
Parallel Merge Sort with Double Merging

Ahmet Uyar
Department of Computer Engineering
Meliksah University, Kayseri, Turkey

auyar@meliksah.edu.tr

Abstract— Sorting is one of the fundamental problems in
computer science. With the proliferation of multi core
processors, parallel algorithms for sorting have become very
important. In this study, we propose a new parallel merge sort
algorithm in which two threads perform the merge operation
simultaneously. We have implemented the new merge sort
algorithm in Java. We compared the results of the new algorithm
with the parallel merge sort implemented in Java library. The
results showed that the new algorithm provides between %20-
%30 percent speed increase in a quad core system when sorting
10M to 50M double numbers.

Index Terms—sorting, parallel merge sort, parallel algorithms

I. INTRODUCTION
Sorting is one of the fundamental problems in computer

science. Over the years, researchers have developed many
algorithms to solve this problem. Many of these algorithms
have been developed to work on single CPU machines. Some
of these single CPU sorting algorithms are Bubble Sort,
Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Heap
Sort and Radix Sort.

However, in recent years computer systems have been
using more and more cores in processors. Nowadays, even
many types of smartphones have quad core processors. Since
the year 2004, the trend in processor technology has been to
put more cores instead of increasing the clock speed. This trend
requires us to develop parallel algorithms for the important
problems in computer science. Therefore, we need to develop
more parallel algorithms for the sorting problem.

There are some parallel algorithms for sorting. However,
they are much fewer compared to the single CPU sorting
algorithms. In this study, we propose an improvement for the
parallel merge sort algorithm. We implemented the improved
merge sort algorithm in Java and compared the results with the
parallel merge sort algorithm implemented in Java Library. The
results indicate that the new algorithm can perform much faster
and utilizes the system resources more efficiently.

II. PARALLEL SORTING ALGORITHMS
Sorting is a difficult problem to parallelize. Many single

CPU sorting algorithms require passing through the whole
unsorted data set multiple times. For example, selection sort
requires finding the minimum/maximum of the unsorted
dataset repeatedly. Since the size of unsorted set is decreasing
with every iteration, it is difficult to parallelize it. Similarly,

bubble sort, insertion sort and heap sort are all difficult to
parallelize.

The recursive sorting algorithms are better suited for
parallelization. They divide the unsorted data set into multiple
segments and work on them independently. Quick sort divides
the unsorted data set into two partitions based on a chosen
pivot element. Then, it may divide each partition into two
partitions again with chosen pivot elements. This partitioning
may continue until the desired partition size is reached. When
the partitioning process is completed, each core may sort its
partition in parallel to others. The main difficulty with
quicksort algorithm is to partition the unsorted dataset into
equal partitions. The size of partitions may fluctuate a lot and
the workload among the cores may be distributed unevenly. In
addition, the process of partitioning should also be parallelized
among multiple cores.

Tsigas et al. proposed in [1] a parallel quick sort algorithm
in which they employ multiple threads when partitioning the
array into two. Edahiro’s Mapsort [2] algorithm divides the
unsorted array with multiple pivots into multiple partitions.
Then each partition is sorted with a thread sequentially.

Merge sort is another recursive algorithm that is suitable for
parallelization. The parallel version of the merge sort is shown
at Figure 1 for four cores as implemented in parallelSort
method of java.utils.Arrays class of Java Library. It first
divides the unsorted dataset recursively into two. This process
continues until the number of unsorted subsets reaches to the
number of cores in the system. Then, each core sorts one
unsorted subset independently in parallel. They may use any
single CPU sorting algorithm to sort their segments. Once,
each thread is done sorting their parts, the process of merging
starts. Each parent thread merges the two sorted subsections
from its children threads. As the final step, the root thread
merges two subsections from its children threads and produces
the sorted dataset.

In this algorithm, all four cores are utilized fully when
sorting their subsections. However, when merging is
performed, system utilization is reduced significantly. Only
two cores are used at the first round of merge operations and
the other two cores sit idle. In the final stage of the merge
operation, only one core is used and the other three cores sit
idle. As the number of cores increases in a system, the
utilization of cores is reduced even more during the merge
operations. Therefore, the primary objective of parallel merge
sort algorithms has been to try to distribute the load of merging
among more cores.

A parallel merge sort algorithm proposed by Varman et al.
[3] and popularized by the developers of the GNU Multi-Core
Standard Template Library (MCSTL) [4]. In this algorithm,
first the unsorted array is divided by the number of threads and
each partition is sorted by one thread. Then all threads take part
in merging the sorted partitions. Parallel merging is a complex
process.

III. PARALLEL MERGE SORT WITH DOUBLE MERGING

We propose the merge sort algorithm as shown in Figure 2
for a quad core system. We improve the parallelization of
merge operations by performing every merge operation by two
simultaneous threads. With this improvement, in the first round
of merging, all cores are used. No core sits idle. In the second
round of merging, half of the cores are used. The other half sits
idle. In the final round of merging, two cores are used instead
of one. This improved algorithm speeds up the merge process
by two fold. Every merge operation is performed by two
threads simultaneously, instead of one. In the next section, we
explain how the process of merging is performed by two
threads simultaneously.

This makes it harder to distribute the

IV. MERGING WITH TWO THREADS
Merge algorithm processes two sorted subsets and produces

one sorted data set. The algorithm picks the minimum or
maximum of the two sorted subsets in every iteration and saves
it to an auxiliary array. This iteration continues until all the
elements in the sorted subsets are transferred to the auxiliary
array. As the last step of the merging, all the data is transferred
back to the original array from the auxiliary array. When there
are n elements in total in two sorted subsets, the process of
merging takes O(n) time.

We propose a merging algorithm that are performed by two
simultaneous threads. The working of the algorithm is shown
on Figure 3. One thread starts from the minimums of two
sorted subsets and picks the minimum of two sorted subsets on
every iteration. It generates the first half of the whole sorted
dataset. Meanwhile, the second thread starts from the
maximums of two sorted subsets and picks the maximum of
two sorted subsets on every iteration. It generates the second
half of the whole sorted dataset.

The proposed algorithm speeds up the merging process by
two fold. Instead of one thread, each merge operation is
performed by two simultaneous threads, However, the new
algorithms does not change the time complexity of the merge
algorithm. It still takes O(n) time.

Th1
Divide

Th2
Divide

Th3
Divide

Th4
Sort

Th5
Sort

Th6
Sort

Th7
Sort

Th2
Merge

Th3
Merge

Th1
Merge

Th1
Divide

Th2
Divide

Th3
Divide

Th4
Sort

Th5
Sort

Th6
Sort

Th7
Sort

Th4
MergeMin

Th5
MergeMax

Th6
MergeMin

Th7
MergeMax

Th2
MergeMin

Th3
MergeMax

Figure 2 Parallel merge sort with double merging

Figure 1 Parallel merge sort with 4 threads

A. Synchronization of Two Merging Threads
Since the two threads do not change the elements of the

original array with two sorted subsets, they can simultaneously
work to generate the merged datasets without interfering with
one another. However, both threads have to finish generating
the merged subsets before the process of copying back to the
original array starts.

Copying back of the sorted data from the auxiliary array to
the original array can also be performed by two threads
simultaneously. Each thread can copy back their half to the
original array.

Two merging threads need to be synchronized at two points
when they are performing the merging. Synchronization
algorithm is given for two merging threads at Figure 3.

Merging starts{
 Merge:
 Thread 1: merge mins
 Thread 2: merge maxes
 Synchronize:
 Two threads wait each other
 Copy back:
 Thread 1: copy back first half
 Thread 2: copy back second half
 Synchronize:
 Two threads wait each other
} Merging ends

Figure 4 Synchronization algorithm for two merging threads

V. IMPLEMENTATION OF PARALLEL MERGE SORT WITH
DOUBLE MERGING

There are two main alternatives to implement the parallel
merge sort algorithm in Java. First one is to use the Fork Join
Framework [5]. The second one is to use the CyclicBarrier
synchronization object in Java library [6].

A. Parallel Merge Sort with Fork Join
parallelSort method of Arrays class of Java Library uses

Fork Join framework to implement the parallel merge sort
algorithm. It works as shown in Figure 1. First, a single thread
is started (Th1). This thread divides the problem into two and
starts two new threads to solve each half of the problem (Th2
and Th3). Then, as needed each thread may divide its portion
of the problem into two and starts two new threads to solve
each half. Usually, when the number of threads reaches to the
number of cores in a system, the problem is not divided into
smaller pieces anymore and each thread solves its portion of
the problem sequentially. Then, the process of combining the
results begin. Each thread combines the results from its two
children and passes it to the parent thread. The root thread
computes the overall result.

Implementation of the new merge sort algorithm with Fork
Join Framework can be done as shown in Figure 2. The process
of merging can be performed by two children threads. In the
implementation of parallel merge sort algorithm in Java library,
parent threads perform the merge operations. We propose that
the merge operations should be performed by two children
threads.

B. Parallel Merge Sort with CyclicBarrier
CyclicBarrier synchronization object helps a group of

threads to wait for each other at given barrier points in a multi-
threaded program.

When implementing the merge sort algorithm, one thread
for each core is started and they are grouped with a
CyclicBarrier object for synchronization. The unsorted data set
is divided by the number of cores in the system. Each thread is
assigned one unsorted segment and each of them sorts their
sections sequentially. Then, all threads wait for others to
complete. After this step, every two consecutive threads
perform the merge operations in the first round of merging. All
threads take part in the first round of merge operations. In the
second round of merge operations, only half of the threads take
part. Others loop idle. In the final round of merge operations,
two threads take part.

We implemented the new parallel merge sort algorithm by
using CyclicBarrier as explained above. Using Fork Join or
CyclicBarrier for synchronization should not make any
difference for the performance of the parallel merge sort
algorithm. Because, the amount of time for synchronization
should be very small compared to the time taken for merging.
In addition, the number of threads is small and the amount of
computation is divided almost evenly among the computing
threads.

VI. PERFORMANCE TESTS
We compare the running times of three sorting algorithms:
 Sequential merge sort by a single thread as

implemented in java.utils.Arrays.sort method in Java
library.

 Parallel merge sort in Java library (PMSinJL) as
implemented in java.utils.Arrays.parallelSort method.

3 6 11 17 8 13 16 22

Sorted subset 1 Sorted subset 2

3 6 8 11 13 16 17 22

MaxMerger MinMerger

Figure 3 Merging by two simultaneous threads

 Parallel merge sort with double merging
(PMSwithDM).

We sorted randomly generated double values with each
algorithm. We sorted 5 different sets of numbers: 10million,
20M, 30M, 40M and 50M.

We performed the tests on a machine with a quad core Intel
i5 3.1 GHz CPU and 8GB of RAM. It was running Windows 7.
We used java 1.8.

When measuring the running times, the same program may
take different amounts of time at different times. To measure
the running times accurately, it is suggested by Kaminsky in
his book [7] that all other programs should be shut down as
much as possible and the program should be run 7 times. Then,
the minimum of the running times should be used as the
running time. We followed this procedure when measuring the
running times.

Figure 5 Sorting time comparisons

Figure 5 shows the performance test results for three
sorting algorithms. The first observation is that the two parallel
merge sort algorithms are much faster compared to the
sequential merge sort.

PMSwithDM performs consistently better compared to
PMSinJL. When sorting 10M doubles, PMSinJL takes 484ms
and PMSwithDM takes 374ms. PMSwithDM is %30 faster
than PMSinJL. Similarly, when sorting 50M doubles,
PMSwithDM is 20% faster than PMSinJL. As the number of
elements to be sorted increases, the difference between the two
parallel algorithms decreases. The reason for this is that for
larger arrays, initial sequential sorting for each thread takes
more time and the process of merging takes comparatively less
time. Therefore, the percentage of the difference decreases.

A. Comparison of Merging Times
Parallel merge sort algorithms presented at this study have

two separate stages. At first stage, an unsorted array is divided
into four parts, since we have running the tests on a quad core
machine. Then, each core sorts its section independently. This
first stage is the same in the two parallel merge sort algorithms
that we compare. They use the same sorting method for this
step. Therefore, both algorithms should take almost the same
amount of time for this step.

The main difference is on the second stage of sorting when
parallel merging is performed. Therefore, we want to compare
the running times of both algorithms for parallel merging step.

We cannot measure the running times for these two stages
separately in the parallel merge sort in Java Library. However,
we can measure the running times of these two stages
separately in parallel merge sort algorithm with double
merging. Moreover, we can assume that the running times for
the first stages of both algorithms are the same. Then, we
calculate the running times for the merging stage of PMSinJL.

Figure 6 shows the running times for parallel merges in
these two parallel merge sort algorithms. On the average, the
merging times of PMSwithDM is %50 faster than the merging
times of PMSinJL. These results clearly indicate the superior
performance of the new algorithm. The speed of the merge step
is doubled by using two threads for merging.

Figure 6 Comparison of merge times

When there are more cores in a system, we can expect the

improvement of the new parallel sort algorithm to be more
apparent. In this case, the sorting algorithm spends more time
merging and we can get more improved speed.

VII. CONCLUSIONS
We have presented a new merge algorithm for parallel

merge sort. With this algorithm, two threads can perform one
merge operation simultaneously. One thread generates the first
half of the sorted values starting from the minimums of the two
sorted subsets. The other thread generates the second half of
the sorted values starting from the maximums of the two sorted
subsets. We have implemented the new parallel merge sort
algorithm in Java. We compared the results of the new
algorithm with the parallel merge sort implemented in Java
library.

The results showed that the new algorithm can provide
between %20-%30 percent speed increase in a quad core
system when sorting 10M to 50M double numbers. In addition,
we separately measured the improvement of merge times in the
merge sort algorithm. We have seen that the new algorithm
merges two times faster than the parallel merge sort algorithm
in Java library.

REFERENCES
[1] P. Tsigas and Y. Zhang. A Simple, Fast Parallel Implementation

of Quicksort and its Performance Evaluation on SUN Enterprise
10000. In Proceedings of the 11th Euromicro Conference on
Parallel Distributed and Network based Processing, pages 372–
384, 2003.

[2] M. Edahiro. Parallelizing fundamental algorithms such as
sorting on multi-core processors for EDA acceleration. In
Proceedings of the 2009 Asia and South Pacific Design
Automation Conference, pages 230–233, Yokohama, Japan,
2009.

[3] P.J. Varman, S.D. Scheufler, B.R. Iyer, and G.R. Ricard.
Merging multiple lists on hierarchical-memory multiprocessors.

Journal of Parallel and Distributed Computing, 12(2):171–177,
1991.

[4] J. Singler, P. Sanders, and F. Putze. MCSTL: The Multi-core
Standard Template Library. Lecture Notes in Computer Science,
4641:682–694, 2007.

[5] Fork/Join Tutorial by Oracle,
http://docs.oracle.com/javase/tutorial/essential/concurrency/fork
join.html, Accessed in June 2014.

[6] Java API documentation by Oracle,
http://download.java.net/lambda/b78/docs/api/java/util/concurre
nt/CyclicBarrier.html, Accessed in June 2014.

[7] Alan Kaminsky, Building Parallel Programs: SMPs, Clusters,
and Java, Cengage Course Technology, 2010, ISBN 1-4239-
0198-3.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

