
Performance and Energy Modeling for Live
 Migration of Virtual Machines

Haikun Liu†‡, Cheng-Zhong Xu‡, Hai Jin†, Jiayu Gong‡, Xiaofei Liao†
†School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, 430074, China

{hjin, xfliao}@hust.edu.cn

‡Department of Electrical and Computer Engineering
Wayne State University
Detroit, MI, 48202, USA

{hkliu, czxu, jygong}@wayne.edu

ABSTRACT
Live migration of virtual machine (VM) provides a significant bene-
fit for virtual server mobility without disrupting service. It is widely
used for system management in virtualized data centers. However,
migration costs may vary significantly for different workloads due to
the variety of VM configurations and workload characteristics. To
take into account the migration overhead in migration decision-
making, we investigate design methodologies to quantitatively pre-
dict the migration performance and energy cost. We thoroughly
analyze the key parameters that affect the migration cost from theory
to practice. We construct two application-oblivious models for the
cost prediction by using learned knowledge about the workloads at
the hypervisor (also called VMM) level. This should be the first kind
of work to estimate VM live migration cost in terms of both per-
formance and energy in a quantitative approach. We evaluate the
models using five representative workloads on a Xen virtualized
environment. Experimental results show that the refined model
yields higher than 90% prediction accuracy in comparison with
measured cost. Model-guided decisions can significantly reduce the
migration cost by more than 72.9% at an energy saving of 73.6%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.4.8 [Op-
erating Systems]: Performance – Modeling and prediction

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Virtual Machine, Live Migration, Performance Model, Energy.

1. INTRODUCTION
Virtualization [8, 23] is a rapidly evolving technology that provides
a range of benefits to computing systems, such as improved resource
utilization and management, application isolation and portability,
and system reliability. Among these features, live migration is a core

function to replace running VMs seamlessly across distinct physical
hosts [10, 25]. It has become an extremely powerful tool for system
management in a variety of key scenarios, such as VM load balanc-
ing [33], fault tolerance [24], power management [26] and other
applications[20, 29].

VM live migration technology has attracted considerable interest
for data center management and cluster computing in recent years
[10, 18, 22, 25]. Representative works include XenMotion [10] and
Vmotion [25] which were implemented as build-in tools in their
virtualization platforms. There were also many other studies on the
migration strategy for a variety of application cases, concerning the
issues of where and when a VM should be migrated [14, 28, 31, 33].
However, few studies are available on the issue of which VM should
be the best candidate for cost-efficient migration. For example, for
the purpose of load balancing in a virtual cluster, all the VMs hosted
by an overloaded physical node would be potential candidates for
migration. However, different migration choices may lead to signifi-
cant differences in performance and energy consumption. Consider-
ing migration downtime, previous studies demonstrated that it could
vary significantly between different workloads, ranging from 60
milliseconds for a Quake 3 game server to 3.5 seconds in the case of
a diabolical workload MMuncher [10]. This is mostly due to the
diversity of VM configurations and workload characteristics. For
instance, the initial memory size of a VM and applications’ memory
access pattern are critical factors that have a decisive effect on the
migration latency, i.e. the total time a VM is undergoing perform-
ance penalty and high power state.

Power management is another increasingly important case for
live VM migration. A rationale behind is that light loaded VMs can
be consolidated into fewer physical hosts so that the offloaded
physical hosts can be decommissioned to save energy. Previous
studies demonstrated the effectiveness of this policy to achieve sig-
nificant power saving [13, 17]. However, the previous works mostly
focused on the schemes of VM placement with performance con-
strains [21, 31]. There was little work concerning about both the
performance and energy costs during the consolidation actions.

In this paper, we model the VM migration performance based on
theoretical analysis and empirical studies on Xen platform. In wired
network environments, we experimentally verify that the migration
energy consumption is proportional to the data volume of network
traffic due to VM migration. We design a detailed analytical model
to estimate the migration performance by scrutinizing Xen’s live
migration algorithm. We obtain some semantic knowledge about the
workloads at the VMM level and train the model parameters using
linear regression technology. The model reads the statistical data of
memory updating and other performance parameters collected on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0552-5/11/06...$10.00.

real workloads, and simulates the migration process to predict the
migration cost. The experimental results demonstrate that our mod-
els are able to predict the migration performance and energy with an
accuracy of more than 90% on five representative workloads. The
contributions of this paper are summarized as follows:

1) This is the first kind of work to quantitatively model VM
migration costs in terms of both performance and energy.
The models would facilitate the design of optimal migration
strategies.

2) We analyze the challenges of modeling the energy con-
sumption of a VM migration and construct an application-
oblivious high-level energy model with high prediction ac-
curacy.

3) We validate the models by conducting a large set of experi-
ments. The comprehensive evaluation results demonstrate
the effectiveness of model-guided live migration in both
performance and energy costs.

The remainder of the paper is organized as follows. Section 2
gives a brief introduction to our groundwork. Section 3 presents the
design of our two models for prediction of migration performance
and energy consumption. Section 4 describes the implementation
details of our prototype for model validation. Section 5 presents the
evaluation methodologies and experimental results. Section 6 dis-
cusses about the related work. Finally, we conclude our work in
Section 7.

2. LIVE VM MIGRATION
Live VM migration technologies have proven to be a very effective
tool to enable data center management in a non-disruptive manner.
Both Xen and VMware adopts pre-copying algorithm for VM live
migration in a memory-to-memory approach [10, 25], as shown in
Figure 2. In the approach, physical memory image is pushed across
network to the new destination while the source VM continues run-
ning. Pages dirtied during the migration must be iteratively re-sent to
ensure memory consistency. By iterative it means that pre-copying
occurs in several rounds and the data to be transmitted during a
round are the dirty pages generated in the previous round. The pre-
copying phase terminates 1) if the memory dirtying rate exceeds the
memory transmission rate; or 2) if the remaining dirty memory be-
comes smaller than a pre-defined threshold value; or 3) if the num-
ber of iterations exceeds a given value; or 4) the network traffic
exceeds a multiple of the VM memory size. After several rounds of
synchronization, a very short stop-and-copy phase is performed to
transmit the remaining dirty pages. As the data transferred is rela-
tively small, this mechanism results in a nearly negligible best-case
migration downtime.

We note that the performance of live VM migration is affected
by many factors. First of all, the size of VM memory has a main
effect on the total migration time and network traffic. Secondly, the
memory dirtying rate, which reflects the memory access pattern of
different applications, impacts the number of iteration rounds and

data transferred in each pre-copying round, and hence indirectly
affects the migration time and network traffic. Thirdly, the network
transmission rate together with the configuration of migration algo-
rithm is also crucial to migration performance. However, migration
performance varies significantly depending on the workload charac-
terization even when other conditions remain the same. For instance,
migration of a VM running memory-intensive applications would
lead to more performance degradation in terms of network traffic,
migration downtime and latency.

3. PERFORMANCE AND ENERGY MOD-
ELS
A primary goal of our models is to determine which VM should be
migrated within a server farm with minimum migration cost. This is
complementary to other issues like minimizing physical resource
consumption without compromising service level agreements (SLA)
[21, 31], and the issue of when a VM should be migrated and to
which host [33]. A key point for cost-aware migration decision is
how to accurately predict the performance and energy consumption
of each VM migration in a server farm.

3.1 Base Model of Migration Performance
Modeling the performance of migration involves several factors: the
size of VM memory, the workload characteristic (denotes the mem-
ory dirtying rate), network transmission rate, and the migration algo-
rithm (different configurations of migration algorithm means great
variations of migration performance). The most challenge is charac-
terizing the memory access pattern of each running workloads cor-
rectly.

In Table 1, we define a number of key parameters and their no-
tations for our performance and energy models. Live VM migration
achieves negligible application downtime by iteratively pre-copying
the pages dirtied at previous round of transmission. Assume the pre-
copying algorithm proceeds in n rounds. We denote the data volume
transmitted at each round as Vi (0≤i≤n), and the elapsed time at each
transferring round as Ti (0≤i≤n). V0 is equivalent to the VM memory
size Vmem. T0 represents the time consumed to transfer the data of
VM memory image and Ti is the time to transfer the dirty memory
generated during previous rounds. The data transmitted in round i
can be calculated as:

1

, if 0;

, otherwise.
mem

i
i

V i
V

D T 


  

 (1)

The elapsed time at each round can be calculated as:

Figure 1. Live migration algorithm performs pre-copying in
iterative rounds.

Table 1. Parameters for performance and energy models of
VM live migration.

Vmem Current size of VM memory during migration.

Vmig Total network traffic during migration.

Tmig Migration latency, i.e., total migration time.

Tdown Application downtime during migration.

R Memory transmission rate during migration.

D Memory dirtying rate during migration.

Vthd Threshold value of the remaining dirty memory that
should be transferred at the last iteration.

W Writable Working Set, it defined as a certain set of
“hot” pages that will be written frequently.

1
1

i
i mem

i i

D T V D
T

R R




 
  . (2)

At first, we consider the scenario that the memory dirtying rate
is smaller than the memory transmission rate on average. Let  de-
note the ratio of D to R:

/D R  . (3)

Combining equations (1), (2) and (3), we have the network traffic
during the round i:

1i imem
i mem

V
V D V

R
    . (4)

Then the total network traffic during the migration can be summed
up as:

1

0

1

1

nn

mig i mem
i

V V V








  

 . (5)

Combining equations (2) and (3), we have the migration latency:
1

0

1

1

nn
mem

mig i
i

V
T T

R






  

 


. (6)

Because Tmig is the duration of migration that has negative effect on
the performance of running applications, it is a key performance
metric for migration decision.

Now, we analyze the migration downtime caused in the whole
migration process. It is composed of two parts: the time the remain-
ing dirty pages are transferred during the stop-and-copy phase, de-
noted as Tn; and the other time that is spent on VM resuming at the
destination host, denoted as Tresume. The second part has little varia-
tion and can be represented as a constant; we set it to 20ms in our
experiments. Then the migration downtime can be represented as:

down n resumeT T T  . (7)

To evaluate the convergence rate of VM migration algorithm,
we can calculate the total rounds of the iteration by the inequality

n thdV V . It is the condition when the iterative pre-copying should

be terminated. From equation (4), it follows n
mem thdV V  . As a

result, the number of pre-copying iteration becomes:

log thd

mem

V
n

V

 
  
 

. (8)

For a given VM, the memory size Vmem and Vthd (determined by
migration algorithms) are fixed. Consequently, the iterative pre-
copying would converge faster if  is smaller. We therefore refer to
 as the convergence coefficient of live VM migration.

From the above analyses, we conclude that a VM with smaller
size of memory image and smaller  would generate less network
traffic and lead to shorter migration latency, hence should be a better
candidate for migration.

Second, we consider the scenario that the average memory dirty-
ing rate is even larger than the memory transmission rate. According
to equation (4), the data transferred in each pre-copying round Vi
would even exceed the VM memory size Vmem. This is not applicable
in our model. However, the migration algorithm implemented in
Xen is able to solve this issue by harnessing the statistical informa-
tion of dirty memory. It is known that every workload exhibits a set
of ‘hot’ pages which would be updated extremely frequently, so
called Writable Working Set (WWS) [10]. These pages are often
used for the stack and local variables of the running processes as

well as pages allocated for network and disk buffer. The hottest
pages would be dirtied as fast as the migration daemon can transfer
them, and hence should be skipped during the iterative pre-copying.
Their transfer is postponed till the final stop-and-copy phase. In
practice, the migration algorithm periodically peeks the current
round’s dirty bitmap and retains the pages that are dirtied in two
consecutive peeking periods. For most of workloads, we observed
that the size of WWS is approximately proportional to the pages
dirtied in each pre-copying round. That is

Wi = γ  Vi , (9)

where γ is the ratio correlating with the memory dirtying rate and the
duration of each iteration. We characterize this relationship in a
linear equation model:

1= iT D       , (10)

where  ,  and  are the model coefficients to be learned. Taking

multiple observations of the equation allows estimating the model
parameters using learning techniques such as linear regression. We
estimate the model coefficients by running DaCapo [9] benchmark,
which consists of a suit of Java applications. Some applications
generate non-trivial memory loads. We trained our model by execut-
ing the migration of each application one by one. The trained model
with these workloads should be able to embody the memory access
patterns of a large variety of applications.

During each migration, we track the amount of dirtied pages and
skipped pages in each round of pre-copying to calculate the value of
γ. With the elapsed time and memory dirtying rate of each pre-
copying round, we can build a set of independent equations based on
the experimental results. Finally we derive the value of each parame-
ter,

1= 0.0463 0.0001 0.3586iT D    , where Ti-1 is normalized

by second and D is normalized by MB/sec. There are a number of
approaches to evaluate how well the model fits the practice.
Amongst them, the coefficient of determination is a widely used
term, denoted as R-square statistic. The model is better as the R2 is
closer to 1. The R2 value of this model is 0.843.

Based on the above analysis, our migration performance model
can be shown in Algorithm 1. All input variables can be measured
from practical workloads. The size of VM memory Vmem can be
obtained from xenstore, which is an information storage space
shared between VMs and somewhat similar in spirit to procfs. The
Vthd and max_round are determined by the configuration of migra-
tion algorithm. The memory dirtying rate D can be measured before
the VM migration decision, and the value of memory transmission
rate R can be configured according to the observed value of D. The
detailed measurement of D and R is described in Section 4.

3.2 Refined Model of Migration Performance
The base model discussed in the preceding section achieves good
estimates when the observed memory dirtying rate holds steady.
However, in a data center, most of workloads are service-oriented
and heterogeneous. The memory access pattern of each application
may vary in response to the change of the service requests. In such
cases, cost estimation may cause more deviation if the model only
uses on-line sampled parameter values.

When a VM is in migration, the migration daemon will continu-
ously track the dirty pages to direct the memory pre-copying. More-
over, it also logs other statistical information such as data transmis-
sion rate, memory dirtying rate in each round of iteration. The data
represents a long-term application characteristic in the whole execu-
tion of migration. This means that we can employ the historical data

to refine our model when the VM needs to migrate again. We can
represent the average memory dirtying rate during a migration with
the weighted arithmetic mean of D in each round of pre-copying:

i i

i

D T
D

T


 


. (11)

Considering the scenario that a VM may migrate many times,
we use exponential weighted moving average (EWMA) to describe
the current memory dirtying rate. This is a popular method to esti-
mate a non-deterministic variable (such as RTT estimation in com-
puter networks [11]). Combining the statistical data counted from
the most recent migration and historical records, it becomes:

1

(1)mm mD D D  

 
   , (12)

where m represents the number of migration times in a VM’s lifecy-
cle, and  denotes the weight of observation value from most re-

cent migration, its value should be larger than 0.5 so that the synthe-
sized value should always represent the current workload character-
istic. Combining the historical logs with on-line sampled data, we
can calculate the refined value of D as following:

1

~
(1)m m mD S D  


   , (13)

where 0< <1, the default value is set as 0.5 and it can be self-tuned

according to the feedback of model errors. Sm denotes the current
sampled value of memory dirtying rate.

3.3 Energy Model of VM Migration
Energy has become a key concern in large scale systems such as
grid and cloud computing data centers due to their ever increasing
total operational cost and energy consumption [27]. In a data center
with hundreds and thousands of VMs, VM migration is a common-
place and the energy consumption due to migration should not be
overlooked. The following describes the model for an energy-
efficient migration decision.

3.3.1 Modeling Challenges
It is known that the power drawn by a physical server consists of a
static portion and a dynamic portion [15]. The static portion is the
stable power consumption even if the server is completely idle. The
dynamic portion is defined as the additional power consumed by the

physical resources when working on behalf of some VM or applica-
tions [19]. The power drawn by the migration procedure is a dy-
namic portion that involves several hardware components of the
server, such as CPU, memory and network interface card. In practice,
it is not applicable to measure the power consumption of each com-
ponent separately but only the full-system power.

Early works on power modeling were mostly under the assump-
tion of homogeneous applications. Power modeling methodologies
can be designed by profiling the resource utilization at hardware
layer [12]. In practice, applications residing in a VM are usually
heterogeneous and may show a large variety of physical resource
usage at different execution phases. In addition, VM migration is a
short lived procedure that would act on all kinds of workloads. Its
cost estimation should be modeled in an application-agnostic man-
ner. On the other hand, modeling power in an application-agnostic
manner tends to introduce significant errors for heterogeneous appli-
cations [16, 31]. Moreover, power model based on low-level re-
source utilization greatly depends on the power characteristic of
hardware. For example, different CPU design technologies and fre-
quencies would draw different amount of power and pose require-
ments for different power models. Creating a model for different
applications on different hardware platforms using an offline train-
ing method is practically infeasible, if not impossible. Another key
issue is that because our model is designed for online decision of
VM migration, energy cost of VM migration should be estimated
prior to migration decisions. These reasons pose significant chal-
lenges to model the energy consumption of VM migration.

3.3.2 Model Construction
The power drawn by VM migration is mainly determined by the
data transmission rate. As shown in Figure 2, the power consump-
tion due to VM migration at the source host increases as the data
transmission rate is increased. On the other hand, the migration la-
tency becomes shorter when the data transmission rate is higher. As
energy is defined as product of power consumption and time dura-
tion, how does the energy consumption vary with different data
transmission rates? Given a specific VM, Figure 3 shows that the
average energy consumption at different data transmission rates
leads to less than 6 percentile of variation. This observation implies
that the energy consumption due to migration is largely independent
of the data transmission rate in a wired network.

We note that VM migration is an I/O-intensive application and
the energy is mainly consumed by data transferring and receiving
over the networks. We conjecture that the energy cost due to VM
migration is only determined by the data volume of network traffic.
Based on this we design a high-level model to estimate the energy
cost of VM migration.

VM migration involves source host, network switch, and desti-
nation hosts. Because switching fabric may be very complex thus
the energy is hard to quantify, our model only considers the energy
drawn by each migration side. The data transmitted on source host
and the data received on destination host are equal, and we find very
little difference of energy consumption for data transmission and
receiving in a homogeneous platform. Hence in the following model,
the energy consumption is assumed to increase linearly with the
network traffic of VM migration:

() ()mig sour dest s d mig s dE E E V         , (14)

where
s ,

d ,
s ,

d are model parameters to be trained. We

note that for heterogeneous physical hosts, although equation (14) is
still applicable, the model parameters should be re-trained for each
of two different platforms. As current virtualization platforms in-

Algorithm 1: Performance Model of VM Migration

1. Input: Vmem, Vthd , D, R Output: Vmig, Tmig, Tdown
2. let V0 ←Vmem /*data transferred at first round*/
3. for i = 0 to max_round do
4. Ti ←Vi / R
5. γ ←a Ti + b D+c
6. Wi+1 ← γ Ti D
7. Vi+1 ←Ti D – Wi+1
8. if Vi+1 <=Vthd or Vi+1 > Vi then
9. Vi+1 ←Ti D /*data transferred at last round*/
10. Ti+1 ←Vi+1 / R
11. Tdown ← Ti+1 + Tresume
12. break
13. end if
14. end for

15.
max_

0

round

mig i
i

V V


 

16.
max_

0

round

mig i
i

T T


 

cluding Xen and VMware only support VMs migration between
homogeneous hosts, to simplify the problem, we train the energy
model in a homogeneous environment. Consequently, equation (14)
is reduced to:

mig sour dest migE E E V     , (15)

where network traffic Vmig is measured in Megabytes and energy
Emig is measured in Joules.

3.3.3 Model Parameters Training
We use linear regression with ordinary least squares estimation to
train the model parameters and  in equation (15). To generate a

sufficient number of samples resulting in linearly independent equa-
tions and spanning a large range of data traffic values, we conduct a
large number of experiments to migrate a VM with different sizes of
memory.

Vmig can be easily obtained from practical migrations in our
training experiments. To calculate the additional energy consump-
tion (denoted by Emig), we should obtain the increase of power due to
VM live migration. We first measure the static power of physical
hosts when the workloads residing in the VM reach a stable state. To
improve the accuracy of measurements, we need to avoid the fluc-
tuations when we meter the static power. The VM being migrated is
the only one running on the source host and the applications are
homogeneous. As shown in Figure 4, an idle Linux and “memtester”

[1] application show stable power consumption during their normal
execution. The measured values of static power are with less than 1
Watt difference and hence can be represented as a constant P0. Then
we measure the power drawn by the host when the VM is been mi-
grating, denoted by Pt. As the measured Pt is a discrete variable and
the sampling rate of our power meter is 1Hz, the dynamic power due
to VM migration can be calculated as follows:

0 00
1

() ()
mig

mig

T
T

mig t t
t

E P P dt P P
  



    . (16)

For each experiment, we record the data volume transmitted
during migration and calculate the energy consumption using equa-
tion (16). In Figure 5, we plot these (Emig, Vmig) pairs and the equa-
tion of our energy model learned by linear regression technique. We
derive the parameters  =0.512,  =20.165, and the R2 is as high as

0.993. Then our energy model for VM live migration in (15) be-
comes:

0.512 20.165mig migE V  . (17)

3.4 Model-Guided VM Migration Decision
In a server farm, there are massive VMs hosting various applications.
The VMs may exhibit different sizes and memory access patterns.
Their migration would incur a large difference of migration over-

0 5 10 15 20 25 30 35 40 45 50 55
180

190

200

210

220

230

240

250

260

270

280

290

 idle Linux
 memtester

migration latency

P
ow

er
(w

at
t)

Elapsed time(Sec)

migration latency

(a) Power drawn at source host

0 5 10 15 20 25 30 35 40 45 50 55
180

190

200

210

220

230

240

250

260

270

280

290

P
ow

er
 (

w
at

t)

Elapsed time (sec)

 idle Linux
 memtester

migration latency

(b) Power drawn at destination host

Figure 4. Power consumption at the source and target host
while migrating a VM with 1GB RAM.

0 10 20 30 40 50 60 70 80 90 100 110
185

190

195

200

205

210

215

220

225

migration
 power

Network transmission rate
P

ow
er

 (
w

a
tt

)

Elapsed time(sec)

 100Mb/s
 200Mb/s
 300Mb/s
 400Mb/s
 500Mb/s
 600Mb/s
 700Mb/s
 800Mb/s
 900Mb/s
 1000Mb/s

static
power

Figure 2. When an idle VM with 1GB memory is migrated at
incremental data transmission rate, the power consumption
progressively increases while the migration latency decreases.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10
Network transmission rate (×100Mbit/sec)

E
n

e
rg

y
co

n
su

m
p

tio
n

 (
Jo

u
le

)

Figure 3. Additional energy consumption due to migration of
an idle VM with 1GB memory (at the source host) under dif-
ferent data transmission rates.

head. In order to minimize the migration cost, we should make the
best migration decision. We propose a synthesized formula that
integrates all the migration cost metrics to direct the migration
choice.

C(VMi) = a Tdown+ b Tmig + c Vmig+ d Emig. (18)

where a+b+c+d=1, a, b, c and d are the weights of cost metrics
respectively. For numerical stability, it is preferable to normalize
each variable Tdown, Tmig, Vmig, Emig with respect to their maximum
values observed during migration. It means that we should scale up
or down the observed values to similar magnitudes.

4. IMPLEMENTATION
To demonstrate the validity of our models, we have designed and
implemented a prototype based on Xen 3.4 platform. The models are
also applicable for other virtualization platforms that use similar pre-
copying algorithm for live migration.

4.1 System Framework
The system framework of our models is shown in Figure 6. It also
includes a flow diagram of using these models for migration deci-
sion. When some VMs need to be migrated for the reason of load
balancing or server consolidation, we should choose the best candi-
dates to minimize the migration cost. For this purpose, we first take
a peek at current memory access pattern of each running VM. Com-
bining with the historical data, we can estimate the memory dirtying
rate of each workload, and then the memory transmission data can
be configured to adapt to the memory dirtying rate. After all the
input variables in our model are ready, we can use the performance
and energy prediction models to estimate the migration cost. Finally,
we can choose the best candidate for migration by sorting the syn-
thetic migration cost. After the VM migration is finished, the on-line
profile data during migration are counted to update the historical
statistical data for next time of migration.

4.2 Memory Dirtying Rate Measurement
Xen provides the ability to track memory accesses of guest domains
(i.e., VMs) using a mechanism called shadow page tables. The
shadow page tables are maintained by the hypervisor and translated
from guest page tables on demand. In memory log-dirty model, all
VM memory pages are transparently marked as read only. Guest
pages are protected to trap the guest updating to their internal ver-

sions of page tables, allowing the hypervisor to track the updates and
propagate them to the external shadow versions as appropriate. In
this way, the hypervisor is able to trap all memory updates within a
VM, and maintains a bitmap to mark the dirty pages.

To track the memory access pattern of different workloads, we
employed Xen’s shadow paging mode to track dirtying statistics on
all pages used by a running VM. As VM live migration also works
in shadow paging model, we can measure a VM’s memory dirtying
rate incidentally before the pre-migration phase. As shown in Figure
7, when shadow paging model is enabled, all guest page table entries
mapping in shadow page tables are write-access protected, and any
page updating would trigger a page fault and is trapped by Xen. If
write access is permitted by the relevant guest page table entry
(PTE), this permission is extended to the shadow PTE. At the same
time, the appropriate bit in the dirty page bitmap is set to 1. In a very
short observation window, we peek at the dirty page bitmap and
count the dirty pages to calculate memory dirtying rate. The per-
formance cost is mainly due to two hypercalls (interfaces provided
by the hypervisor) with respect to cleaning and peeking at the dirty
page bitmap. The processing is transparent to the application’s exe-
cution and the overhead is in the order of milliseconds.

4.3 Adaptive Data Transmission Rate
In general, we should ensure that the migration would not disrupt
other online services that reside in the same host due to resource
contention (e.g., CPU and network bandwidth). To mitigate the per-
formance degradation, we should limit the network bandwidth re-
served for the migration daemon.

It is known that the VM memory is transferred in batches of
fixed pages. This facilitates the control of migration throughput
based on a budget constrained controller. Given a specific data
transmission rate, an adequate time slice is pre-allocated for each
batch of data sending. The duration is calculated according to an
empirically pre-defined converter between network transmission rate
and time. A higher data transmission rate corresponds to a shorter
time slice. The budget, representing the number of pages need to
send in each batch, is a specific value. During the period of a burst
of data sending, the budget is continuously consumed until it is used
up, and then the migration daemon will do nothing in the remaining
time slice. In this way, the observed network throughput can be
limited to the target with less than 5% deviation. As most of applica-
tions exhibit a dynamic memory dirtying rate, the memory transmis-
sion rate should be dynamically adjusted according to the observed

Figure 5. Training the energy model of VM live migration
using linear regression.

Figure 6. Block diagram of system framework.

memory dirtying rate in each round of pre-copying. Among a pre-
defined minimum and maximum bandwidth limit, the data transmis-
sion rate for each round is determined by adding a constant incre-
ment to the previous round’s memory dirtying rate. That means

R D   , (18)

where  is a constant variable and its default value is empirically
set as 100Mb/s.

5. EVALUATIONS
In this section, we first introduce the experimental environment.
Then we validate the models by comparing the model estimated
values with measured ones in terms of the following metrics:

1) Migration latency: the duration from the time VM migration
is initiated to the time the migrated VM gets a consistent
state with the original one.

2) Migration downtime: the duration when the services resid-
ing in the migrating VM are entirely unavailable, neither at
the source side nor at the target side.

3) Total network traffic: the total data volume that need to
transmit during the migration processing.

4) Energy consumption for migration: the additional energy
cost due to the VM live migration.

5.1 Experiment Setup
We conducted all experiments on Dell PowerEdge1950 servers with
two Intel quad-core Xeon E5450 3GHz processors, 8GB memory,
one 250GB SATA hard disk, and 1Gbit Ethernet interface. We used
WattsUp Pro [2] to measure the power consumption. The power
meter has an accuracy of ±1.5% of the measured RMS (root-mean-
square) power with sampling rate of 1Hz. The host machines were
running Red Hat 4.1.2 distribution and the hypervisor was Xen 3.4.1
with Linux 2.6.18.8-Xen kernel. The guest OSes were also running
Red Hat 4.1.2 with Linux 2.6.18.8 kernel. For migration, all the VM
image files could be accessed with NFS. In order to simplify the
problem, all VMs were configured to use 4 VCPUs and 1GB RAM.
In this way we do not need to consider the parameter of VM mem-
ory size Vmem. To reserve bandwidth for other applications, we lim-
ited the network transmission rate for VM migration within a range
from 400Mbit/sec to 800Mbit/sec.

In each experiment a VM was migrated for ten times between
two physical hosts. The results reported are the average of the ten
trials. The experiments used five workloads, representative of typi-
cal server applications in today’s data centers:

1) Linux idle: an idle Linux OS for daily use. This workload is
used as a frame of reference for comparison.

2) TPC-C [3]: it is an on-line transaction processing (OLTP)
benchmark. TPC-C simulates a complete environment where a
population of terminal operators executes transactions against a
database. We configure 1000 terminals threads and 500 database
connections in our experiments.

3) Dbench [4]: it is an open source benchmark emulating the file
system load. This benchmark can simulate a variety of real file serv-
ers (such as proxy-server, mail-server, Web-server) by executing
create/write/read/delete operations on a large number of directories
and files with different sizes. We configure 10 simultaneous connec-
tions to generate reasonable disk load.

4) LINPACK [5]: we use the Intel optimized MP LINPACK
benchmark to perform massive vector and matrix operations, which
produces severe CPU and memory pressure.

5) SPECweb2005 [6]: it is a complex application-level bench-
mark for evaluating web servers. The workload is a complex mix of
dynamic page requests. We use two client machines to generate the
load for the web server. Each client is configured with 800 concur-
rent connections.

5.2 Dirty Memory Measurement
The shadow model of Xen allows us to track the set of pages to be
dirty within any time windows. We conducted a set of experiments
to measure the memory dirtying rate for a variety of workloads
within 60 seconds. In each case we started the relevant application in
a virtual machine, read the dirty bitmap and then cleaned it every
half second. We chose a 0.5 second window to measure the memory
dirtying rate because most of workloads consume approximate half
second during each pre-copying rounds. Figure 8 plots the number
of dirty pages generated by each of the representative workloads in a
VM with 1GB RAM. The x-axis shows elapsed time and the y-axis
measures the number of 4KB pages of memory dirtied within the
corresponding 0.5 second interval. From these curves we can see
that the observed memory dirtying rate varies significantly between
different applications. For workloads such as TPC-C and idle Linux,
the memory dirtying rate retains at relative low level and hence are
the excellent candidate for migration. In contrast, Linpack and
SPECweb2005 have a consistently high dirtying rate and would be
problematic to migrate.

The memory dirtying rate can be measured from another aspect
as well. In this case, we started the relevant application in a VM and
peeked the dirty bitmap every 50ms in a 60 seconds window. Unlike
the experiments aforementioned, we did not clean the dirty bitmap
after we had a peek at it. This allows us to observe the writable
working set in a relative long time window (60s) but estimate it at a
finer granularity. Figure 9 plots the number of dirty pages generated
by the representative workloads. The slope of each line joining the
origin and the point on each curve represents the memory dirtying
rate. We can see that most of the applications exhibited a higher
memory dirtying rate at the beginning of measurement. With the
increase of the observation window size, the memory dirtying rate
drops in all applications. This is because all the applications have a
set of ‘hot’ pages that tend to be written many times, while the rele-
vant dirty bitmap does not record the number of updating for each
page. However, it implies that we can measure the WWS when the
slope of a curve at a particular point does not change. For example,
the WWS of workloads Dbench and SPECweb become stable only
after 20~30 times sampling, while TPC-C shows a relatively long-
term of increasing WWS before the 400th sampling. This means
most of dirty pages of OLTP benchmark are generated by allocating
new memory pages for upcoming connections and only a few pages
would be repetitively updated. For Dbench, although a set of pages

Figure 7. Dirty memory pages tracking of Xen VMM.

is intensively updated, it maintains a relative smaller dirty memory
footprint than TPC-C. As Linpack is a both CPU and memory inten-
sive workload, it shows a quite large WWS and very high memory
dirtying rate, thus should be evicted from the migration candidates.

5.3 Model Accuracy Validation
We conducted a set of experiments to validate the effectiveness of
our models. For each metrics, we compared the experimentally
measured values with the estimates using the base model (BM) and
the refined model (RM), and showed the prediction errors of BM
and RM respectively.

Figure 10 shows migration latency of the representative work-
loads and the prediction error of our model. The leftmost bar of each
set of data displays the measured value of migration latency, the
other two bars show the migration latency estimated by our base
model and refined model. The line plots illustrate the estimation
errors of the two models respectively. Our refined model only has
less than 7% estimation errors. This means our model can achieve
satisfying accuracy for practical use. From the experimental results,
we can find that the migration latency of Linpack and SPECweb
show a higher standard deviation than an idle Linux, Dbench and
TPC-C, because the observed memory dirtying rate of the two work-

loads exhibits more widespread dispersion of data from its mean, as
shown in Figure 8. It is the same reason why the estimation errors
for Linpack and SPECweb are higher than the other workloads. The
refined model have taken into account the historical statistical data
of migration trace, the synthetic value of memory dirtying rate is
expected to be more accurate than the online observed value, so the
refined model shows much less estimation errors than the base mod-
el.

Migration downtime is a key performance metric that would be
the most concern in some scenarios such as high availability applica-
tions. Our model also provides a quantitative estimation on this met-
ric. Migration downtime is mostly correlated with the data volume
of dirty memory that should be transferred in the stop-and-copy
phase. As shown in Figure 11, Linpack and SPECweb exhibit much
longer migration downtime than the other workloads because of
their high memory dirtying rate. An idle Linux and TPC-C displays
even more estimation errors than Linpack and SPECweb because
even small absolute deviation can lead to a large relative error.
However, the errors of these applications that show very short mi-
gration downtime would not interfere our migration decision. They
are always the best candidates for cost-efficient migration.

Figure 12 shows the network traffic of VM migration for the
representative workloads and the corresponding estimation errors.
For an idle Linux and TPC-C, most of the network traffic is the 1GB
VM memory image, and the remaining portion refers to the small

0

10

20

30

40

50

60

70

80

Linux idle Dbench TPC-C Linpack SPECweb2005

A
ve

ra
g

e
 m

ig
ra

tio
n

 la
te

n
cy

 (
se

cs
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
g

e
 e

rr
o

r
o

f e
st

im
a

tio
n

Measured

Base Model(BM)

Refined Model(RM)

Error of BM

Error of RM

Figure 10. Model errors on migration latency estimation.

2523

914

124

1200

3330

1104

104

1028

3127

113

1017
1099

0

200

400

600

800

1000

1200

1400

1600

Linux idle Dbench TPC-C Linpack SPECweb2005

A
ve

ra
g

e
 m

ig
ra

tio
n

 d
o

w
n

tim
e

 (
m

s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
g

e
 e

rr
o

r
o

f e
st

im
a

tio
n

Measured

Base Model(BM)

Refined Model(RM)

Error of BM

Error of RM

Figure 11. Model errors on migration downtime estimation.

0 10 20 30 40 50 60 70 80 90 100 110 120

0

10000

20000

30000

40000

50000

60000

Memory Dirty Rate Measurement
D

ir
ty

 p
ag

es
(4

K
B

/p
ag

e)

Elapsed time (0.5 sec)

 Linux idle
 TPC-C
 Dbench
 Linpack
 SPECWeb2005

Figure 8. Rate of pages dirtied in each half second for different
workloads in a VM with 1GB RAM.

0 200 400 600 800 1000 1200

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

D
ir

ty
 p

ag
es

(4
K

B
/p

ag
e

)

Sampling interval (x50ms)

 Linux idle
 TPC-C
 Dbench
 Linpack
 SPECWeb2005

Tracking the Writable Working Set

Figure 9. Writeable working set measurement for different
workloads in a VM with 1GB RAM.

amount of dirty pages that are iteratively transferred during the pre-
copying. That is why these workloads with slow memory dirtying
rate show relative low estimation errors. Although TPC-C finally
exhibits an even larger WWS than Dbench after a continuous in-
crease (as shown in Figure 9), its slower memory dirtying rate leads
to smaller total network traffic than Dbench. In contract, Linpack
shows both larger WWS and higher memory dirtying rate than
SPECweb, however the total network traffic of Linpack is even
smaller than SPECweb. It seems to be incorrect by intuition. We
track all the iterative pre-copying rounds of VM migration for the
two workloads, and find that Linpack exhibits a much larger set of
‘hot’ pages than SPECweb. The migration algorithm does not trans-
fer these frequently updated pages, so that Linpack has even less
data transferred during each round of pre-copying than SPECweb.
Our model can correctly simulate such condition and the below 10%
estimation errors verified our model’s effectiveness.

We verify the energy model in Figure 13. We use the data of
network traffic estimated by our refined model as the input of energy
model. The right column of each set of data shows the estimated
energy cost of each VM migration. Compared to experimental
measured energy, the model errors is as low as 10%. From Figure 12
and Figure 13, we can find that the energy cost is approximately
linear with the network traffic. This validates the correctness of our
linear energy model.

5.4 Model-guided Migration Cost
We now show how our models are useful for migration decision
making. In this experiment, we run 8 VMs on the source host, the
benchmark Dbench, TPC-C, Linpack, and SPECweb2005 are run-
ning on two VMs respectively. Each VM is configured to use 1
VCPU and 800MB RAM. The destination host is initially set to be
idle. We compare the decision making scheme using our models
with random selecting method. Each scheme is tested for 20 times,
and then the total cost is summed up for each migration metric. We
show the effect of using our models for migration decision in Figure
14. We can find that the migration cost can be significantly reduced
with the guide of our models. The migration latency, migration
downtime, network traffic and energy consumption are reduced by
72.9%, 93.5%, 74.5% and 73.6% respectively. The ground truth is
that for random selecting of VMs, we perform the migration of a
VM running Dbench, TPC-C, Linpack, and SPECweb2005 for 4, 5,
5 and 6 times respectively. However, guided by our model, we al-
ways choose a VM running TPC-C for migration, which is the best
candidate with minimum migration cost.

6. RELATED WORKS
The performance of live VM migration had been studied on a vari-
ety of workloads in [10]. This technique had proven to be a very
effective tool to enable service relocation in a non-disruptive man-
ner. William et al. [32] evaluated the performance degradation of
Web2.0 applications running inside VMs while they were being
migrated. The main objective they concerned is the service level
agreement (SLA) violation rather than the migration performance.
None of these works provided a methodology to estimate the VM
migration performance.

pMapper is a framework that investigate the VM placement al-
gorithms in a virtualized sever cluster [31]. The expected perform-
ance benefit as well as migration cost were considered while deter-
mining a VM’s placement in physical servers. However, the migra-
tion cost was quantified by estimating the decrease of application
throughput or SLA violation. This black-box model can only be
used in an offline manner and can’t predict the migration cost for a
workload-agnostic VM.

Sandpiper proposed both gray-box and black-box approaches to
automatically mitigate hotspots in a virtualized cluster by employing
the facility of VM live migration [33]. Sandpiper implemented a
hotspot detection algorithm that determines when to migrate VMs,
and a hotspot mitigation scheme that uses a greedy algorithm to
determine what and where to migrate and how much resource to
allocate after the migration. Tarighi et al. presented a scheduling
algorithm for VM migration based on fuzzy decision making [30].
They employed TOPSIS (Technique for Order Preference by Simi-
larity to Ideal Solution) algorithm to find the most loaded servers
and make more effective migration decision when the decision mak-
ing condition is vague or uncertain. All the two approaches concen-
trated on VM placement strategies, the migration cost isn’t their
concern. Our work provides another criterion for migration decision
from the prospective of migration performance and energy cost.

PADD presented a scheme of VM consolidation to save energy
in a virtualized environment [21]. The scheme saved power by dy-
namically migrating virtual machines and packing them onto fewer
physical machines. It focused on the VM placement algorithm to
minimize total energy while avoiding SLA violation. However, the
performance penalty and energy consumption during migration
actions were not considered. Our models can be a beneficial com-
plement for the migration decision making.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Linux idle Dbench TPC-C Linpack SPECweb2005

A
ve

ra
g

e
N

et
w

o
rk

 tr
a

ffi
c

(M
B

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
ge

 e
rr

or
 o

f e
st

im
a

tio
n

Measured

Base Model(BM)

Refined Model(RM)

Error of BM

Error of RM

Figure 12. Model errors on network traffic estimation.

0

300

600

900

1200

1500

1800

2100

2400

Linux idle Dbench TPC-C Linpack SPECweb2005

A
ve

ra
g

e
 m

ig
ra

tio
n

 e
n

e
rg

y(
Jo

u
le

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
ve

ra
g

e
 e

rr
o

r
o

f e
st

im
a

tio
n

Measured

Estimated

Error

Figure 13. Model errors on migration energy estimation.

Sherif et al. designed a simulator based on Xen’s migration al-
gorithm to characterize the downtime and total migration time [7].
However, their simulation model relies on dynamic information like
hotspot sizes collected in pre-copying iterations, it is hard to use for
a prior migration decision before the migration begins. In contrast,
our model makes no such assumptions and would facilitate online
migration decisions. Moreover, our models provide estimates of
more than downtime and migration latency, traffic volume and en-
ergy consumption due to migration were considered as well. We
also exploit the statistical data from historical migration trace and
adaptive network bandwidth limitation to enhance the practicability
and effectiveness of our models.

7. CONCLUSION
In this paper, we designed two models to estimate VM migration
performance. Our theoretical analysis and experimental results
showed that the parameters such as VM memory size, network
speed and memory dirtying rate are the major factors impacting
migration performance in terms of migration downtime, migration
latency and network traffic. Based on the performance model, we
design a high-level linear model to estimate the migration energy.
We validated the models by comparing the estimates with experi-
mentally measured results. The experimental results showed that the
prediction accuracy is higher than 90% in terms of both performance
and energy metrics. The case study verified that our models could
significantly reduce the migration cost by more than 72.9%.

We note that our performance and energy models for live migra-
tion would facilitate data center administrators to explore myriad of
choices for optimal migration decision making. In addition, the
models should also be able to introspectively guide the design of
migration algorithm for different tradeoffs amongst the performance
metrics. It will be investigated in our future work.

8. ACKNOWLEDGMENTS
This work is supported by National 973 Basic Research Program of
China under grant No. 2007CB310900, the MoE-Intel Information
Technology Special Research Foundation under grant No. MOE-
INTEL-10-05, and U.S. NSF under grants CRI-0708232, CNS-
0702488, CNS-0914330, CCF-1016966.

REFERENCES
[1] http://pyropus.ca/software/memtester/

[2] Electronic educational devices inc., “watts up pro power meter”,
http://www.wattsupmeters.com

[3] http://www.tpc.org/tpcc.

[4] http://samba.org/ftp/tridge/dbench.

[5] http://www.netlib.org/linpack.

[6] http://www.spec.org/web2005.

[7] S. Akoush, R. Sohan, A. Rice, A. W. Moore, A. Hopper. Pre-
dicting the Performance of Virtual Machine Migration. In The
18th Annual IEEE/ACM International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS’10), Miami, Florida, USA, August
17-19, 2010, pp.37-46.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the nineteenth ACM sympo-
sium on Operating Systems Principles (SOSP’03), Lake
George, New York, USA, October 19-22, 2003, pp.164-177.

[9] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.
Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovi´c, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In Proceed-
ings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA’06), Portland, OR, USA, October 22-26, 2006

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live Migration of Virtual Machines.
In Proceedings of Second Symposium Networked Systems De-
sign and Implementation (NSDI’05), May 2-4, 2005, pp. 273-
286

[11] D. Comer, Internetworking with TCP/IP. Page 226. Upper
Saddle River, N.J.: Prentice Hall, 2000. Print.

[12] J. Choi, S. Govindan, B. Urgaonkar and A. Sivasubramaniam.
Profiling, Prediction, and Capping of Power Consumption in
Consolidated Environments. In Proceedings of IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS’08),
Baltimore, MD. USA, Sept 8-10, 2008, pp.1-10.

[13] M. Cardosa, M. R. Korupolu and A. Singh. Shares and Utilities
Based Power Consolidation in Virtualized Server Environ-
ments. In Proceedings of the 11th IFIP/IEEE international con-
ference on Symposium on Integrated Network Management
(IM’09), New York, NY, USA, June 1-5, 2009, pp. 327-334.

[14] S. Fu and C-Z. Xu, “Stochastic Modeling and Analysis of Hy-
brid Mobility in Reconfigurable Distributed Virtual Machines”,
Journal of Parallel and Distributed Computing, Vol. 66, No.
11, November 2006, pp.1442-1454.

[15] J. Gong and C-Z. Xu. A Gray-box Feedback Control Approach
for System-Level Peak Power Management. In Proceedings of
39th International Conference on Parallel Processing
(ICPP’10), San Diego, CA, USA, September 13-16, 2010,
pp.555-564.

[16] J. Gong and C-Z. Xu. vPnP: Automated Coordination of Power
and Performance in Virtualized Datacenters. In The IEEE In-
ternational Workshop on Quality of Service (IWQoS’10), Bei-
jing, China, June 16-18, 2010, pp.1-9.

[17] L. Hu, H. Jin, X. Liao, X. Xiong and H. Liu. Magnet: A Novel
Scheduling Policy for Power Reduction in Cluster with Virtual

0

0.2

0.4

0.6

0.8

1

1.2

Migration
latency

Migration
downtime

Network
traffic

Migration
energy

N
o
r
m
a
l
i
ze

d

v
a
l
u
e

Random selecting
Decision using models

Figure 14. Migration cost saving by using our models

Machines. In Proceeding of 2008 IEEE International Confer-
ence on Cluster Computing (Cluster‘08), September 29- Octo-
ber 1 2008, Tsukuba, Japan, pp.13-22.

[18] M. Hines and K. Gopalan. Post-Copy Based Live Virtual Ma-
chine Migration Using Adaptive Pre-Paging And Dynamic
Self-Ballooning. In International Conference on Virtual Execu-
tion Environments (VEE’09), Washington DC, USA, March
11-13, 2009, pp.51-60.

[19] B. Krishnan, H. Amur, A. Gavrilovska, K. Schwan. VM Power
Metering: Feasibility and Challenges. In The Second Green
Metrics Workshop, in conjunction with SIGMETRICS'10, New
York, NY, USA, June 14, 2010.

[20] A. Kangarlou, P. Eugster, D. Xu. VNsnap: Taking Snapshots of
Virtual Networked Environments with Minimal Downtime. In
Proceedings of IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’09), Estoril, Portugal,
June 29- July 2, 2009, pp.524-533.

[21] M. Y. Lim, F. Rawson, T. Bletsch, and V. W. Freeh. PADD:
Power Aware Domain Distribution. In Proceedings of the 29th
IEEE International Conference on Distributed Computing Sys-
tems (ICDCS’09), Montreal, Quebec, Canada, June 22-26,
2009, pp.239-247.

[22] H. Liu, H. Jin, X. Liao, L. Hu and C. Yu. Live Migration of
Virtual Machine Based on Full System Trace and Replay. In
Proceedings of the 18th International Symposium on High Per-
formance Distributed Computing (HPDC'09), June 11-13,
2009, Munich, Germany, pp.101-110.

[23] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P.
Bridges, A. Gocke, S. Jaconette, M. Levenhagen and R.
Brightwell. Palacios and Kitten: New High Performance Oper-
ating Systems for Scalable Virtualized and Native Supercom-
puting. In Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’10), Atlanta,
Georgia, USA, April 19-23, 2010, pp.1-12.

[24] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive Fault Tolerance for HPC with Xen Virtualization. In
Proceedings of ACM Annual International Conference on Su-
percomputing (ICS’07), Seattle, Washington, USA, June 17-21,
2007, pp. 23-32.

[25] M. Nelson, B. H. Lim, and G. Hutchins. Fast Transparent Mi-
gration for Virtual Machines. In Proceedings of USENIX An-

nual Technical Conference (USENIX’05), Anaheim, California,
USA, April 10-15, 2005, pp.391-394.

[26] R. Nathuji and K. Schwan. Virtual Power: Coordinated Power
Management in Virtualized Enterprise Systems. In Proceedings
of ACM Symposium on Operating Systems Principles
(SOSP’07), Stevenson, WA, USA, October 14-17, 2007.

[27] I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar and F. Guim.
Towards Energy-aware Autonomic Provisioning for Virtual-
ized Environments. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Comput-
ing (HPDC’10), Chicago, Illinois, USA, June 20-25, 2010, pp.
320-323.

[28] K. Sato, H. Sato, S. Matsuoka. Model-based Optimization for
Data-intensive Application on Virtual Cluster. In The 9th
IEEE/ACM International Conference on Grid Computing
(Grid’08), Tsukuba, Japan, pp.367-368

[29] B. Sotomayor, K. Keahey and I. Foster. Combining Batch
Execution and Leasing Using Virtual Machines. In
Proceedings of the Eighteenth International Symposium on
High Performance Distributed Computing (HPDC’08), June
23–27, 2008, Boston, MA, USA, pp.87-96.

[30] M. Tarighi, S. A. Motamedi and S. Sharifian. “A New Model
for Virtual Machine Migration in Virtualized Cluster Server
Based on Fuzzy Decision Making”, Journal of Telecommuni-
cations, Vol.1, No.1, February 2010, pp.40-51.

[31] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and Mi-
gration Cost Aware Application Placement in Virtualized Sys-
tems. In Proceedings of the 9th ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Middleware’08), Springer-
Verlag, Leuven, Belgium, December 1-5, 2008, pp.243-264.

[32] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost
of Virtual Machine Live Migration in Clouds: A Performance
Evaluation. In Proceedings of the 1st International Conference
on Cloud Computing, Lecture Notes In Computer Science, Bei-
jing, China, December, 2009, pp.254-265.

[33] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif. Black-
box and Gray-box Strategies for Virtual Machine Migration. In
Proceedings of 4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’07), Cambridge, MA, USA,
April 11-13, 2007, pp. 229-242.

