
Towards an improvement of software

development process based on Software Architecture,

Model Driven Architecture and Ontologies

Fernando Bartolo Espiritu

Autonomous University of Puebla

Computer Science Department

Puebla, Mexico

esp1@live.com.mx

Abraham Sanchez Lopez

Autonomous University of Puebla

Computer Science Department

Puebla, Mexico

asanchez@cs.buap.mx

Luis Josue Calva Rosales

Autonomous University of Puebla

Computer Science Department

Puebla, Mexico

luis.calva@solarium.cs.buap.mx

Abstract— Nowadays software development can be done through
various methods, the use of a methodology depends on the prefe-
rence of each development group. One element that emerged to
improve the development process is the software architecture,
however, the use of this element has been decreasing. This paper
considers that the development of software through software
architecture is a good practice, so this paper presents a metho-
dology to develop software, which integrates tools such as ontolo-
gies and model driven architecture in the development process of
software based on software architecture. The aim of this paper is
to present a methodology to modernize and improve the devel-
opment process based on software architecture through the use of
tools that exist today.

Keywords—Software Architecture, Ontology, Model Driven
Architecture, UML, Methodology.

I. INTRODUCTION

Software development is a process which involves various

opinions and approaches; because of this the software devel-

opment process has required the specification of methodologies

for creating software under uniform standards.

Today, there are various software development methodolo-

gies such as RUP, BPM, design patterns and agile methodolo-

gies. However, each person uses one of these methodologies in

which he can find better results.

One of the current trends in the development of software is

that the software is developed automatically; this is accom-

plished today using CASE (Computer Aided Software Engi-

neering) tools such as Enterprise Architect, Rational IBM, etc.

This paper proposes a software development methodology

based on software architecture, which combines the use of

various techniques in order to make software development

process more efficient and agile. The section two will present a

theoretical framework of the technologies used in this metho-

dology. The third section will show how to integrate different

technologies to obtain a unified methodology for developing

software. The fourth section will show how an application has

developed by using the proposed methodology.

II. MODEL DRIVEN ARCHITECTURE, SOFTWARE

ARCHITECTURE AND ONTOLOGIES

A. Model Driven Architecture
Model Driven Architecture (MDA) is an approach of soft-

ware design, proposed and sponsored by the Object Manage-

ment Group (OMG). MDA is intended to support engineering

models directed to software systems. MDA is an architecture

that provides a set of guidelines for structuring specifications

expressed as models [1].

MDA provides an approach to:

• Specifying a system independently of the support

platform.

• Choosing a particular platform for the system.

• Transforming the system specification for a par-

ticular platform.

Fig. 1 shows the process of development software with

MDA.

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 118

Figure 1. Development software with MDA.

MDA defines three major elements, these are CIM, PIM

and PSM, each one of these elements is a stage of development

in MDA. The next paragraphs will describe each stage.

• Computation Independent Model (CIM). CIM is a

view of the system from the point of view of re-

quirements analysis. CIM does not teach the struc-

ture of the systems. At this stage the main objec-

tive is the analysis of requirements.

• Platform Independent Model (PIM). It is a system

view centered on its operation that hides the ne-

cessary details for a particular platform.

• Platform Specific Model (PSM). PSM is the view

from the point of view of a specific platform. A

PSM combines the specifications in the PIM with

the details that specify how the system uses a par-

ticular type of platform.

The primary goals of MDA are portability, interoperability

and reusability through architectural separation of concepts.

B. Ontology
Ontology’s definition is not unique, it depends on the con-

text to be used and the use of the author, one of the most ac-

cepted definitions in the context of knowledge reuse is that of

T. R. Gruber [2] which is defined as an explicit specification of

a conceptualization.

The definition of ontology used in this paper is that ontolo-

gy is a formal method that provides an explicit specification for

a shared conceptualization. Conceptualization refers to an ab-

stract model of some phenomenon in the world having identi-

fied the relevant concepts of that phenomenon. Explicit means

that the type of concept used, and restrictions on their use are

explicitly defined. Formal refers to the fact that the ontology

should be machine understandable. Shared reflects to the no-

tion that an ontology captures consensual knowledge, which is

not typical of any individual if it is accepted by a whole group

[3].

According to Jasper [4], Uschold and Gruninger [5] the fol-

lowing are functions of an ontology in software development.

• Communication. Ontologies allow the reduction of

conceptual and terminological ambiguity.

• Interoperability. In this sense, ontologies can act

as a "translator", which can be used to support the

translation between different languages and repre-

sentations, because it is more efficient to have a

translator for each party involved (with an ontolo-

gy exchange) that the design of a translator for

each pair of parties involved (languages or repre-

sentations).

• Specification. The role of ontologies in the speci-

fication depends on the level of formality and

fragmentation within the system design methodol-

ogy. From a casual perspective, ontologies help in

the process of identifying the requirements and

understanding the relationships between compo-

nents.

• Reuse. To increase its usefulness, ontology must

be able to support the import and export of mod-

ules (parts of the ontology).

• Maintenance. One of the main efforts during the

maintenance phase of the software system is the

study of the system. For this reason, ontologies are

used which allow an improvement of the docu-

mentation and reduced maintenance costs.

C. Software Architecture
The concept of Software Architecture (SA) was conceived

in the early 90's of last century, this concept arises from the

problems faced by companies and others who developed soft-

ware, these problems were:

• Projects not finished on time.

• Projects did not fit the initial budget.

• Low Quality Software generated.

• Software that does not meet specifications.

• Code not maintainable that made difficult to man-

age and develop the project.

The IEEE (Institute of Electrical and Electronics Engineers)

defines the SA in the standard “IEEE Std 1471-2000”, as fol-

lows: "The Software Architecture is the fundamental organiza-

tion of a system represented in its components, their relation-

ships, the environment and the principles guiding its design and

evolution [6]."

This definition is also taken by organizations such as Mi-

crosoft, where software development is through SA.

Some of the advantages of developing through a SA ac-

cording to [7] and [8] are:

• Communication. SA represents a high level of ab-

straction, which participants can use as a basis for

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 119

creating mutual understanding, forming consensus and

communicating.

• Constraint constructive. An architectural description

provides rules and limits scope for the development of

the system, indicating the components and dependen-

cies between them.

• An architecture can be the basis for vocational train-

ing. Architecture includes a description of how ele-

ments interact to carry out the required conduct, it can

serve as an introduction to the system for new project

members.

• Evolution. SA can expose the dimensions through

which a system can be expected to evolve.

• Management. Experience shows that successful

projects considered feasible architecture as a key

achievement of the industrial development process.

III. PROPOSAL

The methodology proposed here is to develop software

through SA, in addition to using ontologies and MDA for the

specification and implementation of the SA.

1) Development software based on SA
Before showing how to integrate MDA and ontologies in

software development with SA, firstly is necessary to show the

software development process based on an SA, according to

[8], the software development process with SA is as shown in

the Fig. 2.

Once the needs of a system have been identified and SA has

been created for a system, this architecture meets the needs of

the system, however, when the SA has been defined, it only

shows the components of a system abstractly. To develop the

components must be developed views of the architecture,

which will serve to be defining the internal structure of the

components of the architecture, to get a view that enables the

implementation of the system.

A view can be regarded as a phase in which the previous

stage is improved, eliminating the abstraction of the previous

stage.

Generally, a software architecture allows software devel-

opment through a process of identifying components and poss-

ible relationships among them. Then, each component will be

defined in a less abstract component through creating views.

When the implementation of the architecture is possible

through a view, the process of debugging of the architecture

ends.

2) MDA and ontologies in the developmet software based
on SA

As shown previously ontology is a tool that allows specify-

ing a domain, ontology has been used for the specification of

systems, its ability to limit domains and its contribution to the

definition of a system is why the ontology will include in the

development process with SA. This combination specifies and

defines the abstract architectural elements which can describe

elements that can be mapped to UML class diagrams.

Figure 2. Deveplotment software based on SA

MDA is a software tool to develop software in a generic

and fast way, because of this consideration, MDA function is

automatically set so views of architecture allowing better de-

fine the design and implementation stages of the views. With

this process the documentation of architecture improvement

and development of the architecture is a robust process.

To involve MDA and Ontology in software development,

remember that MDA comprises three stages, CIM, PIM and

PSM. The last two stages are defined by MDA, but CIM stage

is not set, this stage is free to be specified according to the

needs of each development group.

In this proposal, CIM is at the stage where the ontology is

used, the decision to use the ontology rests on two important

points, the first is that the engineering ontology enables the

specification of software systems; second is that both technolo-

gies MDA and Ontology are based on the use of meta-data,

having with this the possibility to use an Ontology in CIM and

then map the model obtained by the ontology to PIM naturally

[9].

Until this time has been defined as MDA and Ontology in-

tegrate the software development, these tools will serve to im-

prove the development process that is based in the use of an

SA. To attach the software development with SA together with

MDA and ontologies, the process in the Fig 2 have been distri-

buted as follows.

CIM Stage

• Creating the business case for the system.

• Understanding the requirements.

• Creating or selecting the architecture.

• Documenting, specifying and communicating the

architecture (through ontologies).

• Analyzing and evaluating the architecture (through

ontologies).

Stages PIM and PSM

• Implementing the system based on the architecture

(Mapping ontologies into PIM models, debugging

PIM models and getting PSM models)

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 120

The final step:

• Ensure that the implementation conforms to the

architecture.

CIM is a stage which the system requirements are obtained

and analyzed, so according to the process shown in Fig. 2, the

CIM stage comprises the first three steps, a developer can

choose any existing techniques to develop them.

CIM includes the steps of specifying, documenting, analyz-

ing, evaluating and communicating the SA. These steps will be

developed through the ontology. The use of the ontology at this

stage will get the first non-abstract internal elements of the

architecture, these elements will be the basis to develop and

implement the architecture.

Once obtained the first architecture model, this will be de-

bugged with MDA. PIM and PSM stages represent the imple-

mentation of the SA; PIM allows any change made in the SA is

reflected in the stage PSM and code. PIM and PSM refer to

software design, in these stages is when the models obtained in

step CIM are implemented.

PIM models define the behavior of each module and to es-

tablish the form of interaction of each element of the architec-

ture. PIM stage handles UML class diagrams, these elements

will define the structure of the architecture.

PSM is a model specializes in a programming language,

this model will be the model of SA to be implemented in a

programming language.

In general, this approach is established to improve the soft-

ware development process based on an SA, the methodology

proposed in this paper is shown in the Fig. 3.

Up to this point the methodology has been presented as in-

tegrating ontologies and MDA in software development

process based on the SA, however, it is necessary to present

some intermediate steps that have been defined for the metho-

dology.

3) Procces to create an Ontology
In this paper the process for creating ontologies has been

used to specify the architecture, this is because this process

provides guidelines for specifying a system. According to [10]

the process to create an ontology consists of seven steps, these

steps are:

a) Step 1. Determine the domain and scope of the
ontology.

This step considers starting the development of an ontology

by defining its domain and scope. That is, answer several basic

questions:

• What is the domain that the ontology will cover?

• For what we are going to use the ontology?

• For what types of questions the information in the

ontology should provide answers?

• Who will use and maintain the ontology?

The answers to these questions may change during the on-

tology-design process, but at any given time they help limit the

scope of the model.

Figure 3 Methodology for developing software with AS using MDA and

Ontologies

This step in development software allows defining the

scope of a system. This process allows to identify system fea-

tures and to define certain elements of architecture, this process

also allows to remove abstraction to architecture.

b) Step 2. Consider reusing existing ontologies
Reusing existing ontologies may be a requirement if our

system needs to interact with other applications that have al-

ready committed to particular ontologies or controlled vocabu-

laries.

c) Step 3. Enumerate important terms in the ontology
This step allows defining items that should be in a system

considering the requirements analysis. Abstraction in this step

is very high, but this process defines general elements of a

system.

d) Step 4.Define the classes and the class hierarchy
In this step, the concepts defined above are mapped to

classes in the ontology, besides establishing a hierarchy of

these classes.

This step in the software development process defines those

elements that will form the basis of the architecture, the defini-

tion of the hierarchy, in this case it serves to establish the rela-

tionship between each of these elements in the functioning of

the architecture.

e) Step 5. Define the properties of classes (slots)
The classes alone will not provide enough information to

answer the competency questions from Step 1. Once we have

defined some of the classes, we must describe the internal

structure of concepts.

f) Step 6. Define the facets of the slots
Slots can have different facets describing the type value, al-

lowed values, the number of the values (cardinality), and other

features of the values the slot can take.

• Slot cardinality. Defines how many values a slot

can have.

• Slot-value type. A value-type facet describes what

types of values can fill in the slot. Here is a list of

the more common types value in an Ontology:

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 121

- String is the simplest type value which is used

for slots such as name: the value is a simple

string.

- Number (sometimes more specific types value

of Float and Integer are used) describes slots

with numeric values. For example, a price of a

wine can have a float value.

- Boolean slots are simple yes–no flags.

- Enumerated slots specify a list of specific al-

lowed values for the slot.

- Instance-type slots allow definition of rela-

tionships between individuals. Slots with type

value Instance must also define a list of al-

lowed classes from which the instances can

come.

• Domain and range of a slot. Allowed classes for

slots of type Instance are often called a range of a

slot. The classes to which a slot is attached or a

class which property a slot describes, are called

the domain of the slot.

These properties (slots) that can be defined in the ontology

are sufficient to describe the internal structural architecture,

later will see that these properties are equivalent to UML class

properties. This property is essential to connect ontologies with

elements that are used in MDA, such as UML classes.

g) Step 7. Create instances
The last step is to create individual instances of classes in

the hierarchy. Defining an individual instance of a class re-

quires (1) choosing a class, (2) creating an individual instance

of that class, and (3) filling in the slot values.

This process gives an idea of how this first structure inte-

racts architecture, making this process also allows a debugging

architecture. The creation of an ontology to define the first

structure of architecture, this definition is the first view of the

architecture.

Once the ontology has been defined, the next step is to use

the ontology in the MDA process, to achieve this goal an on-

tology should be mapped to a UML class diagram, which is

used in MDA. The next section will show how to do the map-

ping of an ontology to UML class diagrams.

4) Mapping Ontology to UML class diagram
Although ontologies and UML use some similar concepts,

such as classes and attributes, these concepts do not have the

same sense. According to [11] and [12] and the differences

between UML ontology are as follows.

a) Classes and individuals
Both UML and ontology have the class concept, but UML

refers to an abstract model that describes characteristics

(attributes) and behavior (operations) of an object. A UML

instance of an object refers to the specification of an abstract

object.

On the other hand, the class concept in the ontology refers

to a set of individuals representing a specific type. The concept

of individual instance refers to a member of a class.

Another difference between object (UML) or instance of

ontology, is that the instance concept of ontology can exist

without being associated with a class, and may not have the

same attributes as the class [13].

b) Properties
Property is another concept that exists in UML as ontolo-

gies, and both have different functions from one context to

another. In UML a property is a class property, which can nev-

er exist alone, must be associated with a class.

An attribute in the ontology can exist by itself, namely an

attribute is independent of a class. In the ontology there are two

types of attributes "DatatypeProperty" and "ObjectProperty".

The difference between both lies in the fact that "DatatypePro-

perty" are individuals associated with primitive values such as

integers, strings, boolean and so on. On the other hand the

attribute "ObjectProperty" is associated with individuals who

are individuals.

c) Mapping
This section presents the mapping used to transform an on-

tology model to a model of UML class diagram. Before pre-

senting the mapping used is worth noting that this paper has

worked with ontologies thinking that this model would be used

in the domain of UML.

The mapping used between Ontology and UML is based on

[11], [12], [14] which defined UML profiles for modeling on-

tologies. With that profiles will be done the mapping of ontolo-

gies obtained in CIM.

An ontology class will be taken to a UML class with the

stereotype <<OntClass>>, in the ontologies are different class

types such as enumeration, union and disjunction. However,

these classes will not be used. Avoiding the use of this type of

class, the class concept of ontology is similar to UML class

concept.

Ontology has two differents properties: simple and complex

properties, this paper only use simple properties which are

"DatatypeProperty" and "ObjectProperty". "DatatypeProperty"

can establish a relationship with the attributes defined in XML

Schema, so due to this relationship, these attributes can be

mapped as UML attributes.

"ObjectProperty" is an attribute that is handled in the ontol-

ogy as a relationship between existing classes, and since in this

case have not been used complex classes, according to [14] this

type of attribute can be mapped to UML as an association rela-

tionship between classes.

Thus, the ontologies obtained in CIM are mapped to UML

models (class diagrams), to start the development of architec-

ture through MDA.

5) Improving PIM models
Class diagrams obtained from ontology classes define an

architecture view, but this view is static, it only defines the

elements (classes) and attributes of architecture. However,

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 122

necessary to define the behavior of each component of the

architecture, for this purpose, UML elements have been used to

define the behavior of the architecture.

The elements used to define the behavior of the architecture

are sequence diagrams, which help define the methods of each

of the UML classes. Through this strategy we have obtained

the behavior of classes.

After making a less abstract description of PIM models, a

new view of the architecture has also been defined.

6) PSM models
PIM models are transformed into specialized models in a

programming language in PSM stage, so class diagrams de-

fined in PIM are transformed into specialized diagrams in a

programming language.

To map the PIM models to PSM models CASE tool has

been used, these models are elements that can be implemented

in code.

However, PSM elements can create a new view of architec-

ture, for this has resorted to using another UML element, pack-

age diagrams, they can organize UML classes according to the

functions that each class has within the system.

Use package diagram to organize the elements of PSM

stage allows a modular design of the architecture, which allows

any system be more robust and scalable.

The definition of the intermediate processes is used in the

method proposed here. It has been shown how the integration

of ontologies, MDA and UML elements in the software devel-

opment process based on SA, allows agile, robust and well-

documented development software.

7) Advantages of the methodology

With the integration of MDA and ontologies in software

development based on software architecture, there are advan-

tages such as.

• Better architecture specification. This is accom-

plished with the ontology, because ontology is a

tool to define the architecture when there is only

an abstract concept of architecture.

• Better definition of the stages of design and im-

plementation of the architecture. With MDA

achieves this goal, because that defining the PIM

and PSM models, architecture has two stages of

development, first define the architecture without

considering a platform , and then given the defini-

tion of an independent model can create a specific

model, defining well the design and implementa-

tion stages .

• Better architecture documentation. By integrating

ontologies and MDA, the development of architec-

ture is done through stages, where each stage

clearly identifies as development architecture.

Each stage provides documentation.

• Automation of the process of development of ar-

chitecture. With the use of MDA this process be-

comes more feasible to build PSM models from

PIM models.

IV. APPLICATION DEVELOPED WITH THE PROPOSED

METHODOLOGY

In this section an application developed through the pro-

posed methodology will be shown, the architecture used is

obtained from [15] and shown in Fig. 4.

Figure 4 An architecture for a decision support system implemented

through web services

The architecture defines a decision support system that is

implemented through web services. To show how to use the

proposed methodology to develop software, it is displayed as

defined an element of architecture with the methodology, this

element will be data user manager module.

Since the architecture is implemented through web services,

the logic layer web service will be defined with the methodolo-

gy.

First, the general requirements of this module are defined.

The main features that will be covered in this module are:

• Allowing the user access to the system..

• Managing system users.

• Creation and allocation of resources (files and di-

rectories) for a user.

• User authentication.

With the description of the requirements of this module,

Fig. 5 shows the first view of the architecture of this module.

Figure 5 Internal architecture of the data user manager module

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 123

After defining the general elements of the module, the in-

ternal structure of each component of the module must be de-

fined. To define the internal structure must be used ontology

and ontological engineering.

Fig. 6 shows the elements of the user handler module de-

fined through the ontological engineering. Ontology has been

implemented with the Protégé tool.

Figure 6 Ontology for data user manager module

In this way, the first structure of the architecture was ob-

tained by the definition of ontological classes and the relation-

ships between classes. In addition, this model is a less abstract

view of the architecture, which defines a static behavior of the

system.

Once defined ontology, ontological classes are mapped to

UML class diagrams. This mapping is shown in Fig. 7, the

figure shows that UML classes are mapped with the stereotype

"<OntClass>", specifying that these classes come from an on-

tology.

The relationships between the classes specified in the on-

tology have been mapped as association relationships between

UML classes. Also, the figure shows the mapping of the ontol-

ogy class attributes to UML class attributes.

It is worth mentioning that process to map ontology classes

to UML classes, was made as a manual procedure, since this

mapping requires necessary conditions are detected in this

process in order to get a class diagram correct.

Figure 8 Sequence diagram of the method to obtain an user

The diagram also shows how it has mapped the cardinality

of each attribute, adding the navigability of the relationships

between classes, this can also be obtained from the ontology.

However, in this case a label has been annexed in the diagram

which shows the relationship between classes, to make clearly

the relationship between classes.

This step is a view of the architecture, besides this view has

created a generic model of the architecture which will be used

in the PIM stage of MDA.

The next step that follows is to refine the previous model,

for this it is necessary to define the behavior of the architecture,

defining the methods of the classes to achieve the full perfor-

mance of this module.

In this paper to define class methods has been used UML

sequence diagrams, these diagrams help the definition of the

methods showing the flows of operations, in addition, UML

sequence diagrams show how the classes interact with each

other to perform a task. It should be noted that during the

process of defining methods this process also helps to make the

inclusion, deletion or debugging of classes or attributes.

Fig. 8 shows a sequence diagram which describes an inter-

nal operation of the module, this operation shows how an user

is obtained.

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 124

Figure 7 Model PIM of the data user manager module

Figure 9 PSM model of the data user manager module

Sequence diagrams are made with each of the operations

which are defined to get the requirements of a system.

To complete the PIM stage, the methods defined in the se-

quence diagrams should be added in class diagrams, Fig. 9

shows the class diagram of user data handler module of the

PIM stage.

With the definition of the behavior of the architecture, PSM

models should be created, this paper uses a CASE tool to do

this mapping, and obtains models related to any programming

language.

For the example this paper is managing the programming

language used is Java, therefore the class diagram is mapped to

a Java class diagram. This class diagram is ready to be imple-

mented in code. Fig. 9 shows the Java class diagram for data

manager user module web service.

However, PSM defines other stage architecture view, this

view is defined through UML package diagram. UML package

diagrams allow to have a modular architecture, with this fact

any system implemented in based on the architecture becomes

reusable and scalable.

Fig. 10 shows the package diagram which shows the organ-

ization of classes of the data user manager module.

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 125

Figure 10 Package diagram for data user manager module

The last step that remains is to map PSM models to code

and with this data user manager module is ready to be exposed

as a Web service. In general this step is where the development

process of architecture has culminated.

Fig. 11 shows how the main class of data user manager

module is declared in the class that provides Java to create web

services, the main class of data user manager module is respon-

sible for managing the features of the module, with this decla-

ration working example is ready to be exposed as a web ser-

vice.

This example has shown how it has developed system ar-

chitecture, showing how they would use the architecture here

proposed.

This example has shown how the system architecture has

been developed with the methodology here proposed.

Figure 11 Web service in Java for data user manager module

V. CONCLUSIONS AND FUTURE WORK

In this work is presented how to integrate ontologies, MDA

and UML elements in software development based on software

architecture.

The conclusions that have been obtained in this work are:

• This paper shows how ontologies can be used to

make the definition and specification of the archi-

tecture in the early stages of development.

• Using MDA with software architecture enables

automation of the views.

• Using UML elements allows connection between

each passage defined by the methodology also al-

lows these steps can be refined, so that at each step

improves a view.

• Using MDA, ontologies and UML in the process

of developing software based on architecture not

only more dynamic development process, but also

allows for a well-documented process, which al-

lows scalability, update systems.

As future work to be performed is:

• Developing an automatic intermediate step to map

ontologies to UML class diagrams.

• Creating templates that allow mapping PIM mod-

els to PSM models which can use elements of the

programming language, in order to make the defi-

nition of PSM models more specialized in each

programming language.

• Integrating the proposed methodology under agile

development scheme, to optimize the software de-

velopment process.

REFERENCES

[1] OMG, “MDA Guide Version 1.0.1”. Document Number: omg/2003-06-

01.

[2] T. R. Gruber, “A Translation Approach to Portable Ontology

Specifications”, Knowledge Acquisition, pp. 199-220, 1993.

[3] C. Calero, F. Ruiz, M. Piattini, “Ontologies for Software Engineering

and Software Technology” Springer Berlin Heidelberg, 2007.

[4] M. Uschold and R. Jasper, “A Framework for Understanding and

Classifying Ontology Applications”, Proceedings of IJCAI99 Workshop

on Ontologies and Problem-Solving Methods: Lessons Learned and

Future Trends. CEUR Publications, vol. 18, 1999.

[5] M. Uschold and M. Grüninger, “Ontologies: Principles, Methods and

Applications”, Knowledge Engineering Review, vol. 11, pp. 93-155,

1996.

[6] IEEE, “Recommended Practice for Architectural Description of

Software-Intensive Systems IEEE Standard 1471-2000”, 2000.

[7] P. Clements and L. Northrop, Software architecture: An executive
overview. Technical Report, CMU/SEI-96-TR-003, ESC-TR-96-003,

1996.

[8] L. Bass, P. Clements and R. Kazman, “Software Architecture in

Practice”, Addison-Wesley, 1998.

[9] D. M., Sánchez; J. M. Cavero and E. Marcos, “Ontologías y MDA: una

revisión de la literatura. Ministerio de Ciencia y Tecnología de España”

(TIC 2002-12378-E), 2002.

[10] Natalya F. Noy and Deborah L. McGuinness, “Ontology Development

101: A Guide to Creating Your First Ontology” Obtained from

http://protege.stanford.edu/publications/ontology_development/ontology

101-noy-mcguinness.html.

[11] G., Dragan, D. Dragan and D. Vladan, “Model Driven Engineering and
Ontology Development”, Springer-Verlag, ISBN 978-3-642-00282-3,

2009.

[12] A. Wafaa and S. Akram, “Ontology Modeling Profile, an Extension for

the Ontology UML Profile”. International Journal of Computer

Applications, vol. 6, 2010.

[13] K. S. Michael, W. Chris and L. M. Deborah, “Owl Web ontology

language guide”. Obtained from http://www.w3.org/TR/owl-guide/,

2013 .

[14] Kenneth, K. K., Mieczyslaw, B, Paul, A. K, Lewis, H; Jefferey, S;

William, S. H; Letkowski, Jerzy; L., Aronson Michael, “Extending the

unified modeling language for ontology development”, Software and

System Modeling (SoSyM),vol 1, pp. 142-156, 2002.

[15] F. Bartolo, “Una arquitectura de software para sistemas de toma de

decisiones en la web” (Masters Thesis), Autonomous University of

Puebla, Mexico, 2013.

978-1-4799-3469-0/14/$31.00 ©2014 IEEE 126

