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ABSTRACT 
Live migration of virtual machine (VM) provides a significant bene-
fit for virtual server mobility without disrupting service. It is widely 
used for system management in virtualized data centers. However, 
migration costs may vary significantly for different workloads due to 
the variety of VM configurations and workload characteristics. To 
take into account the migration overhead in migration decision-
making, we investigate design methodologies to quantitatively pre-
dict the migration performance and energy cost. We thoroughly 
analyze the key parameters that affect the migration cost from theory 
to practice. We construct two application-oblivious models for the 
cost prediction by using learned knowledge about the workloads at 
the hypervisor (also called VMM) level. This should be the first kind 
of work to estimate VM live migration cost in terms of both per-
formance and energy in a quantitative approach. We evaluate the 
models using five representative workloads on a Xen virtualized 
environment. Experimental results show that the refined model 
yields higher than 90% prediction accuracy in comparison with 
measured cost. Model-guided decisions can significantly reduce the 
migration cost by more than 72.9% at an energy saving of 73.6%.  

Categories and Subject Descriptors 
C.4 [Performance of Systems]:  Modeling techniques; D.4.8 [Op-
erating Systems]: Performance – Modeling and prediction 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Virtual Machine, Live Migration, Performance Model, Energy. 

1. INTRODUCTION 
Virtualization [8, 23] is a rapidly evolving technology that provides 
a range of benefits to computing systems, such as improved resource 
utilization and management, application isolation and portability, 
and system reliability. Among these features, live migration is a core 

function to replace running VMs seamlessly across distinct physical 
hosts [10, 25]. It has become an extremely powerful tool for system 
management in a variety of key scenarios, such as VM load balanc-
ing [33], fault tolerance [24], power management [26] and other 
applications[20, 29]. 

VM live migration technology has attracted considerable interest 
for data center management and cluster computing in recent years 
[10, 18, 22, 25]. Representative works include XenMotion [10] and 
Vmotion [25] which were implemented as build-in tools in their 
virtualization platforms. There were also many other studies on the 
migration strategy for a variety of application cases, concerning the 
issues of where and when a VM should be migrated [14, 28, 31, 33]. 
However, few studies are available on the issue of which VM should 
be the best candidate for cost-efficient migration. For example, for 
the purpose of load balancing in a virtual cluster, all the VMs hosted 
by an overloaded physical node would be potential candidates for 
migration. However, different migration choices may lead to signifi-
cant differences in performance and energy consumption. Consider-
ing migration downtime, previous studies demonstrated that it could 
vary significantly between different workloads, ranging from 60 
milliseconds for a Quake 3 game server to 3.5 seconds in the case of 
a diabolical workload MMuncher [10]. This is mostly due to the 
diversity of VM configurations and workload characteristics. For 
instance, the initial memory size of a VM and applications’ memory 
access pattern are critical factors that have a decisive effect on the 
migration latency, i.e. the total time a VM is undergoing perform-
ance penalty and high power state. 

Power management is another increasingly important case for 
live VM migration. A rationale behind is that light loaded VMs can 
be consolidated into fewer physical hosts so that the offloaded 
physical hosts can be decommissioned to save energy. Previous 
studies demonstrated the effectiveness of this policy to achieve sig-
nificant power saving [13, 17]. However, the previous works mostly 
focused on the schemes of VM placement with performance con-
strains [21, 31]. There was little work concerning about both the 
performance and energy costs during the consolidation actions. 

In this paper, we model the VM migration performance based on 
theoretical analysis and empirical studies on Xen platform. In wired 
network environments, we experimentally verify that the migration 
energy consumption is proportional to the data volume of network 
traffic due to VM migration. We design a detailed analytical model 
to estimate the migration performance by scrutinizing Xen’s live 
migration algorithm. We obtain some semantic knowledge about the 
workloads at the VMM level and train the model parameters using 
linear regression technology. The model reads the statistical data of 
memory updating and other performance parameters collected on 
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real workloads, and simulates the migration process to predict the 
migration cost. The experimental results demonstrate that our mod-
els are able to predict the migration performance and energy with an 
accuracy of more than 90% on five representative workloads. The 
contributions of this paper are summarized as follows: 

1) This is the first kind of work to quantitatively model VM 
migration costs in terms of both performance and energy. 
The models would facilitate the design of optimal migration 
strategies. 

2) We analyze the challenges of modeling the energy con-
sumption of a VM migration and construct an application-
oblivious high-level energy model with high prediction ac-
curacy. 

3) We validate the models by conducting a large set of experi-
ments. The comprehensive evaluation results demonstrate 
the effectiveness of model-guided live migration in both 
performance and energy costs.  

The remainder of the paper is organized as follows. Section 2 
gives a brief introduction to our groundwork. Section 3 presents the 
design of our two models for prediction of migration performance 
and energy consumption. Section 4 describes the implementation 
details of our prototype for model validation. Section 5 presents the 
evaluation methodologies and experimental results. Section 6 dis-
cusses about the related work. Finally, we conclude our work in 
Section 7. 

2. LIVE VM MIGRATION 
Live VM migration technologies have proven to be a very effective 
tool to enable data center management in a non-disruptive manner. 
Both Xen and VMware adopts pre-copying algorithm for VM live 
migration in a memory-to-memory approach [10, 25], as shown in 
Figure 2. In the approach, physical memory image is pushed across 
network to the new destination while the source VM continues run-
ning. Pages dirtied during the migration must be iteratively re-sent to 
ensure memory consistency. By iterative it means that pre-copying 
occurs in several rounds and the data to be transmitted during a 
round are the dirty pages generated in the previous round. The pre-
copying phase terminates 1) if the memory dirtying rate exceeds the 
memory transmission rate; or 2) if the remaining dirty memory be-
comes smaller than a pre-defined threshold value; or 3) if the num-
ber of iterations exceeds a given value; or 4) the network traffic 
exceeds a multiple of the VM memory size. After several rounds of 
synchronization, a very short stop-and-copy phase is performed to 
transmit the remaining dirty pages. As the data transferred is rela-
tively small, this mechanism results in a nearly negligible best-case 
migration downtime. 

We note that the performance of live VM migration is affected 
by many factors. First of all, the size of VM memory has a main 
effect on the total migration time and network traffic. Secondly, the 
memory dirtying rate, which reflects the memory access pattern of 
different applications, impacts the number of iteration rounds and 

data transferred in each pre-copying round, and hence indirectly 
affects the migration time and network traffic. Thirdly, the network 
transmission rate together with the configuration of migration algo-
rithm is also crucial to migration performance. However, migration 
performance varies significantly depending on the workload charac-
terization even when other conditions remain the same. For instance, 
migration of a VM running memory-intensive applications would 
lead to more performance degradation in terms of network traffic, 
migration downtime and latency. 

3. PERFORMANCE AND ENERGY MOD-
ELS 
A primary goal of our models is to determine which VM should be 
migrated within a server farm with minimum migration cost. This is 
complementary to other issues like minimizing physical resource 
consumption without compromising service level agreements (SLA) 
[21, 31], and the issue of when a VM should be migrated and to 
which host [33]. A key point for cost-aware migration decision is 
how to accurately predict the performance and energy consumption 
of each VM migration in a server farm. 

3.1 Base Model of Migration Performance 
Modeling the performance of migration involves several factors: the 
size of VM memory, the workload characteristic (denotes the mem-
ory dirtying rate), network transmission rate, and the migration algo-
rithm (different configurations of migration algorithm means great 
variations of migration performance). The most challenge is charac-
terizing the memory access pattern of each running workloads cor-
rectly. 

In Table 1, we define a number of key parameters and their no-
tations for our performance and energy models. Live VM migration 
achieves negligible application downtime by iteratively pre-copying 
the pages dirtied at previous round of transmission. Assume the pre-
copying algorithm proceeds in n rounds. We denote the data volume 
transmitted at each round as Vi (0≤i≤n), and the elapsed time at each 
transferring round as Ti (0≤i≤n). V0 is equivalent to the VM memory 
size Vmem. T0 represents the time consumed to transfer the data of 
VM memory image and Ti is the time to transfer the dirty memory 
generated during previous rounds. The data transmitted in round i 
can be calculated as: 
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The elapsed time at each round can be calculated as: 

Figure 1. Live migration algorithm performs pre-copying in 
iterative rounds. 

Table 1. Parameters for performance and energy models of 
VM live migration. 

Vmem Current size of VM memory during migration. 

Vmig Total network traffic during migration. 

Tmig Migration latency, i.e., total migration time. 

Tdown Application downtime during migration. 

R Memory transmission rate during migration. 

D Memory dirtying rate during migration. 

Vthd Threshold value of the remaining dirty memory that 
should be transferred at the last iteration. 

W Writable Working Set, it defined as a certain set of 
“hot” pages that will be written frequently. 
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At first, we consider the scenario that the memory dirtying rate 
is smaller than the memory transmission rate on average. Let  de-
note the ratio of D to R: 

/D R  .   (3) 

Combining equations (1), (2) and (3), we have the network traffic 
during the round i: 
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Then the total network traffic during the migration can be summed 
up as: 
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Combining equations (2) and (3), we have the migration latency: 
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Because Tmig is the duration of migration that has negative effect on 
the performance of running applications, it is a key performance 
metric for migration decision.  

Now, we analyze the migration downtime caused in the whole 
migration process. It is composed of two parts: the time the remain-
ing dirty pages are transferred during the stop-and-copy phase, de-
noted as Tn; and the other time that is spent on VM resuming at the 
destination host, denoted as Tresume. The second part has little varia-
tion and can be represented as a constant; we set it to 20ms in our 
experiments. Then the migration downtime can be represented as: 

down n resumeT T T  .  (7) 

To evaluate the convergence rate of VM migration algorithm, 
we can calculate the total rounds of the iteration by the inequality 

n thdV V . It is the condition when the iterative pre-copying should 

be terminated. From equation (4), it follows n
mem thdV V  . As a 

result, the number of pre-copying iteration becomes: 

log thd

mem

V
n
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For a given VM, the memory size Vmem and Vthd (determined by 
migration algorithms) are fixed. Consequently, the iterative pre-
copying would converge faster if  is smaller. We therefore refer to 
 as the convergence coefficient of live VM migration. 

From the above analyses, we conclude that a VM with smaller 
size of memory image and smaller  would generate less network 
traffic and lead to shorter migration latency, hence should be a better 
candidate for migration. 

Second, we consider the scenario that the average memory dirty-
ing rate is even larger than the memory transmission rate. According 
to equation (4), the data transferred in each pre-copying round Vi 
would even exceed the VM memory size Vmem. This is not applicable 
in our model. However, the migration algorithm implemented in 
Xen is able to solve this issue by harnessing the statistical informa-
tion of dirty memory. It is known that every workload exhibits a set 
of ‘hot’ pages which would be updated extremely frequently, so 
called Writable Working Set (WWS) [10]. These pages are often 
used for the stack and local variables of the running processes as 

well as pages allocated for network and disk buffer. The hottest 
pages would be dirtied as fast as the migration daemon can transfer 
them, and hence should be skipped during the iterative pre-copying. 
Their transfer is postponed till the final stop-and-copy phase. In 
practice, the migration algorithm periodically peeks the current 
round’s dirty bitmap and retains the pages that are dirtied in two 
consecutive peeking periods. For most of workloads, we observed 
that the size of WWS is approximately proportional to the pages 
dirtied in each pre-copying round. That is 

Wi = γ  Vi ,   (9) 

where γ is the ratio correlating with the memory dirtying rate and the 
duration of each iteration. We characterize this relationship in a 
linear equation model: 

1= iT D       ,  (10) 

where  ,   and   are the model coefficients to be learned. Taking 

multiple observations of the equation allows estimating the model 
parameters using learning techniques such as linear regression. We 
estimate the model coefficients by running DaCapo [9] benchmark, 
which consists of a suit of Java applications. Some applications 
generate non-trivial memory loads. We trained our model by execut-
ing the migration of each application one by one. The trained model 
with these workloads should be able to embody the memory access 
patterns of a large variety of applications. 

During each migration, we track the amount of dirtied pages and 
skipped pages in each round of pre-copying to calculate the value of 
γ. With the elapsed time and memory dirtying rate of each pre-
copying round, we can build a set of independent equations based on 
the experimental results. Finally we derive the value of each parame-
ter, 

1= 0.0463 0.0001 0.3586iT D    , where Ti-1 is normalized 

by second and D is normalized by MB/sec. There are a number of 
approaches to evaluate how well the model fits the practice. 
Amongst them, the coefficient of determination is a widely used 
term, denoted as R-square statistic. The model is better as the R2 is 
closer to 1. The R2 value of this model is 0.843. 

Based on the above analysis, our migration performance model 
can be shown in Algorithm 1. All input variables can be measured 
from practical workloads. The size of VM memory Vmem can be 
obtained from xenstore, which is an information storage space 
shared between VMs and somewhat similar in spirit to procfs. The 
Vthd  and max_round are determined by the configuration of migra-
tion algorithm. The memory dirtying rate D can be measured before 
the VM migration decision, and the value of memory transmission 
rate R can be configured according to the observed value of D. The 
detailed measurement of D and R is described in Section 4. 

3.2 Refined Model of Migration Performance 
The base model discussed in the preceding section achieves good 
estimates when the observed memory dirtying rate holds steady. 
However, in a data center, most of workloads are service-oriented 
and heterogeneous. The memory access pattern of each application 
may vary in response to the change of the service requests. In such 
cases, cost estimation may cause more deviation if the model only 
uses on-line sampled parameter values. 

When a VM is in migration, the migration daemon will continu-
ously track the dirty pages to direct the memory pre-copying. More-
over, it also logs other statistical information such as data transmis-
sion rate, memory dirtying rate in each round of iteration. The data 
represents a long-term application characteristic in the whole execu-
tion of migration. This means that we can employ the historical data 



to refine our model when the VM needs to migrate again. We can 
represent the average memory dirtying rate during a migration with 
the weighted arithmetic mean of D in each round of pre-copying: 
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Considering the scenario that a VM may migrate many times, 
we use exponential weighted moving average (EWMA) to describe 
the current memory dirtying rate. This is a popular method to esti-
mate a non-deterministic variable (such as RTT estimation in com-
puter networks [11]). Combining the statistical data counted from 
the most recent migration and historical records, it becomes: 

1

     
(1 )mm mD D D  

 
   ,  (12) 

where m represents the number of migration times in a VM’s lifecy-
cle, and   denotes the weight of observation value from most re-

cent migration, its value should be larger than 0.5 so that the synthe-
sized value should always represent the current workload character-
istic. Combining the historical logs with on-line sampled data, we 
can calculate the refined value of D as following: 

1

~     
(1 )m m mD S D  


   ,  (13) 

where 0< <1, the default value is set as 0.5 and it can be self-tuned 

according to the feedback of model errors. Sm denotes the current 
sampled value of memory dirtying rate. 

3.3 Energy Model of VM Migration 
Energy has become a key concern in large scale systems such as 
grid and cloud computing data centers due to their ever increasing 
total operational cost and energy consumption [27]. In a data center 
with hundreds and thousands of VMs, VM migration is a common-
place and the energy consumption due to migration should not be 
overlooked. The following describes the model for an energy-
efficient migration decision. 

3.3.1 Modeling Challenges 
It is known that the power drawn by a physical server consists of a 
static portion and a dynamic portion [15]. The static portion is the 
stable power consumption even if the server is completely idle. The 
dynamic portion is defined as the additional power consumed by the 

physical resources when working on behalf of some VM or applica-
tions [19]. The power drawn by the migration procedure is a dy-
namic portion that involves several hardware components of the 
server, such as CPU, memory and network interface card. In practice, 
it is not applicable to measure the power consumption of each com-
ponent separately but only the full-system power. 

Early works on power modeling were mostly under the assump-
tion of homogeneous applications. Power modeling methodologies 
can be designed by profiling the resource utilization at hardware 
layer [12]. In practice, applications residing in a VM are usually 
heterogeneous and may show a large variety of physical resource 
usage at different execution phases. In addition, VM migration is a 
short lived procedure that would act on all kinds of workloads. Its 
cost estimation should be modeled in an application-agnostic man-
ner. On the other hand, modeling power in an application-agnostic 
manner tends to introduce significant errors for heterogeneous appli-
cations [16, 31]. Moreover, power model based on low-level re-
source utilization greatly depends on the power characteristic of 
hardware. For example, different CPU design technologies and fre-
quencies would draw different amount of power and pose require-
ments for different power models. Creating a model for different 
applications on different hardware platforms using an offline train-
ing method is practically infeasible, if not impossible. Another key 
issue is that because our model is designed for online decision of 
VM migration, energy cost of VM migration should be estimated 
prior to migration decisions. These reasons pose significant chal-
lenges to model the energy consumption of VM migration. 

3.3.2 Model Construction 
The power drawn by VM migration is mainly determined by the 
data transmission rate. As shown in Figure 2, the power consump-
tion due to VM migration at the source host increases as the data 
transmission rate is increased. On the other hand, the migration la-
tency becomes shorter when the data transmission rate is higher. As 
energy is defined as product of power consumption and time dura-
tion, how does the energy consumption vary with different data 
transmission rates? Given a specific VM, Figure 3 shows that the 
average energy consumption at different data transmission rates 
leads to less than 6 percentile of variation. This observation implies 
that the energy consumption due to migration is largely independent 
of the data transmission rate in a wired network. 

We note that VM migration is an I/O-intensive application and 
the energy is mainly consumed by data transferring and receiving 
over the networks. We conjecture that the energy cost due to VM 
migration is only determined by the data volume of network traffic. 
Based on this we design a high-level model to estimate the energy 
cost of VM migration. 

VM migration involves source host, network switch, and desti-
nation hosts. Because switching fabric may be very complex thus 
the energy is hard to quantify, our model only considers the energy 
drawn by each migration side. The data transmitted on source host 
and the data received on destination host are equal, and we find very 
little difference of energy consumption for data transmission and 
receiving in a homogeneous platform. Hence in the following model, 
the energy consumption is assumed to increase linearly with the 
network traffic of VM migration:  

( ) ( )mig sour dest s d mig s dE E E V         , (14) 

where 
s , 

d , 
s , 

d  are model parameters to be trained. We 

note that for heterogeneous physical hosts, although equation (14) is 
still applicable, the model parameters should be re-trained for each 
of two different platforms. As current virtualization platforms in-

Algorithm 1: Performance Model of VM Migration  

 
1. Input: Vmem, Vthd , D, R          Output: Vmig, Tmig, Tdown 
2. let  V0 ←Vmem          /*data transferred at first round*/ 
3.    for i = 0 to max_round do 
4.          Ti ←Vi / R 
5.             γ ←a Ti + b D+c 
6.              Wi+1 ← γ Ti D 
7.         Vi+1 ←Ti D  – Wi+1  
8.         if Vi+1 <=Vthd  or Vi+1 > Vi  then 
9.              Vi+1 ←Ti D   /*data transferred at last round*/ 
10.               Ti+1 ←Vi+1 / R  
11.               Tdown ← Ti+1 + Tresume 
12.               break 
13.          end if 
14.    end for  

15.           
max_

0

round

mig i
i

V V
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    
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max_
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round

mig i
i

T T
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cluding Xen and VMware only support VMs migration between 
homogeneous hosts, to simplify the problem, we train the energy 
model in a homogeneous environment. Consequently, equation (14) 
is reduced to: 

mig sour dest migE E E V     ,  (15) 

where network traffic Vmig is measured in Megabytes and energy 
Emig is measured in Joules. 

3.3.3 Model Parameters Training 
We use linear regression with ordinary least squares estimation to 
train the model parameters and   in equation (15). To generate a 

sufficient number of samples resulting in linearly independent equa-
tions and spanning a large range of data traffic values, we conduct a 
large number of experiments to migrate a VM with different sizes of 
memory. 

Vmig can be easily obtained from practical migrations in our 
training experiments. To calculate the additional energy consump-
tion (denoted by Emig), we should obtain the increase of power due to 
VM live migration. We first measure the static power of physical 
hosts when the workloads residing in the VM reach a stable state. To 
improve the accuracy of measurements, we need to avoid the fluc-
tuations when we meter the static power. The VM being migrated is 
the only one running on the source host and the applications are 
homogeneous. As shown in Figure 4, an idle Linux and “memtester” 

[1] application show stable power consumption during their normal 
execution. The measured values of static power are with less than 1 
Watt difference and hence can be represented as a constant P0. Then 
we measure the power drawn by the host when the VM is been mi-
grating, denoted by Pt. As the measured Pt is a discrete variable and 
the sampling rate of our power meter is 1Hz, the dynamic power due 
to VM migration can be calculated as follows: 

0 00
1

( ) ( )
mig

mig

T
T

mig t t
t

E P P dt P P
  



    . (16) 

For each experiment, we record the data volume transmitted 
during migration and calculate the energy consumption using equa-
tion (16). In Figure 5, we plot these (Emig, Vmig) pairs and the equa-
tion of our energy model learned by linear regression technique. We 
derive the parameters  =0.512,  =20.165, and the R2 is as high as 

0.993. Then our energy model for VM live migration in (15) be-
comes: 

0.512 20.165mig migE V  .   (17) 

3.4 Model-Guided VM Migration Decision 
In a server farm, there are massive VMs hosting various applications. 
The VMs may exhibit different sizes and memory access patterns. 
Their migration would incur a large difference of migration over-
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(a) Power drawn at source host 
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(b) Power drawn at destination host 

Figure 4. Power consumption at the source and target host 
while migrating a VM with 1GB RAM. 
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Figure 2. When an idle VM with 1GB memory is migrated at 
incremental data transmission rate, the power consumption 
progressively increases while the migration latency decreases. 
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Figure 3. Additional energy consumption due to migration of 
an idle VM with 1GB memory (at the source host) under dif-
ferent data transmission rates. 



head. In order to minimize the migration cost, we should make the 
best migration decision. We propose a synthesized formula that 
integrates all the migration cost metrics to direct the migration 
choice.  

C(VMi) = a Tdown+ b Tmig + c Vmig+ d Emig. (18) 

where a+b+c+d=1, a, b, c and d are the weights of cost metrics 
respectively. For numerical stability, it is preferable to normalize 
each variable Tdown, Tmig, Vmig, Emig with respect to their maximum 
values observed during migration. It means that we should scale up 
or down the observed values to similar magnitudes. 

4. IMPLEMENTATION 
To demonstrate the validity of our models, we have designed and 
implemented a prototype based on Xen 3.4 platform. The models are 
also applicable for other virtualization platforms that use similar pre-
copying algorithm for live migration.  

4.1 System Framework 
The system framework of our models is shown in Figure 6. It also 
includes a flow diagram of using these models for migration deci-
sion. When some VMs need to be migrated for the reason of load 
balancing or server consolidation, we should choose the best candi-
dates to minimize the migration cost. For this purpose, we first take 
a peek at current memory access pattern of each running VM. Com-
bining with the historical data, we can estimate the memory dirtying 
rate of each workload, and then the memory transmission data can 
be configured to adapt to the memory dirtying rate. After all the 
input variables in our model are ready, we can use the performance 
and energy prediction models to estimate the migration cost. Finally, 
we can choose the best candidate for migration by sorting the syn-
thetic migration cost. After the VM migration is finished, the on-line 
profile data during migration are counted to update the historical 
statistical data for next time of migration. 

4.2 Memory Dirtying Rate Measurement 
Xen provides the ability to track memory accesses of guest domains 
(i.e., VMs) using a mechanism called shadow page tables. The 
shadow page tables are maintained by the hypervisor and translated 
from guest page tables on demand. In memory log-dirty model, all 
VM memory pages are transparently marked as read only. Guest 
pages are protected to trap the guest updating to their internal ver-

sions of page tables, allowing the hypervisor to track the updates and 
propagate them to the external shadow versions as appropriate. In 
this way, the hypervisor is able to trap all memory updates within a 
VM, and maintains a bitmap to mark the dirty pages. 

To track the memory access pattern of different workloads, we 
employed Xen’s shadow paging mode to track dirtying statistics on 
all pages used by a running VM. As VM live migration also works 
in shadow paging model, we can measure a VM’s memory dirtying 
rate incidentally before the pre-migration phase. As shown in Figure 
7, when shadow paging model is enabled, all guest page table entries 
mapping in shadow page tables are write-access protected, and any 
page updating would trigger a page fault and is trapped by Xen. If 
write access is permitted by the relevant guest page table entry 
(PTE), this permission is extended to the shadow PTE. At the same 
time, the appropriate bit in the dirty page bitmap is set to 1. In a very 
short observation window, we peek at the dirty page bitmap and 
count the dirty pages to calculate memory dirtying rate. The per-
formance cost is mainly due to two hypercalls (interfaces provided 
by the hypervisor) with respect to cleaning and peeking at the dirty 
page bitmap. The processing is transparent to the application’s exe-
cution and the overhead is in the order of milliseconds. 

4.3 Adaptive Data Transmission Rate 
In general, we should ensure that the migration would not disrupt 
other online services that reside in the same host due to resource 
contention (e.g., CPU and network bandwidth). To mitigate the per-
formance degradation, we should limit the network bandwidth re-
served for the migration daemon.  

It is known that the VM memory is transferred in batches of 
fixed pages. This facilitates the control of migration throughput 
based on a budget constrained controller. Given a specific data 
transmission rate, an adequate time slice is pre-allocated for each 
batch of data sending. The duration is calculated according to an 
empirically pre-defined converter between network transmission rate 
and time. A higher data transmission rate corresponds to a shorter 
time slice. The budget, representing the number of pages need to 
send in each batch, is a specific value. During the period of a burst 
of data sending, the budget is continuously consumed until it is used 
up, and then the migration daemon will do nothing in the remaining 
time slice. In this way, the observed network throughput can be 
limited to the target with less than 5% deviation. As most of applica-
tions exhibit a dynamic memory dirtying rate, the memory transmis-
sion rate should be dynamically adjusted according to the observed 

 
Figure 5. Training the energy model of VM live migration 
using linear regression. 

 

 

Figure 6. Block diagram of system framework. 



memory dirtying rate in each round of pre-copying. Among a pre-
defined minimum and maximum bandwidth limit, the data transmis-
sion rate for each round is determined by adding a constant incre-
ment to the previous round’s memory dirtying rate. That means 

R D   ,   (18) 

where   is a constant variable and its default value is empirically 
set as 100Mb/s. 

5. EVALUATIONS 
In this section, we first introduce the experimental environment. 
Then we validate the models by comparing the model estimated 
values with measured ones in terms of the following metrics: 

1) Migration latency: the duration from the time VM migration 
is initiated to the time the migrated VM gets a consistent 
state with the original one. 

2) Migration downtime: the duration when the services resid-
ing in the migrating VM are entirely unavailable, neither at 
the source side nor at the target side. 

3) Total network traffic: the total data volume that need to 
transmit during the migration processing. 

4) Energy consumption for migration: the additional energy 
cost due to the VM live migration. 

5.1 Experiment Setup 
We conducted all experiments on Dell PowerEdge1950 servers with 
two Intel quad-core Xeon E5450 3GHz processors, 8GB memory, 
one 250GB SATA hard disk, and 1Gbit Ethernet interface. We used 
WattsUp Pro [2] to measure the power consumption. The power 
meter has an accuracy of ±1.5% of the measured RMS (root-mean-
square) power with sampling rate of 1Hz. The host machines were 
running Red Hat 4.1.2 distribution and the hypervisor was Xen 3.4.1 
with Linux 2.6.18.8-Xen kernel. The guest OSes were also running 
Red Hat 4.1.2 with Linux 2.6.18.8 kernel. For migration, all the VM 
image files could be accessed with NFS. In order to simplify the 
problem, all VMs were configured to use 4 VCPUs and 1GB RAM. 
In this way we do not need to consider the parameter of VM mem-
ory size Vmem. To reserve bandwidth for other applications, we lim-
ited the network transmission rate for VM migration within a range 
from 400Mbit/sec to 800Mbit/sec. 

In each experiment a VM was migrated for ten times between 
two physical hosts. The results reported are the average of the ten 
trials. The experiments used five workloads, representative of typi-
cal server applications in today’s data centers: 

1) Linux idle: an idle Linux OS for daily use. This workload is 
used as a frame of reference for comparison. 

2) TPC-C [3]: it is an on-line transaction processing (OLTP) 
benchmark. TPC-C simulates a complete environment where a 
population of terminal operators executes transactions against a 
database. We configure 1000 terminals threads and 500 database 
connections in our experiments. 

3) Dbench [4]: it is an open source benchmark emulating the file 
system load. This benchmark can simulate a variety of real file serv-
ers (such as proxy-server, mail-server, Web-server) by executing 
create/write/read/delete operations on a large number of directories 
and files with different sizes. We configure 10 simultaneous connec-
tions to generate reasonable disk load. 

4) LINPACK [5]: we use the Intel optimized MP LINPACK 
benchmark to perform massive vector and matrix operations, which 
produces severe CPU and memory pressure. 

5) SPECweb2005 [6]: it is a complex application-level bench-
mark for evaluating web servers. The workload is a complex mix of 
dynamic page requests. We use two client machines to generate the 
load for the web server. Each client is configured with 800 concur-
rent connections. 

5.2 Dirty Memory Measurement 
The shadow model of Xen allows us to track the set of pages to be 
dirty within any time windows. We conducted a set of experiments 
to measure the memory dirtying rate for a variety of workloads 
within 60 seconds. In each case we started the relevant application in 
a virtual machine, read the dirty bitmap and then cleaned it every 
half second. We chose a 0.5 second window to measure the memory 
dirtying rate because most of workloads consume approximate half 
second during each pre-copying rounds. Figure 8 plots the number 
of dirty pages generated by each of the representative workloads in a 
VM with 1GB RAM. The x-axis shows elapsed time and the y-axis 
measures the number of 4KB pages of memory dirtied within the 
corresponding 0.5 second interval. From these curves we can see 
that the observed memory dirtying rate varies significantly between 
different applications. For workloads such as TPC-C and idle Linux, 
the memory dirtying rate retains at relative low level and hence are 
the excellent candidate for migration. In contrast, Linpack and 
SPECweb2005 have a consistently high dirtying rate and would be 
problematic to migrate. 

The memory dirtying rate can be measured from another aspect 
as well. In this case, we started the relevant application in a VM and 
peeked the dirty bitmap every 50ms in a 60 seconds window. Unlike 
the experiments aforementioned, we did not clean the dirty bitmap 
after we had a peek at it. This allows us to observe the writable 
working set in a relative long time window (60s) but estimate it at a 
finer granularity. Figure 9 plots the number of dirty pages generated 
by the representative workloads. The slope of each line joining the 
origin and the point on each curve represents the memory dirtying 
rate. We can see that most of the applications exhibited a higher 
memory dirtying rate at the beginning of measurement. With the 
increase of the observation window size, the memory dirtying rate 
drops in all applications. This is because all the applications have a 
set of ‘hot’ pages that tend to be written many times, while the rele-
vant dirty bitmap does not record the number of updating for each 
page. However, it implies that we can measure the WWS when the 
slope of a curve at a particular point does not change. For example, 
the WWS of workloads Dbench and SPECweb become stable only 
after 20~30 times sampling, while TPC-C shows a relatively long-
term of increasing WWS before the 400th sampling. This means 
most of dirty pages of OLTP benchmark are generated by allocating 
new memory pages for upcoming connections and only a few pages 
would be repetitively updated. For Dbench, although a set of pages 

 

Figure 7. Dirty memory pages tracking of Xen VMM. 



is intensively updated, it maintains a relative smaller dirty memory 
footprint than TPC-C. As Linpack is a both CPU and memory inten-
sive workload, it shows a quite large WWS and very high memory 
dirtying rate, thus should be evicted from the migration candidates. 

5.3 Model Accuracy Validation 
We conducted a set of experiments to validate the effectiveness of 
our models. For each metrics, we compared the experimentally 
measured values with the estimates using the base model (BM) and 
the refined model (RM), and showed the prediction errors of BM 
and RM respectively. 

Figure 10 shows migration latency of the representative work-
loads and the prediction error of our model. The leftmost bar of each 
set of data displays the measured value of migration latency, the 
other two bars show the migration latency estimated by our base 
model and refined model. The line plots illustrate the estimation 
errors of the two models respectively. Our refined model only has 
less than 7% estimation errors. This means our model can achieve 
satisfying accuracy for practical use. From the experimental results, 
we can find that the migration latency of Linpack and SPECweb 
show a higher standard deviation than an idle Linux, Dbench and 
TPC-C, because the observed memory dirtying rate of the two work-

loads exhibits more widespread dispersion of data from its mean, as 
shown in Figure 8. It is the same reason why the estimation errors 
for Linpack and SPECweb are higher than the other workloads. The 
refined model have taken into account the historical statistical data 
of migration trace, the synthetic value of memory dirtying rate is 
expected to be more accurate than the online observed value, so the 
refined model shows much less estimation errors than the base mod-
el. 

Migration downtime is a key performance metric that would be 
the most concern in some scenarios such as high availability applica-
tions. Our model also provides a quantitative estimation on this met-
ric. Migration downtime is mostly correlated with the data volume 
of dirty memory that should be transferred in the stop-and-copy 
phase. As shown in Figure 11, Linpack and SPECweb exhibit much 
longer migration downtime than the other workloads because of 
their high memory dirtying rate. An idle Linux and TPC-C displays 
even more estimation errors than Linpack and SPECweb because 
even small absolute deviation can lead to a large relative error. 
However, the errors of these applications that show very short mi-
gration downtime would not interfere our migration decision. They 
are always the best candidates for cost-efficient migration. 

Figure 12 shows the network traffic of VM migration for the 
representative workloads and the corresponding estimation errors. 
For an idle Linux and TPC-C, most of the network traffic is the 1GB 
VM memory image, and the remaining portion refers to the small 
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Figure 10. Model errors on migration latency estimation. 
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Figure 11. Model errors on migration downtime estimation. 
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Figure 8. Rate of pages dirtied in each half second for different 
workloads in a VM with 1GB RAM. 
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Figure 9. Writeable working set measurement for different 
workloads in a VM with 1GB RAM. 



amount of dirty pages that are iteratively transferred during the pre-
copying. That is why these workloads with slow memory dirtying 
rate show relative low estimation errors. Although TPC-C finally 
exhibits an even larger WWS than Dbench after a continuous in-
crease (as shown in Figure 9), its slower memory dirtying rate leads 
to smaller total network traffic than Dbench. In contract, Linpack 
shows both larger WWS and higher memory dirtying rate than 
SPECweb, however the total network traffic of Linpack is even 
smaller than SPECweb. It seems to be incorrect by intuition. We 
track all the iterative pre-copying rounds of VM migration for the 
two workloads, and find that Linpack exhibits a much larger set of 
‘hot’ pages than SPECweb. The migration algorithm does not trans-
fer these frequently updated pages, so that Linpack has even less 
data transferred during each round of pre-copying than SPECweb. 
Our model can correctly simulate such condition and the below 10% 
estimation errors verified our model’s effectiveness. 

We verify the energy model in Figure 13. We use the data of 
network traffic estimated by our refined model as the input of energy 
model. The right column of each set of data shows the estimated 
energy cost of each VM migration. Compared to experimental 
measured energy, the model errors is as low as 10%. From Figure 12 
and Figure 13, we can find that the energy cost is approximately 
linear with the network traffic. This validates the correctness of our 
linear energy model. 

5.4 Model-guided Migration Cost 
We now show how our models are useful for migration decision 
making. In this experiment, we run 8 VMs on the source host, the 
benchmark Dbench, TPC-C, Linpack, and SPECweb2005 are run-
ning on two VMs respectively. Each VM is configured to use 1 
VCPU and 800MB RAM. The destination host is initially set to be 
idle. We compare the decision making scheme using our models 
with random selecting method. Each scheme is tested for 20 times, 
and then the total cost is summed up for each migration metric. We 
show the effect of using our models for migration decision in Figure 
14. We can find that the migration cost can be significantly reduced 
with the guide of our models. The migration latency, migration 
downtime, network traffic and energy consumption are reduced by 
72.9%, 93.5%, 74.5% and 73.6% respectively. The ground truth is 
that for random selecting of VMs, we perform the migration of a 
VM running Dbench, TPC-C, Linpack, and SPECweb2005 for 4, 5, 
5 and 6 times respectively. However, guided by our model, we al-
ways choose a VM running TPC-C for migration, which is the best 
candidate with minimum migration cost. 

6. RELATED WORKS 
The performance of live VM migration had been studied on a vari-
ety of workloads in [10]. This technique had proven to be a very 
effective tool to enable service relocation in a non-disruptive man-
ner. William et al. [32] evaluated the performance degradation of 
Web2.0 applications running inside VMs while they were being 
migrated. The main objective they concerned is the service level 
agreement (SLA) violation rather than the migration performance. 
None of these works provided a methodology to estimate the VM 
migration performance. 

pMapper is a framework that investigate the VM placement al-
gorithms in a virtualized sever cluster [31]. The expected perform-
ance benefit as well as migration cost were considered while deter-
mining a VM’s placement in physical servers. However, the migra-
tion cost was quantified by estimating the decrease of application 
throughput or SLA violation. This black-box model can only be 
used in an offline manner and can’t predict the migration cost for a 
workload-agnostic VM. 

Sandpiper proposed both gray-box and black-box approaches to 
automatically mitigate hotspots in a virtualized cluster by employing 
the facility of VM live migration [33]. Sandpiper implemented a 
hotspot detection algorithm that determines when to migrate VMs, 
and a hotspot mitigation scheme that uses a greedy algorithm to 
determine what and where to migrate and how much resource to 
allocate after the migration. Tarighi et al. presented a scheduling 
algorithm for VM migration based on fuzzy decision making [30]. 
They employed TOPSIS (Technique for Order Preference by Simi-
larity to Ideal Solution) algorithm to find the most loaded servers 
and make more effective migration decision when the decision mak-
ing condition is vague or uncertain. All the two approaches concen-
trated on VM placement strategies, the migration cost isn’t their 
concern. Our work provides another criterion for migration decision 
from the prospective of migration performance and energy cost. 

PADD presented a scheme of VM consolidation to save energy 
in a virtualized environment [21]. The scheme saved power by dy-
namically migrating virtual machines and packing them onto fewer 
physical machines. It focused on the VM placement algorithm to 
minimize total energy while avoiding SLA violation. However, the 
performance penalty and energy consumption during migration 
actions were not considered. Our models can be a beneficial com-
plement for the migration decision making. 
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Figure 12. Model errors on network traffic estimation. 
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Figure 13. Model errors on migration energy estimation. 



Sherif et al. designed a simulator based on Xen’s migration al-
gorithm to characterize the downtime and total migration time [7]. 
However, their simulation model relies on dynamic information like 
hotspot sizes collected in pre-copying iterations, it is hard to use for 
a prior migration decision before the migration begins. In contrast, 
our model makes no such assumptions and would facilitate online 
migration decisions. Moreover, our models provide estimates of 
more than downtime and migration latency, traffic volume and en-
ergy consumption due to migration were considered as well. We 
also exploit the statistical data from historical migration trace and 
adaptive network bandwidth limitation to enhance the practicability 
and effectiveness of our models. 

7. CONCLUSION 
In this paper, we designed two models to estimate VM migration 
performance. Our theoretical analysis and experimental results 
showed that the parameters such as VM memory size, network 
speed and memory dirtying rate are the major factors impacting 
migration performance in terms of migration downtime, migration 
latency and network traffic. Based on the performance model, we 
design a high-level linear model to estimate the migration energy. 
We validated the models by comparing the estimates with experi-
mentally measured results. The experimental results showed that the 
prediction accuracy is higher than 90% in terms of both performance 
and energy metrics. The case study verified that our models could 
significantly reduce the migration cost by more than 72.9%. 

We note that our performance and energy models for live migra-
tion would facilitate data center administrators to explore myriad of 
choices for optimal migration decision making. In addition, the 
models should also be able to introspectively guide the design of 
migration algorithm for different tradeoffs amongst the performance 
metrics. It will be investigated in our future work. 
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Figure 14. Migration cost saving by using our models 
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