
Information and Software Technology 54 (2012) 915–932
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Mutation based test case generation via a path selection strategy

Mike Papadakis ⇑,1, Nicos Malevris
Department of Informatics, Athens University of Economics and Business, Athens, Greece
a r t i c l e i n f o

Article history:
Received 26 September 2011
Received in revised form 13 February 2012
Accepted 26 February 2012
Available online 5 March 2012

Keywords:
Software testing
Unit testing
Mutation testing
Path testing
Adequacy criterion
Infeasible paths
0950-5849/$ - see front matter � 2012 Elsevier B.V. A
doi:10.1016/j.infsof.2012.02.004

⇑ Corresponding author.
E-mail addresses: michail.papadakis@uni.lu (M

(N. Malevris).
1 New affiliation: Interdisciplinary Center for Securi

University of Luxembourg, L-1359 Luxembourg, Luxem

Downloaded from http://www.elearn
a b s t r a c t

Context: Generally, mutation analysis has been identified as a powerful testing method. Researchers have
shown that its use as a testing criterion exercises quite thoroughly the system under test while it achieves
to reveal more faults than standard structural testing criteria. Despite its potential, mutation fails to be
adopted in a widespread practical use and its popularity falls significantly short when compared with
other structural methods. This can be attributed to the lack of thorough studies dealing with the practical
problems introduced by mutation and the assessment of the effort needed when applying it. Such an inci-
dent, masks the real cost involved preventing the development of easy and effective to use strategies to
circumvent this problem.
Objective: In this paper, a path selection strategy for selecting test cases able to effectively kill mutants
when performing weak mutation testing is presented and analysed.
Method: The testing effort is highly correlated with the number of attempts the tester makes in order to
generate adequate test cases. Therefore, a significant influence on the efficiency associated with a test
case generation strategy greatly depends on the number of candidate paths selected in order to achieve
a predefined coverage goal. The effort can thus be related to the number of infeasible paths encountered
during the test case generation process.
Results: An experiment, investigating well over 55 million of program paths is conducted based on a
strategy that alleviates the effects of infeasible paths. Strategy details, along with a prototype implemen-
tation are reported and analysed through the experimental results obtained by its employment to a set of
program units.
Conclusion: The results obtained suggest that the strategy used can play an important role in making the
mutation testing method more appealing and practical.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Software testing establishes the main method for identifying
errors while suggesting an acceptable level of confidence for the
software under investigation. Assessing the quality of a given data
set a coverage measure must be utilised. Such a measure, tries to
determine the extent to which the occurrences of some software
features have been successfully exercised. Different program
features lead to different criteria and hence different testing
requirements. Criteria usually require the execution with actual
data, to exercise their characteristics such as statements, branches,
decisions, paths etc. Thus, the use of coverage criteria can be also
seen as a guide for selecting appropriate test cases to increase
the level of the testing thoroughness.

Mutation testing is a fault-based testing technique originally
introduced by Hamlet [1] and DeMillo et al. [2]. Researchers have
ll rights reserved.

. Papadakis), ngm@aueb.gr

ty, Reliability and Trust (SnT),
bourg.

ica.ir
provided evidence that mutation testing forms a rather powerful
testing criterion able to effectively detect more faults than most
of its structural testing rivals [3,4]. Mutation testing induces syn-
tactical alterations of the code under test with the aim of produc-
ing semantically different versions of the considered code. Each
such mutated program version contains one simple syntactic
change from the original source code. To assess the quality of the
test cases, mutation requires the execution of the altered program
versions with the goal of distinguishing them from the original
one. A mutant is said to be killed if there exists such a test whereas,
it is said to be equivalent if there is not. Assessing the testing qual-
ity is usually measured by a ratio of the killed over the totally
introduced mutants. This constitutes a criterion usually referred
to as the mutation testing criterion [5]. Generating test cases suc-
cessfully, with respect to a predefined-targeted killing ratio of the
introduced mutants forms the focus of this paper.

The generation of test cases when performing mutation can be a
very costly incident. To generate mutation adequate test cases, a
tester must design test cases able to infect, execute and reveal all
the introduced mutants. The term infect is used to express the case
where mutant execution caused a discrepancy in the program

http://dx.doi.org/10.1016/j.infsof.2012.02.004
mailto:michail.papadakis@uni.lu
mailto:ngm@aueb.gr
http://dx.doi.org/10.1016/j.infsof.2012.02.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

916 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
state, at the altered program point by the introduced mutant. This
can be achieved by iteratively producing and executing test cases
with both the original and the mutated program versions, in order
to determine the mutants killed. The determination is done by
comparing the outcomes of the original and the mutated program
versions. This process can be very expensive if performed in a non
systematic way. Researchers usually believe that mutation ex-
penses are considerably higher than what the other white box cri-
teria require. This belief relies on the huge number of testing
requirements that it introduces and on the observation that muta-
tion usually needs more test cases than the other structural testing
criteria [3]. To date, the effort involved when applying mutation
has received scant attention in the literature. This lack of effort
quantification in relation to the absence of practical solutions
addressing the peculiarities of the mutation testing process have
resulted in its reduced usage compared to the other structural cri-
teria such as branches, data flow, etc.

In the present paper, a path based approach for generating
mutation based test cases is proposed and empirically evaluated.
The experimental evaluation is performed with the aim of assess-
ing the effort entailed by mutation testing during the test genera-
tion process. There are various ways in producing test cases. The
one employed in the present study is based on selecting paths that
the mutants lie on, and subsequently executing them with test
data, thus utilising each one of the mutants in order to kill them.
The drawbacks of such a strategy, as it has been reported in the lit-
erature, are attributed to the presence of infeasible paths [6,7]. The
strategy adopted in this exercise, seeks to reduce the undesirable
effects of infeasible paths during the testing process and hence
reciprocally, also reduce the overall testing effort. Therefore, it
can be argued that there is a direct relationship between the num-
ber of generated test paths and the effort involved for performing
mutation. In fact, and without any loss of generality, the experi-
ment assesses the relative cost-effective application of weak muta-
tion [8,5] testing based on a proposed path selection method able
to eliminate the undesirable effects of infeasible paths.

The paper is organised as follows: In Section 2 the relevant to
the conducted experiment notation and terminology is given along
with some related to the area work. In Section 3 a path selection
strategy which seeks to reduce the incidence of infeasible paths
is proposed. In order to evaluate the strategy and to interpret its
achievements, certain features of the prototype implementation
are analysed and presented in Section 4. Additionally, in Section
5 the results of the application of the proposed strategy to derive
mutation test cases to a set of program units, are presented. The
important findings of the experimental study along with the nat-
ure of infeasible paths, together with certain characteristics of
the proposed strategy, can justify pertinent comments about the
effort associated with weak mutation testing in general. These
are presented in Section 6. Finally, the conclusions are discussed
in Section 7.
2. Background and related work

This section introduces the relevant notation, terminology and a
brief description of the techniques used in the conducted experi-
ment. Selected relevant related work on generating mutation ade-
quate test cases is also described.
2.1. Notation and terminology

The control flow of a unit under test is usually modelled with a
graph known as the Control Flow Graph (CFG) denoted by Gc(N, E),
where C is a program unit whose connected directed graph is com-
posed of a set of nodes N and a set of edges E. Each node n repre-
sents a basic block and each edge e represents a possible transfer of
flow between two basic blocks say ni and nj with i – j. A basic block
(node n) is a simple sequence of one or more successive, executable
statements, such that the sequence has only one entry and only
one exit point and once execution of the entry point statement
takes place, it will always cause a consecutive execution of all
statements up to the exit one in a row. Based on the CFG a path
is a finite sequence of edge-connected nodes hn1, n2, . . . , nki such
that for every j in 1 6 j 6 k the nodes nj, nj+1 form an edge of the
set E of Gc. An S-to-F path is usually referred to as a complete
path, S and F being the entry and exit nodes of the graph respec-
tively. A path may not always be a complete one and this is usually
referred to as a subpath.

Modelling a unit’s flow corresponds to one-to-one mapping be-
tween the ‘‘actual’’ program paths of code unit C and respective
complete paths of Gc. Thus, actually executing one of C’s paths is
equivalent to traversing, ‘‘covering’’ its corresponding path in Gc.
Further, since the actual execution of a program path implies exe-
cution of its code elements covering a complete path (based on the
model Gc) implies covering its constituent modelled elements.

It must be noted here that the peculiarities of the different pro-
gramming languages must be reflected in the CFG. In particular,
there are issues that need specific and more detailed analysis that
can affect the size of N and E thus also affecting any test data gen-
eration that attempts to use them as a basis. In particular, the prob-
lems that can arise deal with the compound decisions (containing
short-circuit operators). In modern programming languages com-
pound decisions must be converted to a series of simple ones, thus
enforcing the introduction of additional nodes and edges for their
representation. Details of the effects of such incidents can be found
in [9].
2.2. Testing based on selected paths

Generally, path based approaches work by selecting an appro-
priate set of paths and trying to derive test cases for these selected
paths. Generating test cases according to a selected path is tradi-
tionally performed based on symbolic execution [10,11]. Recently,
search based testing approaches [12,13] have also been proposed
in order to tackle this problem effectively. In either case (using
symbolic execution or search-based testing) the testing process
works by iteratively selecting and producing tests for paths that
cover the sought test elements. This activity entails the following
steps:
1. Select a set P of paths through Gc which covers the target code

elements.
2. Generate a set of data D that will drive the execution of C

according to the selected set P.
3. Execute the unit C with the set of data D.

However, not all paths of Gc, selected in step 1, may represent
valid computations with respect to the code unit C. These invalid
paths are called infeasible paths, as there exist no data sets that will
force their execution (see Section 2.4.2 for details). The existence
and influence of infeasible paths in practice, plays a major role as
it compels performing steps 1 and 2 iteratively in order to
construct a set of data D that covers the target code elements. This
difficulty can be extremely problematic [7,14] and results in
unbearable overheads as the conducted experiment shows, see
Section 6.3 for a discussion of this issue.

Also, if mutation is to be considered, the control flow graph of C
is rather inadequate to base the sought test path generation activ-
ity. Such being the case, a more appropriate model is needed as this
is discussed in [15], where an enhanced CFG is suggested and is
presented in Section 3.2.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 917
2.3. Mutation testing criterion

Mutation testing (as initially introduced), is a fault-based tech-
nique for the quality assessment of the various test cases as pro-
posed by DeMillo et al. [2]. In practice, it is employed by creating
a slightly different to the original program set of programs. The
minor alterations to the original program are called mutants. The
mutants are introduced by modifying the original program’s source
code based on simple syntactic rules called mutation operators.

Due to its notion, a mutant is nothing else but a deliberately in-
serted mistake.

The tester’s goal when employing mutation is to create tests
able to reveal these deliberately introduced mutants. In order to
assess a test set, the tester should execute it both with the original
and the mutated programs. In case the outputs of the original and a
mutated program differ, the particular mutant is considered as
covered (exercised) and referred to as killed. In the opposite case
the mutant is considered as uncovered and referred to as alive. A
live mutant indicates one of the following two situations: either
a) the mutant is equivalent, i.e. the mutated program is function-
ally equivalent to the original and thus, revealing it test cases do
not exist, or b) the test set is incapable of unrevealing and killing it.

The test set D adequacy of a program C is measured by the
mutation score (MS(C, D)) and the relative mutation score (MS�(C,
D)) computed as follows:

MSðC;DÞ ¼ # Dead Mutants
Total Mutants

and

MS�ðC;DÞ ¼ #Dead Mutants
Total Mutants�# Equivalent Mutants

There have appeared in the literature, many interpretations of
how to implement the mutation activity. The usual one, called
strong mutation deals with the comparison of the original and mu-
tated program outputs at the end of the execution process. Strong
mutation is usually performed by introducing one alteration per
program variation. This type of mutant is called first order mutant
[16]. By simultaneously embedding many alterations to the pro-
gram, the produced mutants are called higher order mutants
[16–18]. Another mutation variant interpretation is weak mutation
[8,5], which tries to deal with the comparison of the program out-
puts immediately after the execution of the altered fraction of the
program. In the present paper, the second approach is considered
for two main reasons: First, as suggested in the literature
[5,19,20] weak mutation constitutes a good alternative to strong
mutation, and second, it is more straightforward to generate the
relevant data as they are better embodied in the proposed path
generation method as identified in existing attempts [21,15].

2.4. Generating test cases

This section introduces the underlying concepts and issues, for
the generation of test cases, as they are employed in the present
paper.

2.4.1. Symbolic execution
The symbolic execution [10,11] technique, analyses the source

code of a program by replacing its actual input parameters with
symbolic ones and simulating its execution based on a set of
program paths. Executing a path symbolically, forms an effective
way of describing its computations. Symbolically executing all
possible program paths can result in the verification of the entire
program. The method represents possible input values of program
variables along a selected path as algebraic expressions by inter-
preting the operations performed along that path on the symbolic
inputs. Thus, a symbolic state for a given point according to a
selected path forms a mapping from input variables to symbolic
values and a set of constraints called path condition over those
symbolic values. Path conditions represent a set of constraints
and symbolic expressions represent the mapping between the in-
put variables to symbolic values and all together form the compu-
tations performed over the selected path. A symbolic expression is
either a symbolic value or an expression composed over symbolic
values, thus composed of variables, parentheses and programming
language operators. Constraints are treated-evaluated as Boolean
values (True or False) and composed of pairs of symbolic expres-
sions related by one of the conditional operators (==, !=, <, 6, >, P).

A path condition thus, forms a conjunctive constraint set, ob-
tained from the decisions of the selected path. For each program
decision encountered, in a path, a new condition is built by replac-
ing all variable references by its previously computed symbolic
expressions and based on the decision’s outcome (true or false va-
lue) as formed by the path. Solving the path conditions results in
input values which when assigned to the program, execution is dri-
ven along the selected path. If the path condition has no solution
then the path is infeasible.

2.4.2. The feasible path and equivalent mutant problem
Gabow et al. [22] proved that the problem of obviating infeasi-

ble paths can be reduced to the ‘‘Halting Problem’’ thus forming an
undecidable problem. In another study conducted by Budd and
Angluin [23] it is proved that, in general, there is no computable
procedure able to identify the functional equivalence between
two given programs, argument which can be used to imply the
undecidability of the equivalent mutant problem. Offutt and Pan
[24] realised that the problem of equivalent mutants is an instance
of the feasible path problem. The feasible path problem was
formed as the problem of finding appropriate test data that satisfy
a given testing requirement such as covering a node, branch, path
or mutant. In view of this, they defined a set of constraints that
represent conditions under which a mutant will die (in the weak
mutation approach). The constraints system that forms these con-
ditions is formed by the logical conjunction of a specific to each
mutant constraint(s) with the disjunction of all paths conditions
that reach the target mutant. A similar approach, based on program
slicing, was presented by Hierons et al. [25]. Additionally, this ap-
proach seeks potentially affected locations by a mutant, thus pro-
viding guidance to the tester.

2.4.3. Selecting tests that kill mutants
Practically, applying the testing criteria serves as a rule of

thumb for selecting a subset of all possible inputs. The main objec-
tive of these rules is to guide the selection of test cases to those
able to expose the majority of the program’s faults. Testing to fulfil
a criterion establishes an associative, to the criterion used, confi-
dence level.

Generally, in order to expose a fault, a test case should necessar-
ily execute the program’s source code part, containing it. Needed is
also the execution of the fault so as to incorrectly affect the pro-
gram’s state and this incorrect state to propagate to the programs
output. The formulation of these three situations serves as the
foundation guide to generate tests according to the mutation crite-
rion and in the literature these are referred to as reachability,
necessity and sufficiency conditions [21]. Based on these three con-
ditions DeMillo and Offutt developed a test data generation tech-
nique called Constraint-Based Test data generation (CBT) [21].

Current test data generation approaches [21,26–28] try to uti-
lise directly the reachability and necessity conditions. The suffi-
ciency condition due to its high complexity is indirectly satisfied
either via the satisfaction of the reachability and necessity condi-
tions only [26,21] either with the use of some additional heuristics
such as the mutants’ impact on the program execution [27], the

918 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
search of the path space [29] and the fitness guided search of the
path space [28]. As presented in [21,19,28], tests that meet the
reachability and necessity conditions have a higher chance of
meeting the sufficiency condition too than those meeting the
reachability condition only. These approaches describe the reach-
ability conditions as a disjunction of the path conditions derived
based on the symbolic execution of all paths reaching a target mu-
tant. The necessity conditions are described based on the following
formation:

Let the original expression be e and the mutated one e0. Then,
the condition is formed by the necessity constraint ‘‘ e ! = e0 ’’.

2.5. Practical problems posed by mutation

Practically applying mutation requires the completion of four
main activities. Each one of the performed activities introduces
various difficulties which make the use of mutation quite expen-
sive. These activities are: (a) the mutant programs generation, (b)
the test case generation, (c) the test case execution and (d) the
evaluation of the achieved mutation score. All these activities are
mainly influenced by the number of the introduced mutants which
in practice turns out to be enormous. Specifically, the number of
the introduced mutants has been quantified as O (Vals � Refs)
[30], where Vals is the number of data objects and Refs is the num-
ber of data references. Reducing the number of the introduced mu-
tants forms one of the key research issues of mutation testing
research. To date, two main approaches have appeared in the liter-
ature. The first one considers only a small sample of the whole mu-
tant set which is selected at random [31,16]. The second one,
named selective or constraint mutation [32,16], applies only a sub-
set of the mutant operators. Both these approaches achieve to con-
siderably reduce the introduced number of mutants, nevertheless,
the problem of the huge number of the introduced mutants still
remains.

The generation of mutated programs naturally requires the pro-
duction and compilation of many program versions, one per intro-
duced mutant. In practice, as this number can be enormous, the
mutant generation results in a huge compilation effort. To alleviate
this problem, various approaches have been proposed in the liter-
ature. The most important ones are the mutant schemata [33,30]
the compiler-integrated [34] and interpreted approaches [31].
The mutant schemata method ‘‘enables to encode all mutations
into one source-level program’’ [33,30] and thus avoiding perform-
ing a huge number of compilations. The compiler-integrated meth-
od utilises a special compiler that produces code patches that act
as the mutants when applied to the code under test. Thus, instead
of compiling the various mutant programs, only the patch applica-
tion is required. Finally, interpreted execution approaches [31] can
also be used in order to avoid the huge compilation overheads. It is
noted that the prototype developed for the present research, utilis-
es this method.

Mutation score evaluation poses the need for executing the
introduced mutant programs with the produced test cases in order
to determine the killed ones. In practice mutant execution requires
a huge amount of resources [8,5] as the number of mutants may be
enormous. To tackle this problem, various mutation testing alter-
natives have been proposed. The one utilised in the present paper
is named weak or firm mutation [8,5,20]. Additionally, performing
mutation requires the identification of the equivalent mutants in
order to evaluate the adequacy of the produced test cases. This is
a well known undecidable problem as discussed in Section 2.4.2
and thus only heuristic approaches can be utilised.

All the abovementioned issues are open for future research and
are not directly dealt with in the present paper. However, success-
fully resolving them will make mutation to be widely adopted in
practice. The main point addressed by the present paper is the
automation of the test case generation according to mutation. This
forms a difficult and open research problem of mutation [18].
Additionally, addressing the test case generation problem paves
the way for the complete automation of the mutation testing pro-
cess. Generating test cases for killing mutants, introduces some
special challenges not faced in the case of structural testing. It is
these challenges that are tackled by the approach described in
the present paper and details are given in the following sections.

2.6. Related work

Although mutation testing has been suggested and studied for
over three decades now, strategies that guide the generation of test
cases and its practical employment are very limited. A small num-
ber of research articles dealing with the generation of test cases or
the mutation testing application effort have appeared in the liter-
ature as also pointed out in [18].

DeMillo and Offutt proposed the CBT method [21] which briefly
discussed in Section 2.4.3. This method tries to describe in alge-
braic expressions, the conditions under which a mutant is killed.
They introduced the reachability condition which states that the
mutated code must be exercised by the execution path of the test
cases. If a test case fails to execute the mutated code, it is guaran-
teed that the test case has no chance of revealing the seeded mu-
tant [21]. This is a direct consequence of the mutation
application as it introduces one syntactic change to every mutated
program and thus both execution paths, the one of the original and
the other of the mutated program, form the same execution com-
putations. The necessity condition states that the execution of the
mutated statement must cause a discrepancy compared to the ori-
ginal program state [21]. The sufficiency condition states that the
infected program state must propagate up to the last program
statement. The execution path and its computations must use
the internal different value calculated at the mutated statement
(necessity condition) and must form a different observable compu-
tation from there onwards to the program’s output.

The CBT approach [21] uses control flow analysis, symbolic
evaluation, mutant related constraints, a constraint satisfaction
technique and test case executions in order to automatically gener-
ate the required test data. The method targets on the reachability
and necessity conditions while assuming that fulfilling them will
also indirectly meet the sufficiency condition too. These two condi-
tions are described as mathematical systems of constraints which
are conjoint and solved by a constraint satisfaction technique
called domain reduction. The reachability condition is described
by a path expression of all program paths from input to the mu-
tated statement node, in fact all loopless program paths. The neces-
sity conditions are described by a specific, to each mutant,
expression(s) in order to infect the program’s state immediately
after the mutated statement. The above approach has been imple-
mented in a tool which integrates with the Mothra [31] mutation
testing environment and automates the mutation based test case
generation for programs written in the Fortran programming lan-
guage. Although empirical evaluation of the CBT technique reveals
its effectiveness [21], yet it suffers from many shortcomings asso-
ciated with symbolic evaluation. Specifically, problems can occur
in the presence of arrays, loops, nested expressions and non linear
expressions as recognised in [35,5]. Moreover, issues such as the
exhaustive generation of program paths affect its cost-effective-
ness also appear.

In an attempt to address some of the drawbacks of the CBT
method, the Dynamic Domain Reduction (DDR) [35] method was
proposed. The DDR method was developed based on the CBT ap-
proach by embedding some dynamic features in order to
effectively handle program constructs and develop a more efficient
constraint satisfaction technique. The DDR method tries to

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 919
generate, in a similar fashion to the CBT method, a set of values for
each input variable (its domain), that makes the path expression
true, for all the set values. Its difference comes from the reduction
procedure that is performed based on a search method over the in-
put variables domains. Specifically, the method traverses a selected
path and at each encountered branch predicate it reduces the input
variables’ domains. This is done so as to evaluate these branch
predicates to ‘‘true’’ for any assignment of values from the reduced
domain set. When all selected predicates have been examined, the
reduced domains form sets of the required test cases that traverse
the selected path. In the work of Baars et al. [13] an attempt to gen-
erate test cases based on search based testing is suggested. This
work introduces a symbolic execution based fitness function, based
on the symbolic information of selected paths, in order to effi-
ciently guide the test input search. This approach shows that path
selection strategies when integrated with search based testing are
able to provide practical solutions to the symbolic execution
difficulties.

Other dynamic approaches based on searching input domain
sets have been proposed for various testing criteria. Ayari et al.
[36] proposed an evolutionary approach based on the Ant Colony
Optimisation (ACO) to automate the generation of input variables.
This work is based on the foundations of the CBT approach by mea-
suring how close a test case is to reach and kill a mutant. A generic
approach on using state of art techniques such as the dynamic test
generation approaches has been proposed in [26] by utilising mu-
tant schemata. The mutant schemata technique [26] achieve to
help automated tools to perform mutation, by reducing the weakly
killing mutant problem to the covering branches one. Thus, exist-
ing structural automated tools and techniques can be directly uti-
lised for performing mutation. More recently, Harman et al. [28]
proposed a hybrid approach based on Dynamic Symbolic Execution
and Search Based Software Testing in order to effectively kill either
first or higher order mutants. This approach aims at fulfilling the
mutants’ sufficiency condition via search based testing. Their re-
sults suggest that by doing so an average improvement of approx-
imately 15% and 16% on the mutation scores of first and second
order mutation can be gained.

The mutation testing effort depends on the number of mutants
involved. Strategies involving mutation should therefore attempt
to limit the number of the mutants introduced, while avoiding
the introduction of equivalent ones. Such an approach is proposed
in [17] where the construction of higher order mutants with the
use of search based optimisation approaches is utilised. In this
work it is suggested that the number of mutants and equivalent
ones can be dramatically limited by introducing more than one
mutant at a time. Sampling higher order mutants can also reduce
various cost factors of mutation such as the number of introduce
mutants, equivalent ones and the number of required test cases
[37]. However, both of these approaches rely on mutation analysis
rather than on generating test data as in the present paper.
3. The method used

The aim of the present paper is to provide a practical insight on
generating test cases for killing mutants. To this end, a path based
strategy is proposed along with its assessment on the required ef-
fort with respect to the generated candidate sets of test paths.
Additionally, guidelines for the application of mutation testing
are also given, by measuring the ability of killing mutants utilising
test paths. The reason behind the choice of candidate sets of paths
as a measurement of the effort stems from the observation that
infeasible paths greatly influence the effort associated with the
testing process [6,7]. This is evident from the following experi-
ments where a huge number of paths are analysed in order to find
a small number of feasible paths, see Section 6.3 for a discussion on
the influence of infeasible paths on the testing effort. Additionally,
following the propositions made by Weyuker [38], the hidden cost
of infeasible – unexecutable testing requirements of the various
testing criteria must be taken into account when evaluating their
effort. A method embodying these observations is described and
analysed in this section.

3.1. The extended shortest path method

The a priori prediction of the infeasibility of a program path is
an undecidable problem and thus heuristic techniques that auto-
matically select likely to be feasible paths can be employed only.
In view of this, Yates and Hennell [39] advanced, and argued the
proposition that:

A program path that involves q >= 0 predicates is more likely to
be feasible than one involving p > q.

Formal statistical investigation of this proposition was under-
taken in Yates and Malevris [14], wherein it was concluded, with
great statistical significance, that the feasibility of a path decays
exponentially with the increasing number of the predicates it in-
volves. As a result, Yates and Malevris [14] proposed a path selec-
tion method, to reduce, a priori, the incidence of infeasible paths
amongst those that are generated for the purpose of branch testing.
Although introduced to support branch testing, the method was
founded only upon a consideration of the number of predicates
in a program path. Thus, the method does not seek to optimise,
in any way, on any one testing criterion. Hence, it maybe used with
equal validity, and without bias, in an attempt to fulfil any other
testing criterion. It is this path generation method’s spirit that
was extended to allow its use to effectively produce the sought test
cases for performing mutation testing.

In general the proposed approach selects candidate paths from
the enhanced control flow graph model which is detailed in the
next subsection. Specifically, the selection of the path sets is per-
formed relying solely on the adopted graph representation. Thus,
the only factor that affects the consideration order of the selected
paths is the paths’ length, which is represented by the sum of the
contained nodes weights.

The strategy for illustration purposes herein can be outlined as:
While (MS(C, D) < 1 AND i < k),
Repeat steps 1, 2 and 3 once for each mutant ele-

ment e in set M.

1. Generate the next candidate path Pi
e (aiming at

mutant element e)

2. If path found to be feasible, then recalculate the value

of Coverage based on actual execution.

3. Eliminate all covered elements from the mutant set M.
Here, Pi
e denotes the ith shortest path through element e and

k = maximum number of practically viable paths (beyond which
the generation of extra paths is prohibitive). Steps 2 and 3 actually
generate and execute the required test data against the live
mutants.

The basics of this method are derived directly from the proposi-
tions about path feasibility and the number of predicate con-
straints they involve [39,14]. The validity of the analogy between
predicates and mutant constraints in respect of selecting likely to
be feasible path sets is well established. Mutant related constraints
are constructed through simple syntactic source code alternations
based on arithmetic, relational and logical operators, ingredients of

920 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
predicate constraints. Moreover, the majority of the considered
conditions contained in candidate test paths are predicate condi-
tions. Nevertheless, due to the use of mutant constraint sets in con-
junction to predicate ones, may naturally result in an increase of
the incidence of infeasible paths. This increase is totally attributed
to the nature of mutation testing affecting its overheads. Accord-
ingly, it is imperative that any method applied to fulfil a high
demanding criterion such as mutation, must be able to alleviate
the undesirable effects of infeasible paths.

There exists a number of fundamental matters that need to be
detailed in order to proceed with the employment of the proposed
method and are summarised as follows:
1. Path based mutant representation and selection mechanism.
2. The method used to generate the Pi

e.
3. The interpretation of the criterion ‘‘MS(C, D) < 1’’.
4. The criterion for selecting uncovered mutants.

Their details are given in the succeeding subsections.

3.2. Mutant representation and path selection

The representation of the structure of a code unit by its CFG is
well known, understood and forms the basic model of path testing
for most of the white box testing criteria. Unfortunately, this can-
not be considered to be the case for mutation since mutants are not
represented or identified by the CFG structure. Additionally, muta-
tion testing requires an execution path in both the original and the
mutated program versions in order to cover-kill the corresponding
mutant. For mutation a more elegant model is needed [15]. In
accordance with the suggestions made in the literature concerning
weak mutation [8] and by using mutants’ necessity conditions [21],
it is possible to construct an augmented CFG by enhancing it with
mutant related constraints together with the corresponding mu-
tants. The enhanced graph is built simply by adding a special type
of vertex for each mutant representing its necessity constraint.
Thus, for each introduced mutant one additional node is intro-
duced in the enhanced graph.

Every introduced mutant is associated with a CFG program
node, the one that the mutant appears in the source code. Every
mutant related vertex is connected with its original corresponding
node (original CFG) and represents a special mutant related neces-
sity constraint. A dummy node is introduced in order to connect all
the mutant vertices with the original CFG and in order to keep the
original CFG unaffected. Fig. 1 demonstrates the construction of the
enhanced control flow graph where both graphs are displayed. The
proposed approach test model is completed by assigning weights
to the CFG nodes. The original CFG nodes bear a weight value cal-
culated as defined in Section 2. The mutant related nodes are as-
signed an infinite weight value in order to be ignored through
the path selection method. It is noted that the selected candidate
paths for a specific branch are the kth-shortest ones that reach
the considered branch. The infinite weighted nodes will thus be ig-
nored by the selected paths as by generation they must be shortest.

Since a path not containing any mutant vertex represents an ex-
act path in the original test code unit, that path can form the basis
for the fulfilment of the mutant’s reachability conditions. Addition-
ally, every feasible path containing one or more mutant vertices
fulfils both the reachability and necessity mutant conditions of
the respective mutants. Conversely, an infeasible path from the
beginning of the graph up to and including a mutant, say m(a),
indicates the absence of possible test data to reveal it, hence, if
no such a feasible path exists, this leads to the determination of
the mutant as being equivalent. Covering all enhanced control flow
graph mutant nodes, results in a straightforward coverage of the
weak mutation criterion and the fulfilment of the reachability
and necessity conditions of all program mutants too. In the
remainder of the paper the term coverage is used to indicate the
coverage of the enhanced control flow graph mutant nodes which
is actually the mutation score achieved with respect to weak muta-
tion. Based on the above observations the proposed strategy tries
to effectively select paths that will cover the corresponding mutant
vertices of the enhanced control flow graph. In order to avoid con-
fusion it must be noted that the selected paths are used in order to
guide the test generation process on producing tests and not on
indentifying infeasible ones. Infeasible path identification is per-
formed by the test generation method utilised, which in our case
is the symbolic evaluation. By selecting the kth-shortest paths, a
higher probability of the path feasibility is established.

One possible concern about the enhanced control flow graph is
its size, which grows in relation to the mutants’ number. This prac-
tice may result in huge graphs as the number of the introduced
mutants can be an excessive one. Despite this, the graphs’ size is
not a problem as it forms only a representation of the program un-
der test. Additionally, the use of kth-shortest paths along with the
infinite weights of the mutant nodes on the enhanced control flow
graph results in considering only the original program CFG nodes.
Thus, the introduced complexity of the mutant vertices is allevi-
ated and their impact on the path selection method is negligible.

3.3. Incremental selection of paths

The path generation method used for mutation testing is in
analogy to that used for testing branches. The targeted candidate
path set consists of the kth-shortest program paths, again in the
sense of containing a minimum number of predicates, which to-
gether cover the inserted mutants. These kth-shortest paths
through a mutant vertex m can be defined as follows:

PðkÞm ¼ PðkÞðS; xÞ � xm

where PðkÞðS; xÞ denotes the kth shortest path from the starting ver-
tex S to the target vertex x of GC. The introduced arc that connects
the vertex x with the mutant node m is denoted as xm, and � de-
notes a sequence. All mutants are handled based on a k-value, the
limit on the number of generated paths, used by the strategy. The
practicality of the method relies on the selection of an appropriate
k-value beyond which all left alive mutants are treated as being
equivalent. Also, some additional advantages of embodying this
method are that it uses the philosophy of suggesting paths with
the least number of predicates, and in particular, it even considers
shorter paths to symbolically execute as it only considers the paths
up to the mutated node and not entire entry to exit paths. This inci-
dent not only increases the possibility of such subpaths being even
more likely to be feasible, as they contain fewer predicates, but also
reduces the execution cost per path when symbolically executed as
it will be discussed.

3.4. Handling infeasible requirements

Generally the goal of full coverage (killing all mutants) can be
accomplished only when MS(C, D) = 1. MS(C, D) is the ratio of the
killed mutants constituting thus a test effectiveness measure.
Unfortunately, in practice, to fulfil MS(C, D) = 1 is a very tedious
exercise. Even with less demanding criteria such as node coverage
where a similar test effectiveness ratio needs to be justified, full
coverage of the nodes can be difficult to achieve due to the pres-
ence of infeasible paths. In mutation testing the existence of equiv-
alent mutants makes it rather impossible to kill them, hence,
making it difficult to achieve full coverage (killing of all mutants).
This compels the necessity of defining the relative coverage
MS�(C, D) as the ratio of killed mutants to the number of not equiv-
alent mutants. Such being the case, it is required to deduce and

Orig

Orig1

Orig4

Orig2Orig3

Orig

Orig1

Orig4

Orig2Orig3

m(a)

m(a)

m(a)

m(b)

m(b)

m(b)

Mut
(a)

Mut
(b)

m(c)

Mut
(c)

m(c)

m(c)

0

1

0

0

0

0

0

0 0

0

0

0

1

M
M

M

M

M

M

M
M

M

Weigths:
Orig1 = 1
Orig2 = 0
Orig3 = 0
Orig4 = 0
Mut(a) = 0
Mut(b) = 0
Mut(c) = 0
m(a) = M
m(b) = M
m(c) = M

Original CFG Enhanced CFG

Fig. 1. The enhanced control flow graph.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 921
eliminate all equivalent mutants in order to proceed with the cal-
culation of MS�(C, D). This task can only be performed heuristically,
as it is not possible to directly deduce all the equivalent mutants.
As a consequence, in the experimental study presented in the next
section it was necessary to adopt an effective and practical way of
deriving the equivalent and killable mutants. Following the spirit
of the proposed approach a reasonably high threshold of approxi-
mately 50,000 paths per mutant was assumed. Beyond that thresh-
old all mutated versions were considered to be equivalent with the
original. The reason for assuming such a threshold is based on the
nature of the effort-coverage relation which indicates the exponen-
tial trend of the effort as recorded by the experiment performed in
Section 5. Also the contribution to the totally killed mutants be-
yond the 30,000 paths (Table 4) is insignificant.

3.5. The criterion for selecting uncovered mutants

At each iteration of the proposed approach there is a set of live
mutants needed to be covered. In almost every case the set con-
tains more than one uncovered-live mutant elements. The question
that is raised is: Which is the order they should be selected in an
attempt to be killed? Alternatively, which mutant should be tried
to be killed first? The answer to the above question is given by
adhering to the well established philosophy that: a program path
that involves q P 0 predicates is more likely to be feasible than one
involving p > q. Specifically, the remaining live mutants are classi-
fied according to the length of the shortest path each one lies on.
Thus, attempts to increase coverage are always ordered in respect
of a path’s length. Due to this ordered rule, the candidate mutant
that is selected to be killed next is the one whose path containing
it is the shortest in length among the others. Ties are broken
arbitrarily.
4. A unified mutation testing system

The presented approach and the succeeding experiments were
conducted based on a prototype tool, implemented for the pres-
ent study. The tool automatically generates and executes test
cases by employing the concepts presented in the preceding sec-
tions. It has been entirely built using the java programming lan-
guage. It also incorporates the LpSolve [40] package for solving
path conditions. It operates on programs written in the SymExLan
[41] script language and utilises the experience gained from the
previously developed tool Volcano [42]. A similar in philosophy
tool is proposed in [43] with the aim of producing test cases for
branch testing. The preset paper expands the suggestions made
in [43,15] for targeting mutants.

4.1. Overview

A high level view of the prototype architecture is presented in
Fig. 2. The prototype is composed of the following five modules
which are represented as rectangles:

Parser: This module analyses the SymExLan scripts and gener-
ates an appropriate test model.
Mutant Generator: It enhances the test model with mutant
related constraints.
Path generator: This module generates candidate paths for a
given target (branch or node).
Symbolic Executor: The unit that symbolically executes selected
paths, constructs path expressions and transforms them to lin-
ear programming problems
Interpreter Verifier: It executes and enhances with random val-
ues the actual test cases generated. Its main use is to calculate
the achieved coverage.

Parser

SymExLan Script

Mutant generator

Test Model

Mutant Test Model

Path generator
Symbolic
executor

Test executor/
Verifier

Test Report

Fig. 2. Tool’s architecture.

922 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
It also embodies some intermediate structures and reports, rep-
resented as ellipsis, such as:

Test Models: The model of CFG and Enhanced CFG with their
corresponding computations.
Test Reports: Reports containing the test execution path and a
list of the killed mutants by a test case.

4.2. Detailed description

4.2.1. Parser
Parsing is handled by a program that reads SymExLan scripts

[41] and generates the system internal test model, containing the
original Control Flow Graph and a set of algebraic computations
corresponding to each basic block-node. The SymExLan scripts
are automatically produced from external source to source com-
piler systems. For integrity reasons, Fig. 3 gives an example of such
a script for a method that calculates the absolute expression of a
float number. Further details about the SymExLan scripts can be
found in [41].

4.2.2. Test models
The test models (original and enhanced models) contain a graph

representation of the program’s control flow containing in each
node its respective symbolic computations. All symbolic computa-
tions have been transformed to simple ones, by transforming all
compound predicates into multiple simple computations. By doing
so, during symbolic evaluation, the path conditions of all selected
paths are represented by a conjunctive formula of symbolic com-
putations. Thus, all path expressions can be straightforwardly
transformed into linear programming problems with a relative
small and equal to the number of the programs input variables.
An additional argument behind keeping all symbolic computations
is that during symbolic evaluation the number of variables is kept
to a minimum. This results in a higher performance when employ-
ing optimisation methods such as linear programming, to solve the
path constraints.
4.2.3. Mutant generator
The mutant generator module is responsible for generating mu-

tant constraints and enhancing the test model appropriately. The
generated mutant constraints are the necessity ones as suggested
by the CBT approach [21]. Thus, every mutant constraint follows
the constraint template of ‘‘ e ! = e0 ’’, where e adheres to the origi-
nal expression and e’ to the mutated one. Every mutant vertex cor-
responds to its necessity constraint in conjunction with some
sufficiency ones. The path condition generated for a selected path
that reaches a mutant vertex corresponds to a conjunction of both
the reachability and necessity conditions. In order to reduce the
weak mutation inefficiency some additional sufficiency constraints
based on the propositions of firm mutation [20,19] are followed. In
accordance with the suggestions made by Offutt and Lee [19] the
necessity constraints are extended in order to produce differences
in the program predicates and in particular at the end of the basic
block that contains the mutated statement. In occurrences of logi-
cal operators some additional complementary constraints are used
in order to cause the mutant predicate differences to propagate to
the whole decision (avoiding masking through the remaining log-
ical conditions). These additional constraints are formed based on
the consideration of the mutated part of the logical expression as
the basic one, which should independently affect the decision’s
outcome, while treating the rest of the expression in accordance
to the MCDC criterion. These conditions are generated by using
the tree method as proposed by Offutt et al. [44].

In the present paper an experimental study of the effort entailed
by the weak mutation testing method has been undertaken. For

Table 1
Utilised necessity conditions.

Operator Conditions

Relational expression (a op b) a > b
a < b
a == b

Logical expression (a op b) a == T && b == T
a == F && b == T
a == T && b == F
a == F && b == F

Absolute arithmetic variable (a) a == 0
a > 0
a < 0

Arithmetic expression (a op b),
mutant operator (m(op))

a op b ! = a m(op) b

Unary predicate expression (exp) exp ! = exp + 1
exp ! = exp � 1

Fig. 3. SymExLan script example.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 923
experimental purposes the effort is directly associated with the
considered candidate mutant set. Of the possibly excessive number
of mutants, the considered set is a reduced one, as this has been
proposed in [45]. Based on this study, the candidate set is similar
to the one proposed by Offutt et al. [32]. The discrepancy between
the two is that the set as in [45] produces a smaller sample as it
considers additional restrictions that remove some redundant mu-
tants. Thus, the selected mutants have the same strengths with the
full mutant set. In other words, it was found in [45] that tests that
are capable of killing the reduced set of mutants are also capable of
killing all the introduced mutants of the whole set, as proposed by
Offutt et al. [32]. This is not contrary to the validity of the experi-
ment since the main issue is to concentrate on effective ways of
killing the mutants irrespective of their number. The existence of
more mutants would have possibly added only minor additional
effort. Table 1 describes the produced necessity constraints of the
produced mutant set. The resulting set uses all five mutation oper-
ators (Relational, Logical, Arithmetic, Absolute and Unary), as pro-
posed by Offutt et al. [32]. Thus, a set of three mutants is produced
based on the Relational operator; a set of 2n mutants is produced
based on the number of operands n in the compound expression
due to the Logical operator; a set of three mutants is produced
according to the Absolute operator (following the original descrip-
tion [46]); a set of five mutants is produced according to the Arith-
metic operator; a set of two mutants based on the Unary operator
is produced for each occurrence in a decision statement, as in the
rest of the occurrences in other statements, as it has been argued
by DeMilo and Offutt [21] killing the mutants is a fairly elementary
task.

4.2.4. Path generation
The path generation module generates a set of kth-shortest

paths from the graph’s start point to a given target node. There
are various graph theoretic algorithms in the literature for tackling
this problem. The system actually uses an adaptation of the meth-
od suggested by Yates and Malevris [14]. It is noted that in both the
original and the enhanced test models the paths generated are
identical with the addition of the mutant node and the arc connect-
ing it in the case of the enhanced CFG.

4.2.5. Symbolic executor
The symbolic executor module is integrated with the path

selection strategy and performs symbolic evaluation for a given/se-
lected path in order to derive its path expression in terms of input
variables. This expression is then transformed into a linear pro-
gramming problem and solved based on linear optimisation tech-
niques [47]. In case the linear programming problem results in a
solution, its solution values do form the required inputs. In the
opposite case where no solution can be found, the path is deter-
mined to be infeasible. The Linear Programming problem is formed
in a straightforward way as the test model adopted uses only sim-
ple constraints which are directly incorporated into the linear
problem formulation. The objective function to be max(min)imised
can be a trivial one as it can be satisfied by any solution of the lin-
ear problem in the solution space. Here, it must be noted that the
logical expressions are handled based on the selected paths made
on the adopted graph model. As stated in the previous sections,
compound – logical predicates have been split into multiple simple
computations and thus, their handling is based on the path selec-
tion method used. Different selected sub-paths of the simple com-
putation nodes that correspond to one compound predicate
represent different logical computations.

Table 2
Unit details.

Program
Units

LOC No. of
branches

No. of
mutants

No. of live
mutants

overstrike 60 34 143 51
entab 48 31 123 35
getkbd 74 40 216 57
shell 40 21 127 52
dodash 59 27 164 48
triangle 44 31 170 43
newpas 59 33 158 52
newcats 51 26 112 36
catsub 96 56 224 42
gtext 80 48 171 51
tritype 70 51 281 81
try 22 13 102 8
atoi 46 27 124 23
entab2 40 22 99 35
91_function 24 12 72 24
calcnum 39 25 128 57
findmax 29 18 102 11
includenum 76 32 151 44
addqueue 51 31 135 32
findpos 45 28 97 14
checkdigit 42 33 126 19
checksides 27 19 52 0
seekpos 50 29 135 13

924 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
One of the general problems encountered is that of handling
non-linear expressions. To tackle this problem the prototype tries
to isolate these expressions by eliminating them and based on ac-
tual executions to overcome it in an indirect way as suggested by
[42]. Other approaches for handling non-linear expressions can
be found in [48,49]. Other known problems of the linear program-
ming and general to the constraint solving for the symbolic execu-
tion are the handling of string constraints. This is a matter beyond
the scope of the present research and not considered. A possible
approach for handling it can be found in [50] where a constraint
solver over string constraints is proposed. Other difficulties may
arise due to the presence of pointers and tables. Their handling is
based on the approach proposed by the work of Koutsikas and
Malevris [42] who suggest the use of a memory table. A similar ap-
proach based on enumeration and propagation of the alias rela-
tions is described in [51]. These approaches deal with the
ambiguous arrays and pointer references effectively. In fact they
achieve to solve all the encountered ambiguous references. How-
ever, they have the drawback of introducing additional constraints
to the produced path conditions. In the performed experiment,
presented in the next section, the employed approach [42]
achieved to solve the encountered ambiguous references and thus,
determining the generated feasible and infeasible paths accurately.
stringcount 42 25 99 19
wc 33 18 86 19
getop 72 48 238 51
remainder 74 38 289 116
triangle2 93 62 310 130
newdash 52 24 152 34
91_function2 38 23 131 37
4.2.6. Mutant execution
Test execution tasks are performed based on an independent to

the test generation system, responsible for verifying the killed mu-
tants and enhancing with random values the redundant to test
generation input variables. The system is based entirely on an
interpreter that simulates the actual executions and computations
performed by the considered test program. Based on the appropri-
ate input values (determined by the symbolic execution module) a
simulated execution is performed on each graph node of the test
model and its execution path is traced. As the simulated execution
continues beyond the mutated point in the program under test, it
traverses code that has not been executed symbolically. This fact
may result in a need for new input values, these are given based
on their type and application input domain through random
selection.

All introduced mutants are evaluated with only one execution
run per test case. This is an advantage of performing weak muta-
tion instead of strong one. This is in accordance to the suggestions
made by Howden [8] who advocates that in weak mutation it is
acceptable to execute all reachable mutants in one program place.
The proposed approach generalises this argument to all the reach-
able mutants by the traversed execution path. This is achieved by
performing the simulated execution and evaluating all the reach-
able by the test cases mutants. When the simulated execution
reaches a mutant related node it performs an evaluation check
on all its mutant constraints in order to determine if they would
be killed or not. Then, the execution continues by returning to
the mutant related node (dummy node) in order to keep on with
the original program execution. This way, all mutants encountered
in the examined execution path are evaluated.

The use of the test executor module compliments the symbolic
execution method by embedding dynamic features such as random
testing and actual execution evaluations. It also serves as a valida-
tion system of the generated tests and helps in verifying the killed
mutants.
1 The LOC were measured after their conversion to the SymExLan language by
considering the Nodes and Declaration sections of the scripts [41].
5. Experimental regime

The experimental results reported in this section were obtained
by the application of the proposed strategy to a sample of 30 pro-
gram units, a list of which is given in the Appendix. All the selected
units have no calls to other functions as these have been ‘‘inlined’’
in the units under test. The sample consists of programs written in
various programming languages some of which have been refer-
enced in the literature [21,6,43]. The units were selected based
on their use in the literature, the observation that they contained
certain important features such as: nesting, loop constructs, use
of arrays and also many infeasible paths. The sample consists of
10 code units written in Delphi (units 1–10) and 20 code units
written in C and other languages (units 11–30). In Table 2 details
of the selected sample units are presented, where the LOC denotes
the number of lines of code that the units are composed1 of, the
number of generated mutants and the number of live mutants they
contain. The column housing the live mutants records the number of
mutants remaining alive after the completion of the experiment. For
the reasons analysed before, i.e. in Section 3.3, they are treated as
equivalent. Each program unit was first transformed into the SymEx-
Lan [41] script language (the intermediate representation used in the
tool). Following, they were assessed by the tool that uses the pro-
posed method for path selection for performing weak mutation test-
ing as this has been presented in detail in the preceding sections. The
application of the proposed method to these units resulted in the
generation of well over 55 million program paths and in a total of
4517 mutants.
5.1. Experimental results

The results obtained by applying the method are depicted in
Table 3. There are three major categories for the different number
of k paths considered in the experiment. More specifically, the k
values of 1, 50, 300, 5000, and 50,000 are presented in the table,
each sub containing three categories namely Coverage, Paths and
Tests. These reflect the level of relative mutation score coverage

Table 3
Results derived from the application of the proposed strategy.

Unit k = 1 k = 50 k = 300 k = 5000 k = 50,000

Coverage (%) Paths Tests Coverage (%) Paths Tests Coverage (%) Paths Tests Coverage (%) Paths Tests Coverage (%) Paths Tests

1 40.22 165 4 93.48 5258 8 96.74 23,775 9 100.00 348,546 10 100.00 34,12,626 10
2 59.09 98 3 79.55 3680 7 79.55 20,180 7 100.00 239,052 8 100.00 22,66,752 8
3 98.11 108 25 99.37 4078 26 100.00 24,182 27 100.00 400,182 27 100.00 40,04,982 27
4 76.00 84 1 100.00 3404 7 100.00 16,405 7 100.00 232,605 7 100.00 23,05,365 7
5 61.21 122 3 68.97 5831 6 89.66 31,040 11 94.83 382,231 13 100.00 31,07,984 15
6 96.85 81 13 100.00 3071 14 100.00 18,321 14 100.00 305,021 14 100.00 30,53,681 14
7 77.36 93 1 86.79 4003 6 86.79 22,526 6 100.00 290,804 11 100.00 28,14,164 11
8 100.00 61 12 100.00 2462 12 100.00 14,712 12 100.00 245,012 12 100.00 24,52,952 12
9 78.02 129 12 89.56 5458 15 96.15 24,096 20 99.45 318,036 25 100.00 30,89,806 26

10 68.33 134 12 88.33 3914 14 94.17 19,973 16 97.50 277,532 19 100.00 25,94,710 21
11 52.00 255 14 100.00 1730 36 100.00 3022 36 100.00 3022 36 100.00 3022 36
12 100.00 51 20 100.00 737 20 100.00 4225 20 100.00 70,025 20 100.00 700,865 20
13 71.29 75 8 94.06 2053 23 94.06 10,463 23 100.00 92,715 25 100.00 674,015 25
14 98.44 53 5 100.00 2367 6 100.00 14,117 6 100.00 235,017 6 100.00 23,52,837 6
15 100.00 34 6 100.00 1308 6 100.00 7248 6 100.00 110,648 6 100.00 11,01,968 6
16 97.18 82 9 100.00 3562 10 100.00 21,312 10 100.00 355,012 10 100.00 35,54,272 10
17 83.52 49 14 100.00 738 17 100.00 4238 17 100.00 70,038 17 100.00 700,878 17
18 87.85 93 12 100.00 3177 17 100.00 16,681 17 100.00 235,617 17 100.00 23,08,377 17
19 63.11 97 6 95.15 2609 15 95.15 12,734 15 95.15 149,034 15 100.00 12,90,262 17
20 95.18 40 10 100.00 814 14 100.00 4574 14 100.00 75,074 14 100.00 750,974 14
21 99.07 84 26 100.00 1165 27 100.00 6650 27 100.00 110,050 27 100.00 350,369 27
22 100.00 22 16 100.00 22 16 100.00 22 16 100.00 22 16 100.00 22 16
23 100.00 53 17 100.00 886 17 100.00 5123 17 100.00 85,023 17 100.00 851,043 17
24 93.75 38 9 98.75 1226 13 98.75 7226 13 98.75 120,026 13 100.00 11,81,935 14
25 95.52 34 8 98.51 1115 10 100.00 6491 11 100.00 105,191 11 100.00 10,51,451 11
26 100.00 205 44 100.00 3439 44 100.00 19,873 44 100.00 330,073 44 100.00 33,04,033 44
27 99.42 147 14 100.00 3124 15 100.00 18,228 15 100.00 132,492 15 100.00 12,13,932 15
28 91.67 212 20 91.67 6239 20 100.00 32,719 23 100.00 371,115 23 100.00 28,49,415 23
29 60.83 120 4 70.00 5731 7 90.00 30,440 12 95.00 372,231 14 100.00 30,07,864 16
30 85.11 81 15 91.49 2486 18 96.81 12,273 19 100.00 135,341 20 100.00 13,06,901 20

Total – 2900 363 – 85,687 466 – 452,869 490 – 61,96,787 512 – 576,57,457 522
Mean 83.35 96.67 12.10 94.52 2856.23 15.53 97.32 15095.63 16.33 99.33 206559.57 17.07 100 1921915.23 17.40

M
.Papadakis,N

.M
alevris/Inform

ation
and

Softw
are

Technology
54

(2012)
915–

932
925

Fig. 4. Mean coverage for all k values.

926 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
MS�(C, D) achieved, the number of the paths generated and the
number of feasible paths encountered, i.e. used for generating tests
(tests entry in the table). Also, the total and mean values for all cat-
egories are tabulated. It must be noted here that for the purposes of
the experiment and as these have been analysed in detail, a max-
imum of 50,000 paths were used beyond which, as it will be dis-
cussed in Section 6, it is prohibitive to generate more paths.
Beyond that point, all live mutants were treated as being equiva-
lent. The application of the method to each program unit resulted
in a total of 522 feasible paths – tests cases. The number of so few
feasible paths in such a big path set considered is attributed to the
anomalies introduced by the insertion of the mutants which forced
even feasible paths in the initial graph, to become infeasible as
their presence created conflicting situations. The first iteration
(k = 1) of the proposed approach realised full (100%) relative cover-
age for 6 units while for 16 units it achieved over 90% of relative
coverage, whereas for the remaining 14 units the coverages
achieved varied between 40.22% and 87.85%. The mean coverage
achieved for all units reached the value of 83.35%. Subsequent iter-
ations resulted in higher coverage values for all program units. In
Fig. 5. Reduced mean
the first 50 (k = 50) iterations of the strategy, full relative coverage
was achieved for 16 units and for only 6 (of the remaining 14 units)
the score fell under 90%. It must be noted that the lowest achieved
coverage was that of 68.97% for unit 5 and the mean value re-
corded was 94.52%. Beyond 50 iterations there is a high escalation
of the number of infeasible paths generated and that resulted in a
low coverage increment in the succeeding iterations. Thus, the
mean increase of coverage for the paths generated between
k = 50 and k = 300 increased by only approximately 2.80%. Cover-
age increase was experienced for 9 units where the values re-
corded varied between 0.63% and 20.69%. In total full relative
coverage was experienced for 19 units with a value range of
[79.55%, 100%]. It must be emphasised here that there is only a
marginal increase in the coverage achieved despite the consider-
able amount of paths generated. This matter is discussed in Section
6, however, it must be highlighted that the effort related to the
coverage changes, increases exponentially and may not be advis-
able to employ the method beyond specific k-values.

The results of the experiment for higher k-values (300 < k <
50,000) resulted in a 2.68% coverage increase. This was achieved
coverage graph.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 927
with only 32 total test cases (feasible paths) contributed in the
above range of k values. In conclusion, for the last two columns
of the table (k = 5000 and k = 50,000), it can be argued that for
the first 5000 iterations 6 units still remain not fully covered,
resulting in coverage values for all 30 units in the range
[94.83%, 100%] with a mean coverage value of 99.33%. Additionally,
22 more test cases are produced at the iteration increment range
from 300 to 5000, making a total of 10 test cases only found, i.e.
10 feasible paths only in the range from 5000 to 50,000.

The results obtained are summarised in Fig. 4, where the mean
actual Ck and the mean relative C�k coverages for all values of k in
the range [0, 50,000] against k are plotted. The values of Ck and
C�k are defined as:

Ck ¼
1

30
P30

i¼1
MSði;DkÞ and C�k ¼

1
30
P30

i¼1
MS�ði;DkÞ

where MS�ði;DkÞ and MS�ði;DkÞ are the values of MS� and MS and Dk

the data set after k iterations of the proposed method for unit i.
It is self evident from the graph that the increase in coverage is

quite considerable for minor values of k and beyond the 1400 va-
lue, only a subtle increase occurred. This enables the argument,
without any loss of generality, that the significant contribution in
the coverage achieved when attempting to kill the mutants is
attributed to the first part of the graph where up to 1400 paths
are recorder beyond which, the increase is insignificant hence
can be ignored. Fig. 5 displays the reduced graph deduced from
that of Fig. 4 where the values of coverages for k in the range
[1, 1400] are considered. This has allowed to make the entries of
smaller path values more apparent. As pointed before after the
50 iterations the coverage rate begins to slow and in fact, no addi-
tional increase is observed until the 120 iterations. The rate of cov-
erage increase slows down and this becomes even more evident for
k in the range of [630, 50,000], where the relative values attained
are: for C�632 ¼ 98:14%, C�913 ¼ 98:90%, C�1605 ¼ 99:00%, C�4764 ¼
99:33%, C�6912 ¼ 99:45%, C�7740 ¼ 99:76%, C�20296 ¼ 99:85%, C�28110 ¼
99:88%, C�40295 ¼ 99:91%, C�40396 ¼ 100%. The actual values are
spread in a similar fashion.

The reduction of the graph also makes more evident that the
significant increase in the coverage achieved is recorded for
the ranges [1, 50], [51, 150] and [151, 300]. The total coverages re-
corded in these ranges being 94.52%, 95.1% and 97.32% respec-
tively. The next point of significant increase is for k = 632 where
a relative coverage of 98.14% was achieved. Full relative coverage
was achieved after the generation of paths for k = 40,396 making
it more debatable that the benefit of such a subtle increase is
worthless with respect to the huge number of paths needed to
be considered in order to achieve it, hence involving more effort
too.

5.2. The effort required by the strategy

Clearly as it has already been established there is a direct rela-
tionship between the number of paths generated and the coverage
Table 4
Total and per mutant paths towards coverage.

k-Value Mean value of MS. actual coverage (%) Mean value of MS�. relative

1 60.62 83.35
10 64.93 89.28
30 67.72 93.12
50 68.74 94.52

100 68.74 94.52
300 70.78 97.32

1000 71.93 98.90
10,000 72.55 99.76
30,000 72.64 99.88
50,000 72.73 100.00
achieved when seeking to kill the mutants. The initial path sets do
provide the basis in order to achieve a fundamental first coverage.
Then onwards, a significant number of paths is required to increase
the coverage and hence the percentage of killed mutants. The rea-
son behind this, is due to the existence of equivalent mutants and
infeasible program paths. The incidence of both equivalent mu-
tants and infeasible paths require an incremental number of tries
from the tester in order to find suitable tests-feasible paths or
determine, if possible, the equivalence of the live mutants. This
can only be performed in an exhaustive way requiring a possibly
infinite number of paths–test cases to be generated. This fact also
indicates the suitability of the kth-shortest paths heuristic in order
to make the mutation testing criterion applicable. The results ob-
tained and the nature of the graph seem to suggest that it may
not be cost-effective to generate more than approximately 50 can-
didate paths per mutant constraint in an attempt to raise the
mutation score. This result is along the same lines with the results
derived in previous studies using the k-paths strategy in the con-
text of structural testing [14]. However, the use of the best k-value
is a matter of the undertaken policy and in view of this a high value
could be perhaps advisable if critical applications were to be con-
sidered or if the cost-effect is not an issue.

The reason for considering such a testing strategy according to a
specific k-value is twofold. First, it places practical bounds on the
effort associated with the employment of the strategy, note that
the actual number of paths in most program units tends to be infi-
nite. Second, the equivalent mutants do result in infeasible paths
when attempting to kill them. Such being the case, any attempt
to generate paths to kill them, emerges the problem of an infinite
number of infeasible paths (in the worst case and if the structure of
the program supports it, e.g. loops). By employing such a stopping
rule, this result in a practical heuristic that overcomes the equiva-
lent mutant problem based on the effort investment per each
mutant.

In order to substantiate the benefits of the proposed method, it
is needed to establish the effort per each mutant considered. This
will provide a useful yardstick for estimating the overall test data
generation procedure effort. For this reason, the average values
of the numbers of paths needed to be generated per mutant are
presented in Table 4; together with the mean values of the actual
and relative coverages achieved as well as the number of paths
generated.

It must be noted here that the presence of equivalent mutants
and infeasible paths not only does affect the practical matters of
employing the mutation testing criterion, but also the theoretical
ability to accurately predict the number of test cases needed, and
therefore the effort too, on the following grounds. The absence of
both equivalent mutants and infeasible paths would require in
the worst case the generation of at most 4517 paths (number of
mutants) if a distinct path were needed per mutant. In the best
case as the problem can be converted into that of covering the arcs
of the enhanced CFG, a method such as the one presented in [52]
can provide a minimum number of paths needed. Thus, providing
coverage (%) Number of paths generated Number of paths per mutant

2900 0.642019
20,319 4.49834
53,991 11.95284
85,687 18.96989

163,864 36.27718
452,869 100.2588

1,336,153 295.8054
12,061,983 2670.353
35,017,392 7752.356
57,657,457 12764.55

Fig. 6. Coverage per total paths.

Fig. 7. Coverage per paths/mutants.

928 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
both upper and lower bounds for the total effort needed to kill the
mutants.

Unfortunately, in practice the number of the required paths is
substantially greater due to both equivalent mutants and infeasible
paths making full coverage unachievable and the theoretical
bounds inactive. The number of mutants can be easily calculated
and as it can be seen in Table 4., a minimum of 2900 paths were
needed initially to be generated in total, i.e. 2.900/4.517 = 0.64
paths per mutant. This value is between the two bounds referred
to above and this is due to the presence of both equivalent mutants
and infeasible paths.

Examining the values of Table 4., it can be noted that an actual
coverage of approximately 60.62% and a relative one of 83.35%
were obtained at the entry level for k = 1. In order to increase these
coverages to 67.72% and 93.12% (k-value 30) respectively, an effort
of approximately 18.6 times the initial one, is needed. The effort, in
fact, increases markedly, at an exponential rate as it can be per-
ceived by the graph of Fig. 6. Fig. 6 presents a plot of the number
of paths generated against the actual coverage Ck. Fig. 7 presents
the first part of (up to k-value 1400) of the relative coverage C�k
achieved versus the number of paths generated per mutant.

The noticeable effects for both Figs. 5 and 6, with respect to the
rate of the effort involved is that they both follow an exponential
model of the form:

y ¼ aebx; where a and b are parameters of the model that
depend on the data:

In the case of Fig. 6, the R2 = 0.6907 provides a weak fit to the
data. This can be explained by the large number of infeasible paths
encountered. However, the plot does undoubtedly indicate an
exponential trend. In the case of Fig. 7, the R2 = 0.953 does indicate
a good fit to the data providing values for a = 6E�19 and for
b = 48.174. Although this is specific to the results obtained by using
the 30 units, it does provide a basis that suggests the exponential
relation between the number of paths/mutant and the coverage
achieved.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 929
From the graph of Fig. 7 and Table 4., as can be observed, the 19
paths (attained for k = 50) generated per mutant lead to a coverage
of almost 95% of the mutants, while doubling the number of paths
to 36 per mutant does not provide any increase at all, therefore it
can be argued that it is not cost-effective to generate more than
about 19 paths per live mutant in order to achieve a descent muta-
tion coverage level. Also, the 95% of the relative coverage achieved,
can be interpreted as the 95% of the achievable coverage when all
50,000 are considered. Thus, the k = 50 value is adequate in assess-
ing the 95% of what would be achieved by employing all the
k = 50,000 value. This can be also recorded as the strength of the
strategy proposed.

It is worth mentioning that the experimental results are consis-
tent with the results obtained in previous studies conducted for
structural testing [14]. Both the present and previous studies
[14] were founded on the same assertion about the feasibility of
program paths, applied to totally different test samples however
resulting in similar conclusions concerning not only the testing ef-
fort trend, but also the cost effective k-value point for achieving a
high level of coverage.
6. Discussion of the results

This paper considers the practical problems encountered when
employing the weak mutation testing criterion and eventually sug-
gest using a path selection strategy to tackle them. An experimen-
tal assessment on the effort needed towards an effective path
selection strategy was investigated and results were derived based
on a purposely built tool. The results were derived from a sample
of 30 programs, containing a total of 4517 mutants, by investigat-
ing approximately over 55 million program paths. The experiment
contribution relies on the practical aspects of employing mutation,
i.e. the path generation method used, its reflected effort and
practical approaches to circumvent the equivalent mutants
problem.
6.1. Effectiveness of the path generation method

In order to generally adopt the practical issues established by
the experiment, some points should be addressed. Two factors
must be considered when setting up such an experiment. These
are: the adopted path selection strategy and the handling of the
equivalent mutants. These factors are outlined in the following
questions: ‘‘how typical is the effectiveness of the path selection strat-
egy?’’ and ‘‘in case of employing an equivalent mutant detection sys-
tem that could eliminate all or most of the equivalent mutants are the
results still sound?’’.

Concerning the effectiveness of the employed path generation
strategy, it is again essential to consider the fundamental assump-
tion of the method used. Basically, as the number of infeasible
paths in a program tends to be rather significant, any path gener-
ation method should consider their presence upon their genera-
tion. Based on the validity of this fundamental assumption the
method adopted in this study is perhaps the only method that sug-
gests a methodical way of generating the paths by trying to avoid
the infeasible ones. Therefore, the proposed method establishes a
clear advantage against any other possible method that ignores
the presence of infeasible paths. Consequently, it should be antic-
ipated that adopting the proposed strategy will be more efficient
than its alternatives.

In view of the difficulties imposed by the influence of the vari-
ous equivalent mutants on the soundness of the results reported in
this paper, by focusing on the results reported in Section 5., even in
the hypothetical absence of equivalent mutants, there should still
necessitate a high number of iterations cycles (the k-value) in
order to adequately achieve the required levels of coverage. It is
noted that the k-value is completely independent of the presence
of equivalent mutants. Thus, the influence of infeasible paths on
the overall effort is substantial even in such a hypothetical case. In-
deed, a k-value even higher than 40,396 (where full relative cover-
age was achieved) should be employed which in any case is
prohibitively high. Despite all these considerations, the present pa-
per targets on practical aspects of employing weak mutation test-
ing and thus it is suggested that the remaining live mutants after k
tries to be treated as equivalent ones. Although this requires set-
tling with less than full coverage, the testing thoroughness will
not be greatly affected.

Following the suggestions made by Offutt and Untch [5] and
Yates and Malevris [7] the application of a coverage criterion
must be cost-effective. ‘‘Software testing is an imperfect science
and there is no reason for coverage to be exact’’ as advocated in
[5]. Additionally, based on the present experiment and on the
above arguments, the proposed method will on average outper-
form the other path selection strategies. Consequently, the extent
of the effort (as measured by the number of generated paths per
mutant) to achieve the various levels of coverage for the sample
used, is likely to be the minimum possible that can be achieved.
The exponential behaviour of the effort has been shown to be in
direct relation with the number of infeasible paths. This would
only be alleviated if there existed a method that could avoid
and ignore the presence of infeasible paths. As such a method
does not exist, all methods considered will be subjected to expo-
nential effort, with perhaps the one adopted here which tries to
reduce the incidence of infeasible paths thus, diminishing the
effort involved.
6.2. Issues about weak, strong and higher order mutation

This paper considers the employment of weak mutation as a
testing criterion in order to produce high quality test cases. The
proposed approach relies on the foundations of path feasibility as
proposed by Yates and Malevris [14]. Generally, the path selection
strategy proposed here can be extrapolated to include other muta-
tion based testing criteria such as strong mutation or higher order
mutation. Although, such an approach should require more effort
due to the increased length and complexity of the selected paths,
this effort is substantial to the increased strengths of the higher or-
der and strong (first order) mutation. The question that it is dis-
cussed here is how can these approaches be tackled by possible
extensions of the proposed method?

Generally, in order to include strong mutation there is a need to
handle the sufficiency condition [21]. This is a very difficult task
[21] and could be achieved by generalising the considered condi-
tions, utilising the same template ‘‘ e ! = e0 ’’ for the data state vari-
ables that are influenced by the introduced mutant. Thus, by
requiring the various introduced branches to be true for every node
of the program execution path that is affected by the introduced
mutant can lead to its propagation (fulfil the sufficiency condition).
Finding such a feasible path will probably result in test cases that
could effectively kill the introduced mutants. A similar approach
has been proposed by Santelices et al. [53] in the context of regres-
sion testing for testing the introduced code changes. In their ap-
proach a set of paths is selected based on dependence analysis.
Santelices et al. [53] used partial symbolic execution on the se-
lected paths in order to identify probably feasible testing require-
ments that are capable of propagating the introduced program
changes. The same approach has also been proposed for handling
multiple changes in the code under test. This approach can be eas-
ily adopted in order to tackle the mutant killing problem for higher
order mutants.

930 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
6.3. The influence of infeasible paths on the required effort

Path analysis forms a well established method with many appli-
cations on all aspects of software engineering activities including
various forms such as testing, program analysis [48] and program
profiling [54]. All these activities are mainly influenced by the exis-
tence of infeasible paths. This should be obvious for all the meth-
ods that select a set of paths prior to their analysis, as the
probability of selecting an infeasible one is quite high. Specifically,
in our case where the aim is to kill a hard to kill mutant, the path
selection method must select many alternative paths that reach
the targeted mutant. Every such candidate path must be checked
for its feasibility which is a very costly activity. If that path is found
to be infeasible, the effort spent on checking the path’ feasibility is
wasted. Thus, it is natural to expect that the higher the number of
the encountered infeasible paths the higher the amount of the
wasted effort is. Based on the conducted experiment, when aiming
at killing the mutants of unit No. 1 with a maximum number of
tries being 1000 paths per live mutant, a number of 23,775 paths
were selected in total. From these paths, only nine where found
to be feasible thus, resulting in 23,766 useless checks for their
feasibility. Put it in another way, consider the required adopted
k-value for killing the targeted mutants. It must be recalled that
the k-value represents the maximum number of the selected paths
per live mutant. Thus, in our experiment one and only one ‘‘hard to
kill’’ mutant required 40,396 paths to be considered in order to be
killed. This mutant provides a good example that shows the impact
of the infeasible program paths on the test generation effort.

6.4. Scalability issues and limitations

The automatic generation of test cases constitutes one of the
most difficult problems encountered in the software testing activ-
ity. To address this problem many methods have been proposed by
the research community. The present paper considers a path based
approach. The main challenge faced in this area is the scalability of
these methods due to the encountered infeasible paths as dis-
cussed in Section 6.3. The presently proposed approach goes a step
forward by considering paths in a systematic way with the aim of
avoiding the infeasible ones (see Section 6.1 for a discussion on this
matter). Therefore, the proposed method establishes a clear advan-
tage against any other possible method that ignores the presence
of infeasible paths. Consequently, it should be anticipated that
adopting the proposed strategy will be more effective at selecting
feasible paths than its path selection alternatives. However,
scalability issues still remain and require further research. These
issues are attributed to the following two factors: the use of pure
static symbolic execution and the use of mutation testing.

Static symbolic execution has many limitations [48] such as the
handling of function calls, calls to external libraries, solving of com-
plex non-linear expressions etc which withhold its practical appli-
cation. However, emergent research in this area [55,13,49,48] give
answers to those problems making symbolic execution feasible
and scalable. Here, it must be mentioned that since the proposed
approach relies on path selection, it provides an independent to
the symbolic execution way of producing the sought test cases.
Generally, the efficient and effective determination of the feasibility
of the selected paths is independent to their selection. Thus, no
matter how the symbolic execution engine works the proposed ap-
proach guides the selection of paths for killing mutants. These paths
must definitely be explored in order to kill the aimed mutants.

Automatically, producing tests for mutation testing forms a dif-
ficult task [5]. Recall from Section 2.4.3 that mutation-based test
cases must adhere to the reachability, necessity and sufficiency
conditions. A significant amount of resources is needed by any test
generation method in order to jointly fulfil these conditions.
Further, the incidence of equivalent mutants (see Section 6.1 for
a discussion on this matter) considerably impacts the cost of such
a method. This problem can be tackled by using various mutation
testing alternatives [5,18] on the one hand and by using effective
test generation approaches as discussed above on the other.

The approach proposed in the present paper suggests the use of
program paths in order to effectively kill mutants. Although, it uses
symbolic execution in order to examine the feasibility of the se-
lected paths it bases its characteristics for alleviating the problem
of infeasibility on the selection of paths rather than their symbolic
evaluation, which might be performed in different ways. Therefore,
by providing an effective heuristic, such as the one proposed in this
paper, to deal with the undesirable effects caused by the incidence
of infeasible paths substantial benefits can be gained.

6.5. Threats to validity

The present paper focuses on effectively automating the test
case generation using a path selection strategy for mutation test-
ing. One possible threat to the validity of the obtained results is
due to the utilised mutants. Thus, the strategy’s effectiveness
may vary when considering other mutant operators. Although this
may hold, the utilised operators form the current practice in the
various experimental studies found in the literature. There are
many experimental studies concerning mutants’ effectiveness
and the majority adopts a similar to the present study, well estab-
lished set of operators [32,18] not only in theory but also in prac-
tice. Although such a set has not been widely used for weak
mutation, Offutt and Untch [5] suggest that it should be consid-
ered. Additionally, this set was formed as a result of an experimen-
tal study [32] in which test sets were derived with reference to the
Godzilla tool, which generates tests based on weak mutation. In
any case, the addition or even the elimination of some mutants
should not alter the overall approach employment pattern or effort
assessment, derived by the present study, as their presence will
only add or remove similar simple additional constraints. Further-
more, the underlying path selection method, makes use of a funda-
mental assertion detailed in Section 3, that takes into consideration
when choosing the paths (aiming at feasible ones), only the total
number of constraints contained in a path and not the nature of
those constraints. This can be regarded as the method’s ability to
generate effective results irrespective of the mutants considered.

Another possible threat is due to the generalisation of the uti-
lised sample. This is true for all the experimental studies. Therefore,
it cannot be claimed that the selected units represent a generalisa-
tion of the results produced in this study. Further, considering the
units’ size another issue also appears, that is the application on lar-
ger program units. However, the method does not use the special
features and specifications of the units, making its application
rather indifferent to the specifics of the units. Moreover, typical
program units are not of a considerably large size. Thus, the selec-
tion of another set of programs should not affect the application
of the proposed method. Nonetheless, consider Fig. 8 which is a his-
togram of depicting the proportion of feasible kth shortest paths for
the sample units. From the histogram it can be seen that as k in-
creases, the proportion of feasible paths tends to decrease, therefore
the proportion of infeasible ones increases reciprocally. This is in
accordance with the proposition made in Section 3, and the statis-
tical evidence provided in [14] that path feasibility tends to de-
crease with path predicate involvement. Under this assumption
then, the nature of Fig. 8 supports the belief that the sample used
in the experiment has a representative behaviour with the indepen-
dent sets used in the previous studies such as in [14]. These results
are also verified by Vergilio et al. [56] study. In their study the
authors repeated an experiment involving the number of predicates
and feasibility, and they concluded the same findings.

Fig. 8. Proportion of feasible kth shortest paths.

M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932 931
Finally, another possible threat to the validity of the present
experiment maybe based on the use of software systems. Thus,
possible bugs, program conversions and differences of the test sub-
jects from their language to the SymExLan one may have also af-
fected the obtained results.

Despite all the abovementioned issues, the main objective of
the present paper was to present the strategy’s feasibility and
applicability to a set of programs when performing mutation,
rather than comparing the effectiveness of the proposed approach
with various rival ones. In view of this, the proposed method, does
give an answer to the general problem of generating test data able
to kill mutants and it does so in an effective way. Further, the ob-
tained results also suggest practical guidelines for the production
of high quality test cases with reasonable resources by using prac-
tical heuristics for circumventing the equivalent mutants’ problem.

7. Conclusion

This paper addresses application issues of the weak mutation
testing method, and in particular, the extent of the effort that in
practice is entailed by employing it. To assess the effort involved,
an experiment with 30 unit programs was conducted that uses
an effective path selection strategy that alleviates in an a priori ba-
sis the unnecessary effort spent on infeasible paths. The sample of
the 30 units is formed from the ones used in previous studies such
as in [21,32,6,43]. The method employed in the present work, has
been proved to be effective in an attempt to diminish the effort in-
volved in mutation testing by avoiding the presence of infeasible
paths. This is achieved by transforming the mutation coverage
problem into a node coverage one by introducing the Enhanced
CFG. Covering all nodes in this graph is equivalent to covering all
inserted mutants. Based on this, all equivalent mutants signify
infeasible nodes in the Enhanced CFG. Thus, in view of the above,
path based methods can be utilised to support mutation testing.

As discussed in previous sections the presence of infeasible
paths and equivalent mutants, results in a waste of effort that
gradually dominates the entire process in terms of the total effort
spent. The results obtained by analysing the 30 units with the pro-
totype tool developed, showed a mostly acceptable level of muta-
tion coverage. For 6 of the 30 units their mutants were covered
completely, and a mean relative mutant coverage of 83.35% was
achieved by generating, on average, a quite modest number of
0.64 paths per mutant element. The respective actual mutant cov-
erage value achieved for the same effort investment was 60.62%.
Raising the coverage to an acceptable level of 94.52% for the rela-
tive mutant coverage was also possible with a reasonable amount
of additional effort. Thus a 68.74% and 94.52% of actual and relative
mutant coverages were obtained with a mean effort of approxi-
mately 19 paths per mutant element. Beyond that point the trade
off between the effort and coverage starts to become unprofitable.
Nevertheless, in general, the trade relation between coverage and
effort is exponential. For small k-values the rate of effort is almost
non exponential rising exponentially, after the k = 50 value. For 19
of the 30 units full mutant relative coverage was achieved and a
mean value of 97.32% attained, by generating a total of
452,869 paths which is translated to 100 paths per mutant ele-
ment. Full mutant relative coverage was accomplished by a mean
effort of 10,358 per mutant element. It is noted that the remaining
live mutants, which are treated as equivalent ones, may not in fact
be equivalent. This is an assumption made for the purposes of the
experiment as it is unlikely to kill any mutant beyond the thresh-
old of 50,000 paths. Past this point all mutants were treated as
equivalent. This raises the matter of infeasible paths as mutant
equivalence and path infeasibility are directly related. In any case,
the achievement of a mutant relative coverage at any stage and for
any k < 50,000, predefines the final actual mutant coverage attain-
able at the 50,000 point as the ratio MS(C, D)/MS�(C, D) at k. Evi-
dently, not having the precise measures of relative coverage the
results indicate that a very reasonable level of weak mutation cov-
erage can be achieved with quite an acceptable expenditure of ef-
fort. This fact attests to the effectiveness of the proposed method’s
ability to reduce the incidence of infeasible paths.

The empirical results presented here indicate the influence of
infeasible paths and of infeasible test elements, such as equivalent
mutants, in applying testing criteria in practice. For all these argu-
ments it is suggested, and this constitutes the major conclusion of
the present work, to generate up to 19 paths per mutant (achieved
for k = 50) as the additional paths beyond this value increase the
effort rate dramatically.
Acknowledgments

This research was funded by the Research Centre of the Athens
University of Economics and Business. The authors would like to
thank Dr. D. F. Yates for his valuable comments.

932 M. Papadakis, N. Malevris / Information and Software Technology 54 (2012) 915–932
References

[1] R.G. Hamlet, Testing programs with the aid of a compiler, IEEE Trans. Softw.
Eng. 3 (1977) 279–290.

[2] R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data selection: help for the
practicing programmer, Computer 11 (1978) 34–41.

[3] A.J. Offutt, J. Pan, K. Tewary, T. Zhang, An experimental evaluation of data flow
and mutation testing, Softw. Pract. Exper. 26 (1996) 165–176.

[4] N. Li, U. Praphamontripong, A.J. Offutt, An experimental comparison of four
unit test criteria: mutation, edge-pair, all-uses and prime path coverage, in:
Proceedings of the 4th International Workshop on Mutation Analysis
(MUTATION’09), Denver, Colorado, 2009, pp. 220–229.

[5] A.J. Offutt, R.H. Untch, Mutation 2000: uniting the orthogonal, in: Mutation
Testing for the New Century, Kluwer Academic Publishers, 2001, pp. 34–44.

[6] N. Malevris, D.F. Yates, The collateral coverage of data flow criteria when
branch testing, Inf. Softw. Technol. 48 (2006) 676–686.

[7] D.F. Yates, N. Malevris, An objective comparison of the cost effectiveness of
three testing methods, Inf. Softw. Technol. 49 (2007) 1045–1060.

[8] W.E. Howden, Weak mutation testing and completeness of test sets, IEEE
Trans. Softw. Eng. 8 (1982) 371–379.

[9] M.R. Woodward, M.A. Hennell, On the relationship between two control-flow
coverage criteria: all JJ-paths and MCDC, Inf. Softw. Technol. 48 (2006) 433–
440.

[10] R.S. Boyer, B. Elspas, K.N. Levitt, SELECT a formal system for testing and
debugging programs by symbolic execution, SIGPLAN Not. 10 (1975) 234–245.

[11] J.C. King, Symbolic execution and program testing, Commun. ACM 19 (1976)
385–394.

[12] P. McMinn, Search-based software test data generation: a survey, Softw. Test.
Verif. Reliab. 14 (2004) 105–156.

[13] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, T. Vos,
Symbolic search-based testing, in: 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2011, pp. 53–62.

[14] D. Yates, N. Malevris, Reducing the effects of infeasible paths in branch testing,
in: Proceedings of the ACM SIGSOFT ‘89 Third Symposium on Software Testing,
Analysis, and Verification, ACM, Key West, FL, USA, 1989, pp. 48–54.

[15] M. Papadakis, N. Malevris, An effective path selection strategy for mutation
testing, in: Proceedings of the 16th Asia–Pacific Software Engineering
Conference, IEEE Computer Society, 2009, pp. 422–429.

[16] Y. Jia, M. Harman, An Analysis and Survey of the Development of Mutation
Testing, Technical, Report, 2010.

[17] Y. Jia, M. Harman, Higher order mutation testing, Inf. Softw. Technol. 51 (2009)
1379–1393.

[18] Y. Jia, M. Harman, An analysis and survey of the development of mutation
testing, IEEE Trans. Softw. Eng. 99 (2010).

[19] A.J. Offutt, S.D. Lee, An empirical evaluation of weak mutation, IEEE Trans.
Softw. Eng. 20 (1994) 337–344.

[20] M.R. Woodward, K. Halewood, From weak to strong, dead or alive? An analysis
of some mutation testing issues, in: Proceedings of the Second Workshop on
Software Testing, Verification, and Analysis, 1988, pp. 152–158.

[21] R.A. DeMillo, A.J. Offutt, Constraint-based automatic test data generation, IEEE
Trans. Softw. Eng. 17 (1991) 900–910.

[22] H.N. Gabow, S.N. Maheshwari, L.J. Osterweil, On two problems in the
generation of program test paths, IEEE Trans. Softw. Eng. 2 (1976) 227–231.

[23] T.A. Budd, D. Angluin, Two notions of correctness and their relation to testing,
Acta Inform. 18 (1982) 31–45.

[24] A.J. Offutt, J. Pan, Automatically detecting equivalent mutants and infeasible
paths, Softw. Test. Verif. Reliab. 7 (1997) 165–192.

[25] R.M. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the
detection of equivalent mutants, Softw. Test. Verif. Reliab. 9 (1999) 233–262.

[26] M. Papadakis, N. Malevris, Automatically performing weak mutation with the
aid of symbolic execution, concolic testing and search-based testing, Softw.
Qual. J. 19 (2011) 691–723.

[27] G. Fraser, A. Zeller, Mutation-driven generation of unit tests and oracles, IEEE
Trans. Softw. Eng. (2011). 1–1.

[28] M. Harman, Y. Jia, W.B. Langdon, Strong higher order mutation-based test data
generation, in: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ACM, Szeged,
Hungary, 2011, pp. 212–222.

[29] M. Papadakis, N. Malevris, Automatic mutation test case generation via
dynamic symbolic execution, in: IEEE 21st International Symposium on
Software Reliability Engineering (ISSRE), 2010, pp. 121–130.

[30] Y.-S. Ma, J. Offutt, Y.R. Kwon, MuJava: an automated class mutation system,
Softw. Test. Verif. Reliab. 15 (2005) 97–133.

[31] K.N. King, A.J. Offutt, A Fortran language system for mutation-based software
testing, Softw. Pract. Exper. 21 (1991) 685–718.
[32] A.J. Offutt, A. Lee, G. Rothermel, R.H. Untch, C. Zapf, An experimental
determination of sufficient mutant operators, ACM Trans. Softw. Eng.
Methodol. 5 (1996) 99–118.

[33] R.H. Untch, A.J. Offutt, M.J. Harrold, Mutation analysis using mutant schemata,
in: Proceedings of the 1993 ACM SIGSOFT international symposium on
Software testing and analysis, ACM, Cambridge, MA, USA, 1993, pp. 139–148.

[34] R.A. DeMillo, E.W. Krauser, A.P. Mathur, Compiler-integrated program
mutation, in: Proceedings of the 5th Annual Computer Software and
Applications Conference (COMPSAC’91), Tokyo, Japan, 1991, pp. 351–356.

[35] A.J. Offutt, Z. Jin, J. Pan, The dynamic domain reduction procedure for test data
generation, Softw. Pract. Exper. 29 (1999) 167–193.

[36] K. Ayari, S. Bouktif, G. Antoniol, Automatic mutation test input data generation
via ant colony, in: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, ACM, London, England, 2007, pp. 1074–1081.

[37] M. Papadakis, N. Malevris, An empirical evaluation of the first and second
order mutation testing strategies, in: Third International Conference on
Software Testing, Verification, and Validation Workshops (ICSTW), 2010, pp.
90–99.

[38] E.J. Weyuker, More experience with data flow testing, IEEE Trans. Softw. Eng.
19 (1993) 912–919.

[39] D.F. Yates, M.A. Hennell, An approach to branch testing, in: 11th International
Workshop on Graph Theoretic Techniques in Computer Science, Wurtzburg,
1985.

[40] lp_solve, in. Available from: <http://sourceforge.net/projects/lpsolve/,
accessed 13/02/2012>.

[41] C. Koutsikas, N. Malevris, A new script language applicable to symbolic
execution systems, Int. J. Comput. Appl. 28 (2006) 1–11.

[42] C. Koutsikas, N. Malevris, A unified symbolic execution system, in: Proceedings
of the ACS/IEEE International Conference on Computer Systems and
Applications, IEEE Computer Society, 2001, pp. 466.

[43] M. Papadakis, N. Malevris, A symbolic execution tool based on the elimination
of infeasible paths, in: Proceedings of the 2010 Fifth International Conference
on Software Engineering Advances, IEEE Computer Society, 2010, pp. 435–440.

[44] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, Generating test data from state-
based specifications, Softw. Test. Verif. Reliab. 13 (2003) 25–53.

[45] M. Papadakis, Methods for Detecting Errors in Java Programs with the Use of
Mutation Testing Method, MSc thesis, Department of Informatics, Athens
University of Economics and Business, Athens, Greece, June 2005 (in Greek).

[46] R.A. DeMillo, D.S. Guindi, K.N. King, W.M. McCracken, A.J. Offutt, An extended
overview of the Mothra software testing environment, in: Proceedings of the
2nd Workshop on Software Testing, Verification, and Analysis (TVA’88), Banff
Alberta, Canada, 1988, pp. 142–151.

[47] S. Lapierre, E. Merlo, G. Savard, G. Antoniol, R. Fiutem, P. Tonella, Automatic
unit test data generation using mixed-integer linear programming and
execution trees, in: Proceedings of the IEEE International Conference on
Software Maintenance, IEEE Computer Society, 1999, pp. 189.

[48] C. Păsăreanu, W. Visser, A survey of new trends in symbolic execution for
software testing and analysis, Int. J. Softw. Tools Technol. Transfer (STTT) 11
(2009) 339–353.

[49] C. Cadar, P. Godefroid, S. Khurshid, C.S. Păsăreanu, K. Sen, N. Tillmann, W.
Visser, Symbolic execution for software testing in practice. preliminary
assessment, in: Proceeding of the 33rd International Conference on Software
Engineering, ACM, Waikiki, Honolulu, HI, USA, 2011, pp. 1066–1071.

[50] A. Kiezun, V. Ganesh, P.J. Guo, P. Hooimeijer, M.D. Ernst, HAMPI: a solver for
string constraints, in: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ACM, Chicago, IL, USA, 2009, pp. 105–116.

[51] N. Kosmatov, All-paths test generation for programs with internal aliases, in:
Proceedings of the 2008 19th International Symposium on Software Reliability
Engineering, IEEE Computer Society, 2008, pp. 147–156.

[52] S.C. Ntafos, S.L. Hakimi, On path cover problems in digraphs and applications
to program testing, IEEE Trans. Softw. Eng. SE-5 (1979) 520–529.

[53] R. Santelices, P.K. Chittimalli, T. Apiwattanapong, A. Orso, M.J. Harrold, Test-
suite augmentation for evolving software, in: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, IEEE
Computer Society, 2008, pp. 218–227.

[54] T. Ball, J.R. Larus, Efficient path profiling, in: Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, IEEE Computer
Society, Paris, France, 1996, pp. 46–57.

[55] C.S. Păsăreanu, N. Rungta, W. Visser, Symbolic execution with mixed concrete-
symbolic solving, in: Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ACM, Toronto, Ontario, Canada, 2011, pp. 34–
44.

[56] S.R. Vergilio, J.C. Maldonado, M. Jino, Infeasible paths in the context of data
flow based testing criteria: identification, classification and prediction, J. Braz.
Comp. Soc. 12 (2006) 71–86.

	Mutation based test case generation via a path selection strategy
	1 Introduction
	2 Background and related work
	2.1 Notation and terminology
	2.2 Testing based on selected paths
	2.3 Mutation testing criterion
	2.4 Generating test cases
	2.4.1 Symbolic execution
	2.4.2 The feasible path and equivalent mutant problem
	2.4.3 Selecting tests that kill mutants

	2.5 Practical problems posed by mutation
	2.6 Related work

	3 The method used
	3.1 The extended shortest path method
	3.2 Mutant representation and path selection
	3.3 Incremental selection of paths
	3.4 Handling infeasible requirements
	3.5 The criterion for selecting uncovered mutants

	4 A unified mutation testing system
	4.1 Overview
	4.2 Detailed description
	4.2.1 Parser
	4.2.2 Test models
	4.2.3 Mutant generator
	4.2.4 Path generation
	4.2.5 Symbolic executor
	4.2.6 Mutant execution

	5 Experimental regime
	5.1 Experimental results
	5.2 The effort required by the strategy

	6 Discussion of the results
	6.1 Effectiveness of the path generation method
	6.2 Issues about weak, strong and higher order mutation
	6.3 The influence of infeasible paths on the required effort
	6.4 Scalability issues and limitations
	6.5 Threats to validity

	7 Conclusion
	Acknowledgments
	References

