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We propose a new nature inspired metaheuristic approach based on the V flight formation
of the migrating birds which is proven to be an effective formation in energy saving. Its per-
formance is tested on quadratic assignment problem instances arising from a real life prob-
lem and very good results are obtained. The quality of the solutions we report are better
than simulated annealing, tabu search, genetic algorithm, scatter search, particle swarm
optimization, differential evolution and guided evolutionary simulated annealing
approaches. The proposed method is also tested on a number of benchmark problems
obtained from the QAPLIB and in most cases it was able to obtain the best known solutions.
These results indicate that our new metaheuristic approach could be an important player
in metaheuristic based optimization.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Solving large scale combinatorial optimization problems optimally is often intractable and one usually has to be content
with near optimal solutions. Near optimal solutions are found by heuristic algorithms which can broadly be classified as con-
structive and improvement algorithms. Constructive algorithms start from scratch and build a solution gradually whereas
improvement algorithms start with a complete solution and try to improve it. Heuristic algorithms are usually developed
to solve a specific problem in hand. There is also a class of heuristic algorithms that can be used to solve a large class of prob-
lems, either directly or with minor modifications, called metaheuristics [20].

Most metaheuristic algorithms can also be named as neighborhood (or, local) search procedures. These are a wide class of
improvement algorithms where at each iteration an improving solution is found by searching the ‘‘neighborhood’’ of the cur-
rent solution. A critical issue in the design of a neighborhood search algorithm is the choice of the neighborhood structure,
that is, the manner in which the neighborhood is defined [2].

So far many metaheuristics have been proposed by researchers. Among these the genetic algorithm proposed by Holland
[24], the simulated annealing proposed by Kirkpatrick et al. [28], the tabu search proposed by Glover [19], the ant colony
optimization proposed by Dorigo [11] and the particle swarm optimization proposed by Eberhart and Kennedy [15] are
the most popular ones. The harmony search algorithm [18], the artificial bee colony algorithm [27], the monkey search algo-
rithm [36], the differential evolution [46] and the firefly algorithm [52] are examples of other competitive metaheuristics
proposed recently. Most of these metaheuristics are inspired by nature. This is an indication that although we the mankind
are the most intelligent creature in the world, we have lessons to learn from the perfectness of nature.
. All rights reserved.
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Metaheuristics have been successfully applied to many different areas and problems from manufacturing [26] to services
[33], from scheduling [30] to transportation [6], from health [42] to sports [23], from justice [17] to entertainment [53], from
data mining [34] to curve fitting [50], from robotics [8] to timetabling [1] and from geology [4] to astronomy [9]. It is possible
to find thousands of similar studies in the literature. Here we can only name just a few of them.

The application domain we focus on is the quadratic assignment problem (QAP) due to our prior work and familiarity. The
QAP is best described as the plant layout problem, where a number of departments are to be located on a number of locations
so that the transportation cost among the departments is minimized. Typically, the number of departments and locations are
taken as equal to each other [32]. The QAP is an NP-Hard problem and it is very difficult to solve it optimally once the num-
ber of departments exceeds 15 [14]. Parallel to its complexity the research work on the QAP is still diverging and many
researchers still report their new research in leading journals. Some of the recent studies regarding QAP can be listed as
follows.

Duman and Or [14] addressed the QAP in the context of specific assembly machines. Ramkumar et al. [41] proposed a new
iterated fast local search heuristic for solving QAP in facility layout design. Drezner [12] and Misevicius and Rubliauskas [35]
tried to solve QAP with hybrid genetic algorithms wheras, Ravindra et al. [43] proposed a greedy genetic algorithm for the
QAP. There is also a recent survey of the metaheuristics applied to QAP [37]. A recent study considered effective formulation
reductions for the QAP [54]. Another recent example is self controlling tabu search algorithm where the application is held
on QAP instances [16]. Robust tabu search is another important contribution for solving the quadratic assignment problem
with less complexity and fewer parameters and it is still being improved [40,47,48].

We name our new nature inspired metaheuristic algorithm as the Migrating Birds Optimization (MBO) algorithm since it
is inspired from the V formation flight of the migrating birds which is a very effective formation in energy minimization [31].
To test the performance of the MBO algorithm the studies of Duman and Or [14] and Kiyicigi et al. [29] are taken as the
benchmarks. In [14] a number of heuristic algorithms including 2-opt, 3-opt and their combinations and the metaheuristics
tabu search, simulated annealing and guided evolutionary simulated annealing are implemented and compared for the solu-
tion of the quadratic assignment problem. Then in [29] this comparison is extended to cover genetic algorithms and scatter
search also. In this study, the MBO algorithm is compared with the best performing procedure in those studies and two addi-
tional metaheuristics which are implemented now and better solutions are obtained in all test problems. Similar to other
metaheuristics the MBO is also a parametric procedure and its performance may depend on how effectively its parameters
are settled. In addition to this, the MBO is also applied to standard benchmark problems in QAPLIB and very successful re-
sults are obtained.

The outline of the study is as follows. In the next section we give some information on how birds fly and what benefits
they can obtain in using the V flight formation. Based on the birds’ story, the MBO algorithm is detailed in Section 3. The
results obtained with the initial set of parameters are given in Section 4. Detailed parameter fine tuning experiments are
discussed in Section 5 where the results obtained by the best set of parameters are also given. Section 6 discusses the results
obtained on a number of standard QAP instances available in QAPLIB. Section 7 concludes by providing a summary of the
study and directions for further study.

2. Migration of birds

The shape of a bird wing is called an airfoil. As the airfoil moves through the air, air goes above and below. The air flow
over the upper surface has to move farther than the lower part of the wing. In order for the two air flows to make it to the
edge of the wing at the same time, the top air must go faster. Consequently, the air on the upper part has a lower pressure
than the air moving over the lower part (Fig. 1). This pressure difference makes the lifting possible by the wing.

For a lone bird, speed is the most important factor in achieving lift. Lift can be increased by increasing the forward speed
of the wing through the air [31]. This is because as the speed is higher the pressure difference should be removed in a shorter
time and thus a higher uplift pressure is achieved. The power needed to generate this lifting momentum is called induced
power, which is distinguished from the profile power – the power needed to move the bird through the air against skin fric-
tion [31].

‘‘The high pressure air under the wing flows around the tip and inward across the dorsal wing surface. This latter flow
forms a sheet of turbulent air shedding from the trailing edge into the bird’s wake. This planar vortex sheet rolls up into
two concentrated tubular vortices, one issuing from each wing tip. The vortices, which are slightly inboard of the wing tips,
produce large regions of upwash outboard of the wing and a region of downwash more centrally’’ (Fig. 2). The regions of
Fig. 1. Wing of a bird.
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upwash may contribute to the lift of a following bird, thus reducing its requirement for induced power [10]. This explains
why birds, especially the migrating birds which have to fly long distances fly together in specific formations.

The V formation is the most famous formation that the migrating birds use to fly long distances. It gets this name because
of the similarity of the shape the birds make to the letter ‘‘V’’ (Fig. 3). Here there is a bird leading the flock and two lines of
other birds following it. As will be detailed below, it is believed to be a very efficient formation for migrating birds. However,
it is not the only formation that bird flocks use. Other typical formations are column formation [21], bow-shaped formation
[3] or the J and echelon formations which are the variants of the V formation where one leg of the formation is shorter or
missing entirely [45].

Two alternative hypotheses have been proposed to explain the use of V formation by birds. First, this way it is possible to
save energy during flight [5,31]. Secondly, the V may reflect a mechanism by which birds avoid collisions with each other and
stay in visual contact [10,21]. Although, according to some researchers who worked empirically (especially based on the
photographs of the bird flocks taken) it was not possible to reject the second hypothesis [10] which can also be explained
by the positive correlation of wing-tip spacing (WTS) and depth or by the constant angle of the V (Fig. 3), the main drive
of the formation is proved to be saving energy.

The pioneering study which brings a mathematical explanation to the energy saving in V formation is that of Lissaman
and Schollenberger [31]. In that study, it was stated that as birds approach each other (a smaller WTS) and as the number
of birds increase more energy will be saved. So that, a group of 25 birds for example would have approximately 71% more
flight range than a single bird. These results were obtained from aerodynamics theory where birds at the sizes of a plane
were assumed. Also, for the WTS only positive values were assumed (i.e. the case of overlapping were not considered).

The study of Lissaman and Schollenberger [31] was followed by some experimental studies. For Canadian geese with a
wing span of 1.5 m, the maximum saving is shown to be obtained when there is an overlap of 16 cm [5]. Later the optimum
WTS is obtained to be [25]:
WTSopt ¼ �0:05b ð1Þ
where b is the wing span.
In addition to WTS, energy saving may also be affected by the depth (the distance a bird flying behind the bird in leader

position). The vortex sheet behind a fixed wing in steady level flight rolls up to form two concentrated vortices within two
chord lengths (maximum wing width) of the wing [44]. Thus the optimum depth can be formulated as:
Dopt ¼ 2w ð2Þ
where w is the maximum width of the wing. Actually, the depth is determined by the wing span, WTS and the angle alpha
which provides a comfortable visual contact between birds. If there is a fixed span to width ratio on birds then, once the span
is known, the depth can be calculated. In this regard it does not seem to be an independent flight parameter. Perhaps because
of this, the effect of depth was not seen as important as WTS and it was ignored by most researchers.
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Fig. 2. Regions of upwash and downwash created by trailing vortices.

Fig. 3. The V formation.
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In the V formation the leader bird is the one spending most energy. The birds in the other positions get benefit from the
birds in front. It sounds reasonable that energy saving is higher as we go back in the line but we could not find a study in the
literature to support this idea. However it was stated that, the savings of the birds other than the leader bird are either the
same [3] or the saving is a bit more for the birds in the middle part [22].

Typically it has been assumed that when the leader bird gets tired after flying for some time it goes to the end of the line
and one of the birds following it takes the leader position. However, although no empirical evidence is provided, according to
the study of Andersson and Wallander [3] typically the bird flocks consist of the members of the same family where the
strongest bird (e.g. father) takes the lead or a combination of several families where the stronger members take turns to lead.

Although theoretically it was shown that the more the number of birds the more the saving [31], in practice the number
of birds in the flocks observed are limited [10,22]. As an explanation to this, it was stated that as the size of the flock in-
creases it gets more difficult to get in line for the birds at the rear and the coordination is lost. Consequently the birds at
the rear do not benefit from the formation flight and then they may form another smaller flock of their own [45]. On the
other hand, the family structure of Andersson and Wallander [3] can be an alternative explanation for some of the smaller
size flocks.

A solution algorithm which is inspired from the V flight formation is presented in the next section.

3. The Migrating Birds Optimization algorithm

The MBO algorithm is a neighborhood search technique. It starts with a number of initial solutions corresponding to birds
in a V formation. Starting with the first solution (corresponding to the leader bird), and progressing on the lines towards the
tails, each solution is tried to be improved by its neighbor solutions (for the implementation of QAP, a neighbor solution is
obtained by pairwise exchange of any two locations). If the best neighbor solution brings an improvement, the current solu-
tion is replaced by that one. There is also a benefit mechanism for the solutions (birds) from the solutions in front of them.
Here we define this benefit mechanism as sharing the best unused neighbors with the solutions that follow (here ‘‘unused’’
means a neighbor solution which is not used to replace the existing solution). In other words, a solution evaluates a number
of its own neighbors and a number of best neighbors of the previous solution and considered to be replaced by the best of
them. Once all solutions are improved (or tried to be improved) by neighbor solutions, this procedure is repeated a number
of times (tours) after which the first solution becomes the last, and one of the second solutions becomes first and another
loop starts. The algorithm is stopped after a number of iterations.

Below, first the notation used and then the pseudocode of the MBO algorithm are given. Let,

n = the number of initial solutions (birds)
k = the number of neighbor solutions to be considered
x = the number of neighbor solutions to be shared with the next solution
m = number of tours
K = iteration limit

Pseudocode of MBO:
1.
 Generate n initial solutions in a random manner and place them on an hypothetical V formation arbitrarily

2.
 i = 0

3.
 while(i < K)

4.
 for (j = 0; j < m; j++)

5.
 Try to improve the leading solution by generating and evaluating k neighbors of it

6.
 i = i + k

7.
 for each solution sr in the flock (except leader)

8.
 Try to improve sr by evaluating (k–x) neighbors of it and x unused best neighbors from the solution in the

front

9.
 i = i + (k � x)

10.
 endfor

11.
 endfor

12.
 Move the leader solution to the end and forward one of the solutions following it to the leader position

13.
 endwhile

14.
 return the best solution in the flock
As should already be noticed, the MBO algorithm has great similarities with the migrating birds’ story. First it treats the
solutions as birds aligned on a V formation. The number of neighbors generated (k) can be interpreted as the induced power
required which is inversely proportional to the speed (recall the discussion in the previous section). With a larger k we would
assume that birds are flying at a low speed where we can also make the analogy that while traveling at a low speed, one can
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explore the surrounding in more detail. The benefit mechanism between the birds is respected and by generating fewer
neighbors for the solutions at the back, it was made possible that they get tired less and save energy by using the neighbors
of the solutions in the front. The parameter x is seen as the WTS where an optimum value can be sought for. Its optimum
value could be interpreted as the optimum overlap amount of the wingtips. In line 4, the parameter m can be regarded as
the number of wing flaps or the profile power needed where we can assume that, as each bird travels the same distance,
they all spend the same profiling energy. In line 12, similar to the real birds’ story, the bird who spent the most energy
and thus got tired moves back to get some rest and another bird fills its position.

For the MBO to perform better, it is necessary to determine the best values of some parameters. These are the number of
birds to have in the flock (n), the speed of the flight (k), the WTS (x) and the number of wing flaps before a change in the order
of the birds or the profiling energy spent (m). Similar to birds’ story, one could expect some certain values of these param-
eters and their combinations might increase the performance of the algorithm. For example we might expect smaller values
of x could be expected to perform better since the optimum WTS (overlap) was shown to be a very small figure. Also modest
values of k and m might be better which can be regarded as a compromise between profile and induced powers. Another
parameter that needs to be decided on is the iteration limit (K) where obviously we could expect better solutions with higher
values of K with the cost of higher run times.

The philosophy of the MBO is that, by starting with a number of parallel solutions, it is aimed to explore more areas of the
feasible solution space. The exploration is made possible by looking at the neighbor solutions. Each time one of the solutions
(the one in the leader position) is explored in more detail. When one of the solutions fails to improve itself by its own neigh-
bors and if the solution in the front is more promising, it is replaced by one of the neighbors of the solution in the front. This
way the neighborhood around the more promising solution will be explored in a greater detail (by the combined forces of
two birds or solutions). Still after a few iterations these solutions may go to different directions as long as they find improve-
ments along their ways. However, after some time we might expect most of the solutions converge to one or several neigh-
borhoods where local optima or even the global optimum are contained. The convergence can be faster with larger values of
x but in that case the termination could take place before the feasible region is thoroughly explored and thus the results
obtained might not be good.

The properties of the MBO which distinguishes it from the other metaheuristic approaches are a number of solutions run-
ning in parallel and the benefit mechanism between the solutions. Parallel processing can somehow be regarded as inherited
to genetic algorithms and scatter search. On the other hand, although the MBO seems to have some similarities to swarm
intelligence algorithms and in particular to the ABC where better solutions are explored more, the benefit mechanism intro-
duced here is totally unique to the MBO.
4. Application

The implementation and comparison of MBO with other metaheuristic algorithms is made primarily on some real life QAP
instances. In the following we first describe these benchmark data and give some short information on the algorithms com-
pared. Then, in the last subsection, we provide some initial experimental results obtained.

4.1. Description of benchmark data

To test the performance of the MBO algorithm the QAP as described in [14] and the test problems solved therein are used.
That QAP was related to the printed circuit board (PCB) assembly shops where the decision of where to locate the different
electronic components in the cells of a linear feeder mechanism was leading to arise of a QAP. It is a special type of QAP in
that, the departments are located on a line (as opposed to the classical example of two dimensional layout optimization
problem given for the QAP) and the flow matrix is very sparse (being most entries equal to zero).

The study [14] was based on [13] where the coding was made on Turbo Pascal 7. For the study [29] and here, since it was
not possible to rerun those codes and extract the best performing algorithm recorded therein (it was coded as H14) as a
benchmark heuristic to the MBO algorithm, we had to re-code it using Java. Fortunately we were able to obtain (with no
or very small differences) the data of eight out of 11 problems used in [14]. Then, we tested our new H14 on these eight
problems to see if we would get similar results and indeed we got (note that it is not possible to obtain exactly the same
results since random number seeds used now and then are different). Then we continued with the coding of the MBO algo-
rithm. The codes for H14, the MBO algorithm (together with detailed textual descriptions of its procedures) and the data of
the eight problems can be obtained through the url http://www.mbo.dogus.edu.tr.

4.2. Description of benchmark algorithms

In [14], to find a good performing solution to the QAP a number of heuristic algorithms including 2-opt, 3-opt and the
metaheuristics tabu search, simulated annealing and guided evolutionary simulated annealing (a hybrid of genetic algo-
rithms and simulated annealing) were implemented. Including the different settings of the parameters 44 alternative heu-
ristics were obtained whose performances are then compared on 11 different problems obtained from real PCB assembly
shops. At the end, the heuristic named as H14 was found to be the best one which is a simulated annealing implementation

http://www.mbo.dogus.edu.tr
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with initial temperature (T) equaling 1000 and number of exchange trials (R) at the initial temperature equaling 20. After R
exchange trials, the temperature is divided by 1.1 and R is multiplied by 1.5. Similar to the analogy to metal annealing, when
the temperature is high we easily accepted worse solutions and satisfied with a little exploration of the neighborhood how-
ever, after the temperature is decreased, worse solutions are hardly accepted but a larger neighborhood is explored. H14 was
one of the 10 SA heuristic implementations having different parameter values.

Later the comparison of metaheuristic approaches when applied to the QAP was extended to include genetic algorithms
(GA) and scatter search (SS) in [29]. The performances of 12 different GA implementations and 14 different SS applications
are compared with that of H14 and it was observed that H14 was still the winner.

Later, by the suggestions of an anonymous referee, during the course of this study we have included the PSO and DE meta-
heuristics in the benchmark algorithms lists. Both algorithms were originally developed for the optimization of continuous
functions. One of the few studies who made an application of PSO to a discrete problem was due to Pan et al. [39] who solved
a flow shop scheduling problem. In our study we picked up their approach and used insert mutation and one-cut crossover
operator for mutation and crossover operators. As for DE, Pan et al. [38] proposed a simple and novel discrete DE (DDE). It
basically relies on perturbations of the previous generation best solution, called the mutant population, to be recombined by
each of the target population individual to generate a trial population. Ultimately a selection operator is applied to both com-
peting population individuals, namely trial and target population individuals, to decide on which one should be the member
of the target population for the next generation. We used the insert operator defined in Tasgetiren et al. [49] and two-cut PTL
crossover operator defined in Pan et al. [39].

Both PSO and DE need their parameters to be fine tuned. We performed this task on the eight PCB data described above
where the runtime was equated with the other metaheuristics. For PSO the best parameter values appeared to be c1 = 0.8,
c2 = 0.8 and w = 0.5 where c1, and c2 are the crossover probabilities and w corresponds to mutation probability. For DE,
we concluded that cxp = 0.8, mp = 0.2 and p = 1 is a good parameter set where cxp, mp and p stand for crossover probabiliy,
mutation probability and mutation strength, respectively.

4.3. Initial results obtained

The results obtained where the above mentioned metaheuristics applied to the eight PCB data are given in Table 1.
Each problem is solved 10 times using different random number seeds and the average performance on these 10 runs are

tabulated in Table 1. However, for H14 we provide more detail so that the avg, min and max columns display the average,
minimum and maximum values of the objective function among those 10 runs. For the other algorithms we only displayed
the average performance on the 10 runs (deviation from the average performance of H14). The figure N shows the number of
component types (departments), density shows the percentage of nonzero entries in the flow matrix and the number of pair-
wise exchange trials is limited with N3 as in H14. The board names are the same with the ones in [14]. We can see that the
performance of simulated annealing (H14) is considerably better than the other metehauristics.

After the implementation of the MBO algorithm, to get the first results we made a quick analysis to determine the first set
of parameter values (a more detailed parameter analysis is made in the next section). This analysis which is made on two
problems can be seen in Table 2 where the minimum figure of each column is given in bold. The min column provides a mea-
sure for best performance, the max column for the worst performance and the avg for the average performance. Obviously if
one has sufficient time to wait for a better solution, the results given under min are more prominent. However, if run time
allowance is limited then the avg and max measures are also important. As this decision can change by the application do-
main we preferred to look at all measures. cost-B1 and cost-B7 columns give the average of these three columns for boards B1
and B7, respectively. The total cost on two problems (sum of cost-B1 and cost-B7) is given in the cost column. According to
this column which can be regarded as the overall performance, the parameter values being n = 51, k = 7, x = 3 and m = 20 are
selected to continue with. This row is highlighted in grey in the table.

The above determined parameter values are applied to other six problems also and the results given in Table 3 are ob-
tained. The results indicate that the MBO algorithm performs considerably better than the simulated annealing algorithm
(H14). As for the average performance (avg column), it performed more than two per cent better based on the average of
Table 1
The results obtained by simulated annealing (H14).

Board Name N Density (%) H14 GA (%) SS (%) TS (%) GESA (%) PSO (%) DE (%)

Avg Min Max

B1 PS11AK17N3 58 4.55 1165 1076 1206 5.58 28.24 9 6 17.7 58.6
B2 PS11AK12-7 54 4.59 842 800 912 8.91 22.21 8 2 18.5 64.8
B3 PS11AK08-9 52 4.80 820 740 882 4.39 21.10 4 1 22.4 59.6
B5 PS11AK16-5 50 8.12 1543 1474 1680 3.31 16.85 4 1 14.9 43.2
B6 PS11AK1011 48 5.69 807 756 896 5.20 21.07 2 �1 16.3 55.6
B7 PS11AK16-4 49 7.62 1461 1392 1536 2.05 9.45 3 0 13.6 37.4
B8 PS11AK16-3 47 8.60 1396 1370 1460 0.86 15.69 5 1 11.3 40.0
B9 PS11AK15-4 40 7.88 752 718 768 1.46 11.17 7 1 15.8 36.0

Average 3.97 18.22 5.25 1.38 16.32 49.39



Table 2
Initial analysis to determine the parameter values.

Table 3
The full results obtained with the initially set parameter values.

Board N H14 MBO Improvement

Avg Min Max Cost Avg Min Max Cost Avg (%) Min (%) Max (%) Cost (%)

B1 58 1165 1076 1206 1149 1117 1064 1146 1109 4.30 1.13 5.24 3.55
B2 54 842 800 912 851 820 780 860 820 2.68 2.56 6.05 3.76
B3 52 820 740 882 814 784 746 826 785 4.59 �0.80 6.78 3.52
B5 50 1543 1474 1680 1566 1536 1464 1594 1531 0.46 0.68 5.40 2.18
B6 48 807 756 896 820 798 776 816 797 1.13 �2.58 9.80 2.78
B7 49 1461 1392 1536 1463 1425 1398 1462 1428 2.53 �0.43 5.06 2.39
B8 47 1396 1370 1460 1409 1387 1370 1412 1390 0.65 0.00 3.40 1.35
B9 40 752 718 768 746 736 720 758 738 2.17 �0.28 1.32 1.07

Average 2.31 0.04 5.38 2.58
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eight problems. In terms of the best result on ten runs (min column), while H14 outperformed the MBO on some problems,
their performances are almost the same. However, as we look at the worst performances (max column), MBO is much better.
This indicates that the MBO is a more stable algorithm than H14. The superiority of the MBO in terms of the average and
worst case performances are also validated by a one-sided t test with a = 0.05 where the test did not find a significant dif-
ference in terms of the best performances. Overall, MBO seems to be 2.58% better than H14 (according to the cost column
which is equal to the average of avg, min and max columns). We will come back to this analysis after the detailed parameter
fine tuning experiments given in the next section.

5. Parameter fine tuning

In this section we try to find the best values of the four parameters of the MBO which may affect its performance. For this
we have determined a number of possible and reasonable values for the parameters as listed in Table 4. There is some ratio-
nale behind these values. For example the value of n is taken as an odd number so that we could have a V with equal leg
lengths. Also, by considering the solution in the front the value of k should be greater than or equal to (2x + 1) so that after
it uses the best neighbor it can have enough number of neighbors to share with the following solutions. In Table 4, the num-
ber of k � x combinations are 81 and of these 29 are infeasible. So we had a total number of 3640 (10 � 7 � (81 � 29)) different
combinations of parameters. Actually for the reasons explained in Section 3, we did not expect some of these combinations
to perform good but just to have a broad experimentation we run them all. As we stated before, another parameter that
needs to be decided on is the iteration limit (K) where better solutions could be expected with higher values of K. To stay
comparable with H14, in our experiments we kept the value of K constant at N3.



Table 4
Values of parameters used in computational experiments.

Parameter Values

number of birds in the flock (n) 3, 5, 7, 9, 13, 19, 25, 51, 101, 201
speed of the flight (k) 3, 5, 7, 9, 13, 19, 25, 51, 101
number of wing flaps (m) 1, 2, 5, 10, 20, 40, 80
WTS (x) 1, 2, 3, 4, 5, 6, 7, 8, 9
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The MBO algorithm is run 10 times for each combination of the parameters and thus 36,400 runs are performed for each
of the eight QAP problem instances. The run time per instance was about 10 hours on the average on a PC having Intel Core2
Duo processor at 2.83 GHz running Windows Vista 32-bit OS with 3 GB RAM. Based on the results obtained, some detailed
analyses are made as discussed below. However, as some of these combinations do not seem to be meaningful they were
excluded from the analysis. For example, if we consider the combination n = 101, k = 25, m = 80, x = 8, the iteration limit K
will be exceeded in the first pass of while loop (line 3 in the pseudocode) for N = 50 (101 � (25 � 8) � 80 > 503), meaning
that there is no time to change the leader bird even once. Since the basic philosophy of the MBO requires all birds take turn
to take the lead, the combinations which do not allow all birds to take the lead at least once are disregarded (this was also
because their performances turned out to be quite poor).

In the following four subsections, we investigate the performance of MBO when these four parameters are changed.

5.1. Effect of the number of birds (n)

In the first analysis, the number of birds (n) is fixed and all results taken with various combinations of k, x and m are aver-
aged to find average results for that value of n. These average results (rounded to the nearest integer) are given in Table 5
where the minimum values of each column are indicated in bold (this applies also to Tables 6–9 that follow). The entry of
n = 201 for B9 is blank because it failed the at least one leadership for all birds requirement as explained above. We see that
the case of 51 birds results in the best performance which is followed by 101 birds. However, as we increase the number of
birds further, the performance gets worse similar to the case of fewer number of birds. In other words, there is a U shape behav-
ior in the performance of MBO with respect to the number of birds. Actually with larger number of birds (parallel solutions) we
might expect a more thorough search of the feasible space but with a limited total number of iterations the neighborhood of
those solutions may not be explored in enough detail and this may be the explanation of worse behavior in large n. This obser-
vation seems to be in parallel to the birds’ story given in Section 2 where it is believed that there is a reasonable number of birds
in flocks. As the problem size of our eight boards are around 51 one might think that there is a relation between the problem
size and the optimum value of n but this should be verified by additional and independent set of experiments.

As compared to the analyses of the other parameters (see the next subsections) the variation in the cost values is the high-
est when n is varied. Thus, we conclude that n is the most important parameter of MBO.

5.2. Effect of the speed of the flight (k)

As we stated before, the number of neighbors generated (which equals to k for the leading bird) can be interpreted as the
induced power required for the flight which is known to be inversely proportional with the forward speed. The performance
of the MBO algorithm with respect to speed of the flight is presented in Table 6.

From Table 6 we can observe that as the value of k increases, the performance of the MBO algorithm degrades with k = 3
giving the best performance. Since at low k values birds are assumed to be flying at higher speeds, this corresponds to saying
that higher speeds are better for energy minimization. This could be interpreted as although birds will get more tired at high-
er speeds they will need less energy for lifting themselves and will be able to fly more distances as they will spend their
energy for moving forward mostly.
Table 5
Average cost eight QAP problems with respect to number of birds.

n B1 B2 B3 B5 B6 B7 B8 B9

3 1179 857 829 1604 830 1486 1421 758
5 1171 851 823 1595 822 1479 1415 754
7 1165 844 820 1589 819 1473 1411 750
9 1161 839 816 1582 816 1468 1408 747

13 1153 832 810 1571 810 1460 1403 743
19 1145 826 803 1562 805 1452 1397 739
25 1138 821 800 1554 802 1450 1394 737
51 1128 813 791 1538 795 1435 1389 731

101 1129 818 795 1529 803 1436 1394 739
201 1163 846 829 1552 839 1476 1437



Table 6
Average cost of eight QAP problems with respect to speed of the flight.

k B1 B2 B3 B5 B6 B7 B8 B9

3 1148 826 803 1558 806 1453 1395 738
5 1152 828 807 1566 809 1459 1399 744
7 1156 832 809 1571 812 1462 1402 746
9 1157 834 812 1574 813 1464 1405 746

13 1158 837 814 1580 815 1467 1407 748
19 1160 841 816 1583 816 1469 1408 749
25 1160 840 816 1583 817 1469 1410 749
51 1161 843 818 1585 818 1470 1412 750

101 1162 846 821 1590 822 1475 1417 754
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From this analysis the natural question of what will happen for k = 1 arises. The case k = 1 requires that x = 0 where, the
MBO turns out to be improving n solutions with straightforward pairwise exchanges running independently and in parallel.
This special case will be investigated below in Section 5.4.
5.3. Effect of the number of wing flaps (m)

Once the order of birds in the V formation is settled, m can be interpreted as the length of time this order is maintained
which mainly determines how much the leading bird will be tired due to the forward move. A small m value, such as one,
means that each successor solution benefits from its predecessor only once and the birds are relocated immediately before
the leading bird gets tired much. On the other hand, a large m value, such as 80, means that the same order of birds is main-
tained for a long time and the leading bird gets too tired. We may expect that moderate values of m may result in better
performance. The results obtained with different values of m are given in Table 7.

We see that, as expected, there is a U shape behavior in the performance when m is varied. We get lower costs for m = 10
and m = 20 (with m = 10 being slightly better) and for smaller or larger m values the costs are higher. An interpretation of this
may be that for small m values, the order of birds changes quickly leading to a lack of convergence. On the other hand for
larger m values, the worse performance can be explained by converging and getting stuck in local optima quickly. However,
the variation in performance is not as much as the cases where n or k are varied and thus m is a less critical parameter.
5.4. Effect of WTS (x)

WTS is an important parameter of the MBO algorithm which is one of its distinguishing properties from the other meta-
heuristics. Its value determines the degree of benefit birds can get from their predecessor birds. Since here we defined the
benefit mechanism as the number of good neighbor solutions obtained from the predecessor solution, a very high value of x
means that all solutions will be similar to each other and thus, there may be a premature convergence. The results obtained
with different values of x are given in Table 8 where parallel to our expectations x = 1 produced better results (remember in
the real birds’ story the optimum overlap amount was shown to be a small percentage of the wing span).

Next, as we have also indicated in the analysis of k, we wanted to analyze the special case of k = 1 and x = 0 (i.e. the case of
parallel straightforward pairwise exchanges). For this purpose, we fixed the value of most effective parameter n to 51 (its
best value) and obtained the results for different values of m, k and x. The average results are displayed in Table 9. We
see that, although there is a gradual decrease in the cost as we decrease x down to one, there is a sudden increase if it is
further decreased to zero. So we may conclude that some collaboration between the solutions (birds) is useful.

Here we would like to comment more on the special value of x = 1. When x = 1, the best unused neighbor of a solution is
propagated to its immediate predecessor and it is used by that one or not but, it is depleted at that level. However, when x is
greater than 1, some of them can also be propagated to the solutions further back which may in return result in a quicker
convergence and worse performance.
Table 7
Average cost of eight QAP problems with respect to number of wing flaps.

m B1 B2 B3 B5 B6 B7 B8 B9

1 1160 841 817 1585 819 1471 1412 749
2 1160 841 816 1582 817 1469 1409 748
5 1157 838 815 1581 815 1467 1408 747

10 1157 837 813 1579 814 1465 1406 747
20 1157 838 814 1576 814 1464 1406 748
40 1159 838 813 1578 815 1467 1407 750
80 1162 840 813 1579 817 1469 1408 749



Table 8
Average cost of the eight QAP problems with respect to WTS.

x B1 B2 B3 B5 B6 B7 B8 B9

1 1153 833 810 1571 811 1460 1403 744
2 1157 836 813 1577 814 1465 1406 747
3 1158 839 814 1580 815 1468 1408 748
4 1160 840 816 1583 816 1470 1410 750
5 1162 840 818 1584 817 1471 1410 750
6 1162 842 819 1585 819 1470 1411 750
7 1161 844 818 1586 819 1473 1411 752
8 1162 843 819 1588 819 1473 1411 751
9 1162 843 819 1588 820 1472 1412 751

Table 9
Average cost of the eight QAP problems with respect to WTS (n = 51).

x B1 B2 B3 B5 B6 B7 B8 B9

0 1130 815 790 1522 798 1428 1396 742
1 1118 805 785 1517 790 1422 1382 727
2 1123 810 788 1532 792 1433 1388 729
3 1128 813 790 1545 793 1432 1389 731
4 1132 816 793 1541 795 1439 1388 731
5 1139 814 798 1544 796 1442 1392 735
6 1134 817 798 1553 799 1447 1397 742
7 1129 823 793 1555 800 1445 1395 737
8 1137 820 799 1554 806 1447 1395 738
9 1134 817 795 1555 804 1443 1393 733

Table 10
The results obtained after the parameters are fine tuned.

Board H14 MBO (best-set) Improvement

Avg Min Max Cost Avg Min Max Cost Avg (%) Min (%) Max (%) Cost (%)

B1 1165 1076 1206 1149 1124 1074 1174 1124 3.67 0.19 2.73 2.19
B2 842 800 912 851 803 764 824 797 4.83 4.71 10.68 6.74
B3 820 740 882 814 784 762 840 795 4.62 �2.89 5.00 2.24
B5 1543 1474 1680 1566 1496 1462 1546 1501 3.17 0.82 8.67 4.22
B6 807 756 896 820 786 758 816 787 2.65 �0.26 9.80 4.06
B7 1461 1392 1536 1463 1416 1398 1456 1423 3.18 �0.43 5.49 2.75
B8 1396 1370 1460 1409 1378 1358 1402 1379 1.34 0.88 4.14 2.12
B9 752 718 768 746 729 722 736 729 3.16 �0.55 4.35 2.32

Average 3.32 0.31 6.36 3.33
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5.5. Results obtained by the parameter fine tuned MBO

According to the above discussed experiments the best set of parameter values can be identified as n = 51, m = 10, k = 3
and x = 1. The results obtained with this best-set are given below in Table 10.

According to these results, the performance of the MBO has improved almost one per cent as compared to the results
obtained by the initial set of parameters. The new results are better than the SA in every category and this is validated by
the t tests on min, max, avg and cost columns with a = 0.05. As a summary comparison we can say that, for the PCB oriented
QAP instances, the MBO algorithm outperforms the SA by 3.33%.
6. Application of MBO to benchmark problems in QAPLIB

After observing that MBO gets very successful results for the QAP instances arising from the real PCB assembly data, we
wanted to see its ability in obtaining optimum solutions. For this purpose we applied to QAPLIB web page where more than
one hundred QAP instances are available together with their optimum or best known solutions (BKS) [7]. It could be assumed
that, although these BKS are not named as optimum they should be very close to it since huge amount of computational ef-
fort have been given to obtain them.

To have an idea on the performance of MBO on these instances, we limited the run time with N3 iterations. This corre-
sponded to 0.2 s for a problem of size 32 and to 25 s for a problem of size 80 on the specified machine. Note that this might



Table 11
Results on benchmark problems with standard parameter values.

Problem Size Density (%) BKS MBO (%) H14 (%) GA (%) SS (%) PSO (%) DE (%)

Sparse
esc32e 32 1.17 2 0.00 0.00 0.00 0.00 0.00 0.00
esc32f 32 1.17 2 0.00 0.00 0.00 0.00 0.00 0.00
esc32g 32 1.76 6 0.00 0.00 0.00 0.00 0.00 0.00
esc32h 32 27.54 438 0.00 5.94 0.91 4.57 5.02 15.07
esc64a 64 3.17 116 0.00 31.03 5.17 12.07 8.62 24.14
tai64c 64 4.13 1,855,928 0.00 5.23 1.78 4.89 0.32 0.19

Dense
lipa40b 40 94.81 476,581 5.29 21.15 21.74 21.32 22.46 24.73
sko49 49 97.96 23,386 1.27 8.41 5.94 8.04 7.92 12.50
wil50 50 98 48,816 0.57 4.15 3.48 3.42 4.17 7.58
tai60b 60 98.33 608,215,054 0.17 17.58 6.42 15.30 11.13 26.45
lipa70a 70 97.16 169,755 0.81 1.44 1.38 1.49 1.41 1.76
lipa80a 80 97.52 253,195 0.74 1.32 1.32 1.29 1.28 1.59

Average 0.74 8.02 4.01 6.03 5.19 9.50

Table 12
Results on benchmark problems with improved parameter values.

Problem n k m x MBO Deviation (%)

Sparse
esc32e All All All All 2 0.00
esc32f All All All All 2 0.00
esc32g All All All All 6 0.00
esc32h Many Many Many Many 438 0.00
esc64a All All All All 116 0.00
tai64c Many Many Many Many 1855928 0.00

Dense
lipa40b Many Many Many Many 476581 0.00
sko49 5 9 80 1 23420 0.15
wil50 13 13 5 4 48834 0.04
tai60b 3 19 2 9 608231607 0.00
lipa70a 19 19 5 2 170817 0.63
lipa80a 19 101 1 9 254729 0.61

Average 0.12
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be far less than the time spent for obtaining the BKS. As we would not be able to solve all 137 problems of QAPLIB we made a
selection from them. In the selection we first wanted that the problem sizes (number of departments) are close to our PCB
problems. Second, we wanted to test the effect of sparsity, if it has any. Consequently, we took six sparse problems similar to
PCB problems, and another set of six dense problems to solve with the MBO. The names, sizes and densities of these 12 prob-
lems are given in Table 11.

The results obtained when these problems are solved with the parameter values settled in the previous section (n = 51,
k = 3, m = 10, x = 1) are also tabulated in Table 11. In contrast with the analysis of the previous section, only the minimum
costs obtained in 10 runs are considered since the aim is to check the ability of MBO in finding BKS. We observe that MBO
was able to find BKS for all sparse problems and it was very close to BKS for dense problems except lipa40b. For the algo-
rithms a change in the performance on sparse and dense problems can be expected as it was also observed in [14]. This is due
to the fact that, in dense problems there can be many different solutions with a similar objective value and any pairwise
exchange can result in a (small) change on it. In such a case finding the best solution in the neighborhood of a solution would
require a lot of effort (more iterations). On the other hand, in sparse problems, most exchange trials would result in no
change in objective value (since most flow values are zero) and the better solutions of the problem should be fewer in num-
ber and are situated in some certain areas of the feasible space. In such a case focusing on these certain areas and exploring
them in more detail could help in finding a better solution. As MBO has the property of converging on some neighborhoods,
this can be the explanation of why it performs better on sparse problems. Consequently, it can be expected that its perfor-
mance on dense problems be increased by increasing the number of iterations or weakening its fast convergence property by
smaller x values. In general terms one should note that no set of different problems or instances of the same problem with
different characteristics as it is the case here can be expected perform good with the same set of parameter values [51].

These problems are also solved by the GA and SS with their parameters as determined in [29] and by PSO and DE with
their parameters determined on PCB problems (see Section 3). The deviations of the minimum of the 10 runs from BKS are
displayed in Table 11. As it could be observed, MBO seems to be a good solver of the QAPLIB problems also.



Fig. 4. Performances of MBO and other metaheuristics as compared to SA.
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At this point we wanted to know if MBO could perform better if the parameter values were varied. For this purpose, each
problem is solved again with a number of different parameter sets as determined in Table 4 similar to the previous section.
The new best solutions, the parameter values giving these best solutions are given in Table 12. If all or most of the parameter
sets gave the best solution, this is indicated by the words ‘‘all’’ or ‘‘many’’.

This time we observe that, the performance of MBO has improved further with only 0.12% average deviation from BKS.
Note that, if one is very keen for a better result, he might obtain even better solutions by running MBO for a longer time.

7. Summary, conclusions and future work

In this study, inspired from the V flight formation of the migrating birds, we proposed a new metaheuristic approach
which we name as the Migrating Birds Optimization (MBO) algorithm. In order to explain the logic behind the algorithm
we first gave the necessary and sufficiently detailed information on bird flying.

The performance of the algorithm is tested on solving quadratic assignment problems arising from printed circuit board
assembly workshops. Two previous studies on this problem where five different metaheuristic approaches are implemented
and compared are taken as the benchmarks. The MBO algorithm outperformed the best performing heuristic reported there-
in (the simulated annealing) by about three per cent on the average. The relative performances of all these metaheuristics as
compared to SA (including the PSO and the DE implemented in this study) are displayed in Fig. 4 (based on the average per-
formances on 10 runs with different random number seeds).

The MBO algorithm is also applied to a set of benchmark problems obtained from QAPLIB where it was able to find the
best known solution in most cases. These results indicate that MBO has a potential for becoming one of the most competitive
metaheuristic algorithms. The benefit mechanism makes it possible to explore the more promising areas of the search space
in more detail. This mechanism which is unique to MBO can be seen as its strength.

As immediate areas of further research, the MBO algorithm can be applied to other problem domains (e.g. continuous
function optimization) and can be compared with additional metaheuristics. More analyses can be made on parameter fine
tuning on sparse and dense QAP problems separately. Also, on contrary to propagating best unused neighbors to proceeding
solutions, other forms of benefit mechanism that best fit to application domain under concern can be devised and
implemented.
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