
	Single-source shortest path

	EXPERIMENTAL EVALUATION
	Experiment configurations
	Graph data organization performance
	Average response time
	Extended simple graph performance

	Graph data analysis
	Check Before Sending
	Avoid Unnecessary Messages


	RELATED WORKS
	CONCLUSION
	REFERENCES




