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Abstract. This paper summarizes some of the current research chal-
lenges arising from multi-channel sequence processing. Indeed, multiple
real life applications involve simultaneous recording and analysis of mul-
tiple information sources, which may be asynchronous, have different
frame rates, exhibit different stationarity properties, and carry comple-
mentary (or correlated) information. Some of these problems can already
be tackled by one of the many statistical approaches towards sequence
modeling. However, several challenging research issues are still open, such
as taking into account asynchrony and correlation between several feature
streams, or handling the underlying growing complexity. In this frame-
work, we discuss here two novel approaches, which recently started to be
investigated with success in the context of large multimodal problems.
These include the asynchronous HMM, providing a principled approach
towards the processing of multiple feature streams, and the layered HMM
approach, providing a good formalism for decomposing large and complex
(multi-stream) problems into layered architectures. As briefly reported
here, combination of these two approaches yielded successful results on
several multi-channel tasks, ranging from audio-visual speech recognition
to automatic meeting analysis.

1 Introduction

Given the proliferation of electronic recording devices (cameras, microphones,
EEGs, etc) with ever cheaper, and ever increasing processing speed, storage, and
bandwidth, together with the advances in automatically extracting and manag-
ing information recorded from these devices (such as speech recognition, face
tracking, etc), it becomes more and more feasible to simultaneously capture a
same event (or multiple events) with several devices, generating richer and more
robust sets of feature-streams.

Modeling such data coming from multiple channels (thus resulting in multiple
observation streams) is the goal of multi-channel sequence processing. Examples
of practical applications of this field are numerous, such as audio-visual speech
recognition, which can be more robust to ambient noise than only using an audio
stream. While several statistical models were presented recently in the literature
to cope with this growing amount of data accessible in parallel, several open
research problems are still to be solved. The purpose of this paper is thus to dis-
cuss some of these solutions, and specifically addressing two important issues, i.e.,
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asynchrony (when the feature streams are supposed to be piecewise stationary,
but with different stationary properties) and complexity (when it is furthermore
necessary to split the problem into several multi-stream sub-problems).

The outline of the paper is as follows. Section 2 justifies the need for multi-
channel sequence processing by discussing some of the numerous applications
that require such a framework. Section 3 reviews some of the current models
used in the literature. Section 4 shows that despite all these models, there is still
room for several improvements. Section 5 proposes a model to handle temporal
asynchrony between channels, while Section 6 proposes a principled approach to
control the complexity of multi-channel sequence processing through “optimal”
hierarchical processing.

2 Some Applications

Several tasks that are currently handled with only one stream of information
could in fact benefit from the addition of other parallel streams. Furthermore,
like in speech recognition (as well as video processing), it becomes more and
more usual to apply different feature extraction techniques to the same signal,
resulting in multiple feature streams

For instance, in audio-visual speech recognition, the audio signal is typically
complemented by the video recording of the face (and thus the lips) of the person.
It has already been shown [1,2] that if the resulting audio and visual feature
streams are properly modeled, such a multi-channel approach will significantly
help in recognizing the speech utterances under noise conditions. Similar settings
have also been used successfully for audio-visual person authentication [2]. In
fact, even using only one raw source of information can yield better results in a
multi-channel setting, e.g., using multiple sampling rates (multi-rate) or feature
extraction (multi-stream) techniques, as already demonstrated for the task of
speech recognition [3].

The field of multimedia analysis, which includes analysis of news, sports,
home videos, meetings, etc, is very rich and these events are often recorded
with at least two streams of information (audio and video) and sometimes more
(as for the meeting scenario described later in this paper), and may contain
complex human human interactions [4]. These multimedia documents also give
rise to other applications such as multimodal tracking of objects/humans [5].
Furthermore, as the quantity of such archived documents grows, it becomes
important to develop multimedia document retrieval systems [6,7] to find relevant
documents based not only on their textual content but also on their joint visual
and audio content.

Finally, numerous multi-channel sequence processing processing also appear
in the context wearable computers [8], aiming at assisting people in various every-
day activities (e.g., life saving, security, health monitoring, mobile web services)
by using small devices such as cameras, microphones (e.g., recording all what you
see and all what you hear), and multiple extra sensors (e.g., recording diverse
physiological signals), etc.



24 S. Bengio and H. Bourlard

In all the above applications, multi-channel processing presents several chal-
lenges. As already mentioned earlier, we first have to develop new sequence
recognition strategies accommodating multiple frame rates, asynchrony, correla-
tion between stream, etc. One solution to this problem, referred to as “Asynchro-
nous HMM” (AHMM) will be discussed in the paper (Section 5). Furthermore,
multi-channel processing may also impact differently the different levels of infor-
mation that we aim at extracting from the observation streams. While AHMM
can be well suited to classify sequential patterns into“low level”classes, they may
not be appropriate, or easily tractable (because of training data and complexity
issues), when one aims at extracting higher level information, such as semantic
classes. In this case, it may be necessary to use a “hierarchical HMM” approach,
where each “HMM layer”will use different types of multiple observation streams
(possibly resulting of the previous HMM layer). This layered approach will be
discussed in Section 6.

3 Notation and Models

Several models have already been proposed in the literature to handle multi-
channel applications. We briefly discuss here some of the most successful ap-
proaches, using a unified notation. Let us denote an observation sequence O of
T feature vectors as

O = (o1,o2, . . . ,oT ) , (1)

where ot is the vector of all multimodal features available at time t. In general,
such a set of features can be broken down into multiple streams (associated with
channels, modalities, or different pre-processing) m. We thus further define the
feature vector

om
t ∈ R

Nm , (2)

where Nm is the number of features for stream m, with 1 ≤ m ≤ M (the
total number of observation streams). Each observation sequence is typically
associated with a corresponding sequence of high level classes or “events”. For
instance, in speech or handwriting recognition, this would correspond to a se-
quence of words. The most successful types of model used to handle observation
sequences are all based on a statistical framework. In this context, the general
idea is to estimate, for each type of high level event vj ∈ V , the parameters
θj of a distribution over corresponding observation sequences p(O|θj), where O
would correspond to the event vj . The most well-known solution to efficiently
model such distributions is to use Hidden Markov Models (HMMs).

HMMs have been used with success for numerous sequence recognition tasks,
including speech recognition [9], video segmentation [10], sports event recogni-
tion [11], and broadcast news segmentation [12]. HMMs introduce a state variable
qt and factor the joint distribution of the observation sequence and the under-
lying (unobserved) HMM state sequence into two simpler distributions, namely
emission distributions p(ot|qt) and transition distributions p(qt|qt−1). Such fac-
torization assumes an underlying piece-wise stationary process (each stationary
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segment being associated with a specific HMM state), and yields efficient train-
ing algorithms such as the Expectation-Maximization (EM) algorithm [13] which
can be used to select the set of parameters θ∗j of the model corresponding to event
vj in order to maximize the likelihood of L observation sequences:

θ∗j = argmax
θj

L∏

l=1

p(Ol|θj). (3)

The success of HMMs applied to sequences of events is based on a careful de-
sign of sub-models (topologies and distributions) corresponding to lexical units
(phonemes, words, letters, events), and possibly semantic units (like the meet-
ing group actions discussed in Section 6.1). Given a training set of observation
sequences for which we know the corresponding labeling in terms of high level
events (but not necessarily the precise alignment), we create a new HMM for
each sequence as the concatenation of sub-model HMMs corresponding to the
sequence of high level events. This HMM can then be trained using EM, thus
adapting each sub-model HMM accordingly.

During testing, when observing a new observation sequence, the objective
is simply to find the optimal sequence of sub-model HMMs (representing high
level events) that could have generated the given observation sequence. Multiple
algorithms have been developed to efficiently solve this problem, even in large
search spaces, including stack decoders [14], or different approximations based
on the well-known Viterbi algorithm [15].

While HMMs can be used to model various kinds of observation sequences,
several extensions have been proposed to handle simultaneously multiple streams
of observations, all corresponding to the same sequence of events [3,1,16]. The
first and simplest solution is to merge all observations related to all streams
into a single stream (frame by frame), and to model it using a single HMM as
explained above. This solution is often called early integration. Note that in some
cases, when the streams represent information collected at different frame rates
(such as audio and video streams for instance), up-sampling or down-sampling
of the streams is first necessary in order to align the streams to a common frame
rate.

A better solution may be to use the multi-stream approach [17]. In this case,
each stream is modeled separately using its own HMM. For instance, if we con-
sider the modalities as separate streams, we would create one model θ∗m,j for
each event vj and stream m such that

θ∗m,j = arg max
θm,j

L∏

l=1

p(Om
l |θm,j), (4)

where Om
l is the lth observation sequence of stream m. When a new sequence of

events needs to be analyzed, a special HMM is then created, recombining all the
single stream HMM likelihoods at various specific temporal (“anchor”) points
automatically determined during training and decoding. Depending on these
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recombination points, various solutions appear. When the models are recombined
after each state, the underlying system is equivalent to making the hypothesis
that all streams are state-synchronous and independent of each other given a
specific HMM state. This solution can be implemented efficiently and has shown
robustness to various stream-dependent noises. The emission probability of the
combined observations of M streams in a given state of the model corresponding
to event vj at time t is estimated as:

p(ot|qt) =
M∏

m=1

p(om
t |qt, θm,j). (5)

One can see this solution as searching the best path into an HMM where each
state i would be a combination of all states i of the single stream HMMs1. A
more powerful recombination strategy enables some form of asynchrony between
the states of each stream: one could consider an HMM in which states would in-
clude all possible combinations of the single stream HMM states. Unfortunately,
the total number of states of this model would be exponential in the number
of streams, hence quickly intractable. An intermediate solution, which we call
composite HMM, considers all combinations of states in the same event only [18].
Hence, in this model, each event HMM j now contains all possible combinations
of states of the corresponding event vm,j of each stream HMM m. The total
number of states remains exponential but is more tractable, when the number
of states of each stream remains low as well as the number of streams. The
underlying hypothesis of this intermediate solution is that all streams are now
event-synchronous instead of state-synchronous.

Several other approaches to combine multiple streams of information have
been proposed in the literature, but generally suffer from an underlying train-
ing or decoding algorithm complexity which is exponential in the number of
streams. For instance, Coupled Hidden Markov Models (CHMMs) [19] can model
two concurrent streams (such as one audio and one video stream) with two con-
current HMMs where the transition probability distribution of the state variable
of each stream depends also on the value of the state variable of the other
stream at the previous time step. More formally, let q and r be respectively
the state variables of both streams, then CHMMs model transitions according
to p(qt=i|qt−1=j, rt−1=k) and p(rt=i|rt−1=j, qt−1=k). While the exact training
algorithm for such a model quickly becomes intractable when extended to more
than 2 streams, an approximate algorithm which relaxes the requirement to visit
every transition (termed the N-heads algorithm) was proposed in [19], and can
be tractable for a small number of streams.

Two additional approaches have been proposed recently, and will be the focus
of Sections 5 and 6. These are the Asynchronous HMM [20], that can handle
asynchrony between streams, and the Layered HMM [21,22] than can help in
constraining the model according to levels of prior knowledge.

1 Note that this solution forces the topology of each single stream to be the same.
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4 Challenges

While there are already several models proposed in the literature to cope with
multi channel sequence processing, we believe that there are still several research
challenges that have not been adequately addressed yet, including:

1. How to handle more than two streams? Most solutions that model the
joint probability of the streams need in general exponential resources with
respect to the number of streams, the number of states of each underlying
Markov chain, or the size of each stream. This practically means that han-
dling more than two streams is already a challenge. One possible alternative
is to limit the search space through the use of reasonable heuristics, which
should depend on a priori knowledge on the interdependencies of the streams.

2. How to handle learning in high dimensional spaces? The observation
space (the total number of observed features per time step) grows naturally
with the number of streams. Furthermore, it is often the case that the total
number of parameters of the model grows linearly or more with the num-
ber of observations (for instance if the conditional observation distributions
are modeled with Gaussian Mixture Models). Hence, one has to fight the
well-known curse of dimensionality [23].

3. How to handle long term temporal dependencies? This problem deals
with sequential data where one needs to relate information observed at time
t with information observed at time t + k where k is rather large. It has
been shown [24] that this becomes exponentially difficult with k when no
structural knowledge is built a priori in the model. Hence, in order for multi
channel processing to be successful, an appropriate structure is necessary.

4. Joint feature extraction and heterogeneity of sources. In current sys-
tems involving multiple streams of information, features used to represent
each stream are extracted independently. On the other hand, if one agrees
that there may be some correlation between the streams, one should there-
fore devise joint feature extraction techniques, which should then yield more
robust performance. However, what should we then do with streams of dif-
ferent nature (such as the slides of a presentation, together with the video
of the person performing the same presentation)?

5. How to handle different levels of a priori knowledge constraints?
It has been known for decades that in order to obtain good speech recogni-
tion performance, one has to constrain the recognition model with a good
language model, that only permits valid and probable sequences of words
to be recognized. The same idea should thus be applied to other domains,
such as videos, which contain rich high level information that should be con-
strained somehow. Several levels of description should thus be used in such
language model; for instance, a visual scene could be described by the pix-
els of the image, the persons present in the image, the action taking place,
the body language, etc. For each of these levels, a probabilistic model of
what is possible and what is not should therefore be trained. Furthermore,
one should devise multi channel language models in order to take into
account information coming from several streams at the same time.
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6. Asynchrony between streams. Let us consider the simplest multi-channel
case, with 2 streams, and let us assume that these 2 streams describe the
same sequence of 3 “events” (classes) A, B and C. Furthermore, let us as-
sume, as illustrated in Figure 1, that the best piecewise stationary alignment
of each stream to the sequence A-B-C would not coincide temporally with
each other (which we refer to “stream asynchrony”). In such a case (which
is discussed in more details in Section 5), a naive solution to try to model
the joint probability of the two streams (e.g., applying early integration)
would need an exponential number of states (with respect to the number
of streams), as depicted in the third line of Figure 1. A better solution, de-
picted in the fourth line of Figure 1, would stretch or compress the streams
along a single HMM model with the goal to re-align them during training
and decoding. Such a model is described in Section 5.

Stream 1

Stream 2

Asynchronous
Joint /

Naive
Integration

A B C

A

C

B C

B

A

A B

B

B

CB

C C

A

A

A B C

5 (d1+d2)−dim
states

3 (d1+d2)−dim
states

3 d1−dim states

3 d2−dim states

Fig. 1. Complexity issue with asynchronous streams

7. Available benchmark datasets for evaluation. One of the reasons of the
steady progress of speech recognition has been the ever increasing availabil-
ity of larger and larger realistic labeled datasets, and the yearly organization
of international competitions. It is well known that this is a key point for
progress in any scientific research field. However, to date, very little mate-
rial has been recorded and properly annotated for multi channel sequence
processing. Audio-visual speech recognition and person authentication are
probably the fields where most available databases can be found. What about
other scenarios, such as multimedia analysis, multimodal surveillance, etc?
In Section 6, we describe a first initiative of such a benchmark database
available for the meeting scenario.

5 Handling Asynchrony

Properly modeling asynchrony and correlation between multiple observation
streams is thus a challenging problem. However, as a matter of fact, there
are multiple evidences of real life applications involving several asynchronous
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streams. For instance, audio-visual speech recognition usually exhibits asyn-
chrony. Indeed, the lips of a person often start moving earlier than any sound
is uttered, mainly because the person is preparing to utter the sound. Another
example is the speaking and pointing scenario, where a person complement the
speech signal with a pointing gesture (to a point of interest). In this case, of
course, although the two streams are related to the same high-level event, the
pointing event will usually never occur exactly at the same time as the vocal
event. One last example of asynchrony: in a news video, there is almost always a
variable delay between the moment when the newscaster says the name of a pub-
lic personality and the moment when the personality’s picture actually appears
on the screen.

One can think of several other instances involving asynchrony between
streams, and there is thus a need to model this phenomenon in a principled
way. As described below, such a solution, referred to as Asynchronous HMM
was recently proposed.

5.1 The Asynchronous HMM

Let us consider the case where one is interested in modeling the joint proba-
bility of two asynchronous streams, denoted here O1 of length T1 and O2 of
length T2 with T2 ≤ T1 without loss of generality2. We are thus interested in
modeling p(O1,O2). Following the ideas introduced for HMMs, we represent
this distribution using a hidden variable Q which represents the (discrete) state
of the generating system, which in our case is synchronized with the longest
sequence O1.

Moreover, since we know that O2 is smaller than O1, let the system always
emit o1

t at time t but only sometimes emit o2
s at time t, with s ≤ t. Let us

define τt=s as the fact that o1
t is emitted at the same time as o2

s; τ can thus
be seen as the alignment between O1 and O2. Hence, an Asynchronous HMM
(AHMM) [20] models p(O1,O2, Q, τ).

Using these hidden variables, and using several reasonable independence as-
sumptions, we can factor the joint likelihood of the data and the hidden variables
into several simple conditional distributions:

– P (qt=i|qt−1=j), the probability to go from state j to state i at time t,
– p(o1

t ,o
2
s|qt=i), the joint emission distribution of o1

t and o2
s, while in state i

at time t,
– p(o1

t |qt=i), the emission distribution of o1
t only, while in state i at time t,

– P (τt=s|τt−1=s−1, qt=i,o1
1:t,o

2
1:s), the probability to emit on both sequences

while in state i at time t.

We showed in [20] that using these simple distributions, new algorithms could
be developed to (1) estimate the joint likelihood of the two streams, (2) train a

2 Since all the reasoning below can easily be generalized to sequences (even of the
same length) where the warping (stretching and compressing) can occur at different
instances in the different streams.
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model to maximize the joint likelihood of pairs of streams, and (3) jointly estimate
the best sequence of states Q and the best alignment between pairs of streams.

Furthermore, one can still constrain the model to consider only reasonable
alignments, e.g., integrating some minimum and maximum asynchrony between
the streams. Using this constraint and denoting Nq the number of states of the
model, the training and decoding complexity become O(N2

q · T1 · k), which is
only k times the usual HMM complexity.

5.2 Audio-Visual Speech Recognition

The proposed AHMM model was applied to several tasks, including audio-visual
speech recognition and speaker verification [2], as well multi-channel meeting
analysis [21]. We report here results on the M2VTS database [25] for the task of
audio-visual speech recognition, where the speech features where standard Mel-
Frequency Cepstral Coefficients (MFCCs), while the visual features where shapes
and intensities around the mouth region, obtained by lip tracking. In order to
evaluate the robustness of audio-visual speech recognition, various levels of noise
were injected into the audio stream during decoding, while training was always
done using clean audio only. The noise was taken from the Noisex3 database [26],
and added to the speech signal injected to reach segmental signal-to-noise ratios
(SNR) of 10dB, 5dB and 0dB.

Asynchronous HMMs were compared to classical HMMs using only the audio
stream, only the video stream, or both streams combined using the early integra-
tion scheme. Figure 2 presents the results in terms of Word Error Rate (WER), a
commonly used measure in the field of speech recognition,which takes into account
the number of insertions, deletions and substitutions4. As observed from Figure 2,
the AHMM consistently yielded lower WER as soon as the noise level was signifi-
cant. Actually, it did not yield significantly lower performance (using a 95% confi-
dence interval) than the video stream alone in case of very low (0dB) SNR, while
performing as well as the audio stream alone in case of “clean”speech (10dB).

An interesting side effect of the model is to provide the “optimal” alignment
between the audio and the video streams, as a by-product of the decoding process.
This is illustrated in Figure 3 showing the audio-visual stream alignment resulting
from the AHMM decoding of a specific digit sequence corrupted with 10dB Noisex
noise. As it can be seen, the alignment is far from being linear. This shows that
computing and maximizing the joint stream probability using AHMM appears
more informative than using a naive alignment and a normal HMM.

6 A Layered Approach
6.1 The Meeting Scenario

Automatic analysis of meetings (including, e.g., automatic modeling of human
interaction in meetings by modeling the joint behavior of participants through
3 We took the stationary speech noise.
4 Basically, the edit (Levenshtein) distance between the recognized and reference word

sequences.
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multiple audio and visual features) is a particularly challenging application of
multi-channel sequence processing. It is multimodal by nature (meetings can be
recorded with several cameras and microphones, as well as with other devices
capturing information coming from the white-board, the slide projector, etc) and
is also a rich case study of human interaction.

In [4], a principled approach to the automatic analysis of meetings was pro-
posed, defining meetings as continuous sequences of group actions chosen from a
predefined dictionary of actions (including, for instance, monologue, discussion,
white-board presentation, with or without note-taking, agreement/disagreement,
etc). This made the problem well suited for supervised learning approaches. The
group actions should be mutually exclusive, exhaustive, and as much as possi-
ble unambiguous to human observers. To this end, we have collected a corpus
of 60 short meetings of about 5 minutes each (30 for training, and 30 for test
purposes) in a room equipped with synchronized multi-channel audio and video
recorders. The resulting corpus, including annotation, is now publicly available
at http://mmm.idiap.ch5. Each meeting consisted of four participants seated
at a table in a typical workplace setting. Three cameras captured the partici-
pants, the projector screen and white-board. Audio was recorded using one lapel
microphone per participant and an eight-microphone array located in the center
of the table. The overall goal was to minimize the Action Error Rate (AER),
similarly to what is done in speech recognition with Word Error Rate (WER),
but over sequences of high level group actions. To this end, several extensions of
HMMs, including AHMMs, were tested and results are reported in [4].

More recently, we proposed a multi-layered solution [21,22] intended at sim-
plifying the complexity of the task, based on an approach presented in [16].

6.2 A Two-Layer Approach

Let us define two sets of actions, whether they are specific to individual partici-
pants or to the group. While the overall goal is at the level of group actions, we
believe that individual actions could act as a bridge between high level complex
group actions and low level features, thus decomposing the problem into stages,
or layers.

To this end, we defined the group action vocabulary set with the following
8 actions: discussion, monologue, monologue+note-taking, note-taking, presenta-
tion, presentation+note-taking, white-board, white-board+note-taking. Further-
more, we defined the individual action vocabulary with the following 3 actions:
speaking, writing, idle.

Obviously, individual actions should be easier to annotate in the corpus (as
being less ambiguous) and should also be easier to learn with some training
data, as they are obviously more related to low level features that can be ex-
tracted from the raw multiple channels. Furthermore, knowing the sequence of
individual actions of each participant, one should easily be able to infer the
5 In the framework of the AMI European Integrated Project (http://www.
amiproject.org) this corpus is now extended to about 100 hours of multimodal
meeting data.

http://www.amiproject.org
http://www.amiproject.org
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Fig. 4. A two-layer approach

underlying sequence of group actions. Thus considering every meeting partic-
ipant as a “multi-stream generator”, each of the participant’s streams should
be processed by a first layer of HMMs, and the resulting HMM’s outputs (likeli-
hoods/posteriors) will then be combined by a second HMM layer yielding, higher
level, group actions.

Figure 4 illustrates the overall strategy. Audio-visual features are first ex-
tracted for each of the meeting participants [21], complemented by more general
group-level features. An individual HMM (I-HMM) is then trained for each par-
ticipant, using the individual action vocabulary. To have these I-HMMs as much
“participant independent” as possible, all parameters are shared among all mod-
els, yielding up to 4 times more data to train the I-HMMs. Several models were
compared, including early integration, multi-stream, and asynchronous HMMs
(AHMM).

We then estimate for each participant i the posterior probability of each
individual task vi,j at each time step t given the individual observation sequence
up to time t, p(vi,j |oi

1:t). These posterior probabilities, together with group-level
features, are then used as observations for the second layer, the group HMM, (G-
HMM), which are trained on the group action vocabulary. Again, this G-HMM
was implemented in various flavors, including early integration, multi-stream and
asynchronous HMMs. Section 6.3 below further discusses this aspect and shows
how these (lower level) posterior probabilities can be estimated to guarantee
some form of“optimality”, while preserving maximum information (i.e., avoiding
local decisions) across the different layers.

Table 1 reports the AER performance achieved by the different systems. It
can be seen that (1) the two-layer approach always outperforms the single-layer
one, and (2) the best I-HMM model is the Asynchronous HMM, which probably
means that some asynchrony exists in this task, and is actually well captured by
the model.

6.3 General Multi-layered (Hierarchical) HMM Approach

As illustrated from the above meeting scenario, the complexity resulting from
the processing of multiple channels of information, in order to extract low-level
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Table 1. Action error rates (AER) for various systems applied to the meeting scenario

Method AER (%)
Visual only 48.20
Audio only 36.70

Single-layer Early Integration 23.74
Multi-Stream 23.13
Asynchronous 22.20
Visual only 42.45
Audio only 32.37

Two-layer Early Integration 16.55
Multi-Stream 15.83
Asynchronous 15.11

as well as high-level information (such as the analysis of multimodal meetings in
terms of high level meeting actions), is often such that it will often be necessary
to break down the problem in terms of multiple layers of sub-problems, probably
using different constraints and prior knowledge information sources. The layered
approach is one possible and principled solution to achieve this. Given a complex
task, the goal is then to break it down into several hierarchically embedded sub-
tasks, for which one can devise proper models (from enough training data), and
use adequate (level specific) constraints.

We recently proposed such an approach for the task of speech recognition [22],
where a general theoretical framework was proposed to compute low-level (e.g.,
phoneme) class posteriors, based on all the acoustic context, and to hierarchically
combine those posteriors to yield higher-level (e.g., sentence) posteriors. In this
approach, each layer is integrating its own prior constraints.

More precisely, a first layer, which could be an HMM or an AHMM, as in
the meeting scenario, or any other model such as an Artificial Neural Network
(ANN), is used to estimate posterior probabilities p(qt = i|O) of sub-classes i
(such as phonemes, for the case of speech recognition) at each time step t given
all the available information (for instance, all the acoustic sequence O). In HMM,
as well as in hybrid HMM/ANN systems, this posterior probability estimate is
given by the so-called γ(i, t) = p(qt = i|O), which can be obtained by running
and combining the so-called α and β recurrences through the appropriate HMM.
Ideally, this HMM should embed all known lexical constraints about legal and
probable sequences of phonemes. One should then use the resulting posterior
probabilities (of every sub-class at every time step) as input to the next layer
model, which would then estimate the posterior probabilities (again through new
γ’s) of higher level classes, such as words, constraining the underlying HMM
model with all known language constraints that pertains to legal and probable
sequences of words. In theory, this operation could be repeated up to the the
level of sentences, and even to the level of summarization, always using posterior
probabilities resulting from the previous layer as intermediate features.

Initial results on several speech tasks, as well as on the meeting task dis-
cussed previously, resulted in significant improvements. In [22], speech recogni-



Multi Channel Sequence Processing 35

tion results where presented on Numbers’95 (speaker independent recognition of
free format numbers spoken over the telephone) and on a reduced vocabulary
version (1,000 words) of the DARPA Conversational Telephone Speech-to-text
(CTS) task, and both resulted in significant improvements.

7 Conclusion

This paper discussed several issues arising from the processing of complex multi-
channel data, including large multimodal problems (meeting data). More specifi-
cally, this paper focused on two important issues, namely stream asynchrony and
complexity of high-level decision processes. The proposed Asynchronous HMMs
(AHMM) actually maximize the likelihood of the joint observation sequences
through a single HMM, while also automatically allowing for stretching and/or
compressing of the different streams. However, in the case of very complex prob-
lems, using AHMMs is often not enough, and the problem needs to be broken
down into simpler processing blocks. A solution to this problem, referred to as
“multi-layered/hierarchical HMMs” (and where each layer can integrate different
levels of constraints and prior information) was also proposed and shown to be
effective in modeling the joint behavior of participants in multimodal meetings.
A full theoretical motivation of this approach is described in [22].
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