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Abstract In recent years many algorithms have been proposed in the literature for
solving the Max-Cut problem. In this paper we report on the application of a new
Tabu Search algorithm to large scale Max-cut test problems. Our method provides
best known solutions for many well-known test problems of size up to 10,000 vari-
ables, although it is designed for the general unconstrained quadratic binary program
(UBQP), and is not specialized in any way for the Max-Cut problem.
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1 Introduction

Given an undirected graph G(V,E) with edge weights wij , the NP-hard Max-Cut
(MC) problem seeks a partition S1 ⊂ V and S2 = V − S1 such that the weight of the
cut, defined as the sum of the weights on the edges connecting the two sets, is maxi-
mized. This problem has long served as a challenging test for researchers testing new
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methods for combinatorial algorithms. The problem also has well known practical
applications in several areas including statistical physics, VLSI design, classification,
and social network analysis. Other applications, as discussed by Boros and Ham-
mer (1991), include fault test generation, multiprocessor assignments in distributed
networks, image enhancement, and maximum likelihood rankings in statistics. Addi-
tional applications are discussed in the survey paper by Poljak and Tuza (1995).

The computational challenge of the Max-Cut problem has motivated a variety of
solution approaches ranging from approximation algorithms based on semidefinite
programming, to metaheuristic methods, to exact methods. The approximation algo-
rithms, represented by the groundbreaking work of Goemans and Williamson (1995)
and the later work by Karish et al. (2000) provide a performance guarantee but are
generally outperformed by other methods in computational testing. Recent reports on
exact methods include the cut and price approach by Krishnan and Mitchell (2006)
and the branch and bound approach of Rendl et al. (2008). While these approaches
represent advances over the approximation algorithms in finding optimal solutions to
Max-Cut instances, their applications have proven to be limited to problems with no
more than a few hundred nodes.

For larger MC instances, those with thousands of nodes, metaheuristic methods are
required. In this regard, several advances have been recently reported in the literature,
the most notable of which are the rank-2 relaxation method, called CirCut, of Burer et
al. (2001), the hybrid randomized method of Festa et al. (2002), and the scatter search
method of Marti et al. (2009). Computational testing indicates that these methods
generally outperform other methods in the literature with the scatter search method
providing the best overall performance on test problems with up to 3000 nodes.

2 Unconstrained binary quadratic programming and the Max-Cut problem

Much of the published research on the Max-Cut problem present algorithms spe-
cially crafted for the problem at hand. Our approach taken here is quite different. In
this paper we report on the application of a new tabu search method for the Uncon-
strained Binary Quadratic Program (UBQP) to the Max-Cut problem. Our approach
is not specialized in any way for the Max-Cut problem but instead is designed for the
general UBQP.

It is well known (see for example Boros and Hammer 1991; Helmberg and Rendl
1996) that the Max-Cut problem can be modeled as an integer program of the form:

max
1

2

∑

1≤i<j≤n

wij (1 − yiyj )

subject to: yi ∈ {−1,1} ∀i ∈ V

To solve this problem, we first introduce a change of variables (yi = 2xi − 1) leading
to the unconstrained quadratic program in binary variables

max
∑

i<j

wij (xi + xj − 2xixj ); xj ∈ {0,1}
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This problem is of the form max x′Qx and thus is solvable by the recently developed
Diversification Driven Tabu Search (DDTS) method by Glover et al. (2010) for the
general UBQP problem.

The DDTS method repeatedly alternates between a simple version of tabu search
(TS) and a diversification phase founded on a memory-based perturbation operator.
Starting from an initial random solution, DDTS uses the TS procedure to reach a
local optimum. Then, the perturbation operator is applied to displace the solution
to a new region, whereupon a new round of TS is launched. To facilitate achieving
effective diversification, the perturbation operator is guided by information from a
special memory structure.

This tabu search procedure uses a neighborhood defined by the single 1-flip moves,
which consists of changing (flipping) the value of a single variable xj to its comple-
ment value 1 − xj . The implementation of this neighborhood uses a fast incremental
evaluation technique to calculate the cost of candidate moves. The diversification
strategy utilizes a memory- based perturbation operator composed of three parts:
a flip frequency memory, an elite solution memory, and an elite value frequency
memory. These memory structures are used jointly by the perturbation operator to
enhance the diversification of the search process. Complete details of this method are
given in Glover et al. (2010).

3 Computational results

Due to the fact that the leading exact methods can only handle problems containing
up to a few hundred binary variables, we restrict our comparisons to the best the
literature has to offer coming from metaheuristic methods, which have demonstrated
an ability to handle problems an order of magnitude larger.

Our computational testing was carried out on the “G” problems available at
http://www.stanford.edu/~yyye/yyye/Gset/. This set of test problem of medium to
large size is widely adopted in the literature to facilitate computational testing and
comparisons. In all, we considered 69 problems ranging in size from n = 800 vari-
ables to n = 10,000 variables.

The recent paper of Marti et al. (2009) describes the use of a special purpose Scat-
ter Search (SS) method for the Max-Cut problem and provides comparative results
with widely regarded solution procedures such as GRASP Festa et al. (2002) and
CirCut (Burer et al. 2001) on some of these same “G” problems. Their scatter search
method, which we refer to by MDL, proved to outperform competing metaheuris-
tic methods on most test problems considered and thus we use the MDL results as
our main benchmark for making comparisons with our method. Our testing however,
went beyond comparisons with MDL in terms of problem size, as results for the MDL
method were reported only for problems up to n = 3000. To provide a benchmark for
comparison for larger problems (up to n = 10,000 variables) we include published
results from Choi and Ye (2000), which is the only published account we can find
that reports on these larger instances.

Results from our testing are shown in Table 1 where the column titled CY refers to
results published by Choi and Ye, the column titled MDL gives the results published

http://www.stanford.edu/~yyye/yyye/Gset/
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Table 1 Computational results

Problem # Best known SDP CY MDL KHLWG

ID Vars OBJ bound OBJ OBJ OBJ

G1 800 11624 12078 – 11624 11624

G2 800 11620 12084 – 11620 11620

G3 800 11622 12077 – 11622 11620

G4 800 11646 – – 11646 11646

G5 800 11631 – – 11631 11631

G6 800 2178 – – 2165 2178

G7 800 2003 – – 1982 2006

G8 800 2003 – – 1986 2005

G9 800 2048 – – 2040 2054

G10 800 1994 – – 1993 2000

G11 800 564 627 542 562 564

G12 800 556 621 540 552 556

G13 800 580 645 564 578 580

G14 800 3060 3187 2982 3060 3061

G15 800 3049 3169 2975 3049 3050

G16 800 3045 3172 – 3045 3052

G17 800 3043 – – 3043 3046

G18 800 988 – – 988 991

G19 800 903 – – 903 904

G20 800 941 – 876 941 941

G21 800 931 – 855 930 931

G22 2000 13346 14123 12989 13346 13359

G23 2000 13317 14129 13006 13317 13342

G24 2000 13314 14131 12985 13303 13337

G25 2000 13326 – – 13320 13332

G26 2000 13314 – – 13294 13328

G27 2000 3318 – – 3318 3336

G28 2000 3285 – – 3285 3295

G29 2000 3389 – – 3389 3391

G30 2000 3403 – 3080 3403 3403

G31 2000 3288 – 2936 3288 3288

G32 2000 1398 1560 1338 1398 1406

G33 2000 1376 1537 1330 1362 1378

G34 2000 1372 1541 1334 1364 1378

G35 2000 7670 8000 – 7668 7678

G36 2000 7660 7996 – 7660 7670

G37 2000 7666 8009 – 7664 7682

G38 2000 7681 – – 7681 7683

G39 2000 2395 – – 2393 2397

G40 2000 2387 – – 2374 2390



Solving large scale Max Cut problems via tabu search

Table 1 (Continued)

Problem # Best known SDP CY MDL KHLWG

ID Vars OBJ bound OBJ OBJ OBJ

G41 2000 2398 – – 2386 2400

G42 2000 2469 – – 2457 2469

G43 1000 6659 7027 – 6656 6660

G44 1000 6648 7022 – 6648 6639

G45 1000 6652 7020 – 6642 6652

G46 1000 6645 – – 6634 6649

G47 1000 6656 – – 6649 6665

G48 3000 6000 – 6000 6000 6000

G49 3000 6000 – 6000 6000 6000

G50 3000 5880 – 5880 5880 5880

G51 1000 3846 – – 3846 3847

G52 1000 3849 – – 3849 3849

G53 1000 3846 – – 3846 3848

G54 1000 3846 – – 3846 3851

G55 5000 9960 – 9960 – 10236

G56 5000 3649 – 3649 – 3934

G57 5000 3220 – 3220 – 3460

G58 5000 – – – – 19248

G59 5000 – – – – 6019

G60 7000 13658 – 13658 – 14057

G61 7000 5273 – 5273 – 5680

G62 7000 4612 – 4612 – 4822

G63 7000 8059 – 8059 – 26963

G64 7000 7861 – 7861 – 8610

G65 8000 13286 – 13286 – 5518

G66 9000 − – – – 6304

G67 10000 – – – – 6894

G70 10000 9499 – 9499 – 9458

G72 10000 6644 – 6644 – 6922

by Marti, Duarte and Laguna, and the right most column, titled KHLWG, gives our
results. The Semi-Definite relaxation results have been reported in the literature for
some of these problems and we list these in the forth column of the table to provide
yet another benchmark for comparison. The third column in Table 1 gives the best
known solutions reported in the literature prior to this paper. In Table 1 we report
results from our method for each of the 69 problems under consideration. A “dash”
in the table denotes that a result for that particular problem was not available. For
example, MDL does not report results for problems G55 to G72.

To make an allowance for the different computers used by MDL and our DDTS
algorithm, we used the standard SPEC benchmark data. The results reported by MDL
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were obtained by letting the method run for 1/2 hour of CPU time on each problem.
The comparable time on our computer, according to the SPEC 2000 and SPEC 2006
benchmarks is 2.36 hours of CPU time. Accordingly, the results we present in the
table for problems G1-G54 refer to the best solution found by our method in 2.36
hours of CPU time. For the larger problems not addressed by MDL, we increased the
CPU run time to allow our algorithm more time to search for good solutions as the
problem size increased. Accordingly, for the n = 5000 and 7000 variable problems,
we report the best solutions found in 8 hours of CPU run time. For the 8,000, 9,000,
and 10,000 variable problems, the CPU run time limits were 12 hours, 20 hours, and
24 hours respectively.

Table 1 enables a comparison of the DDTS metaheuristic with the scatter search
metaheuristic of MDL on problems G1–G54. In a comparable time limit, our ap-
proach found better solutions on 40 of the 54 problems. On 12 problems both meth-
ods found the same solution and on 2 of the problems MDL found a better solution.

Over the entire test bed of 69 problems, Table 1 shows that our method matched
best known solutions on 19 of the 69 problems, found new best known solutions on 46
problems, and failed to find best known solutions on 4 problems. On those problems
for which a SDP bound is available, our objective function values are very close to
the bounds, adding further evidence of the quality of our results.

4 Summary & conclusion

We demonstrate that a modern tabu search metaheuristic designed for the general
unconstrained binary quadratic program can produce high quality solutions to large
Max-Cut problems. Comparisons with other approaches reported in the literature
show that our method outperformed the leading competitive methods by a wide mar-
gin and in fact found new best known solutions for most problems attempted. This
is particularly noteworthy in that the solution approach we employed is not special-
ized in any way for the Max-Cut problem, but handles problems of a much larger
class. Our results suggest that further enhancements to solution methodologies for
the unconstrained binary quadratic program hold considerable promise for solving
even larger Max-Cut problems. We plan to report on such work in future papers.
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