

Cloud Task scheduling based on Load Balancing Ant Colony Optimization

Kun Li, Gaochao Xu, Guangyu Zhao, Yushuang Dong, Dan Wang
College of Computer Science and Technology

Jilin University
ChangChun, China

e-mail: xugc@jlu.edu.cn

Abstract—The cloud computing is the development of
distributed computing, parallel computing and grid
computing, or defined as the commercial implementation of
these computer science concepts. One of the fundamental
issues in this environment is related to task scheduling. Cloud
task scheduling is an NP-hard optimization problem, and
many meta-heuristic algorithms have been proposed to solve it.
A good task scheduler should adapt its scheduling strategy to
the changing environment and the types of tasks. This paper
proposes a cloud task scheduling policy based on Load
Balancing Ant Colony Optimization (LBACO) algorithm. The
main contribution of our work is to balance the entire system
load while trying to minimizing the makespan of a given tasks
set. The new scheduling strategy was simulated using the
CloudSim toolkit package. Experiments results showed the
proposed LBACO algorithm outperformed FCFS (First Come
First Serve) and the basic ACO (Ant Colony Optimization).

Keywords-task scheduling; cloud computing; Load
Balancing; Ant Colony Optimization; CloudSim;

I. INTRODUCTION
Cloud computing is experiencing a rapid development

both in academia and industry; it is promoted by the
business rather than academic which determines its focus on
user applications. This technology aims to offer distributed,
virtualized, and elastic resources as utilities to end users. It
has the potential to support full realization of ‘computing as
a utility’ in the near future[1]. With the support of
virtualization technology[2, 3], cloud platforms enable
enterprises to lease computing power in the form of virtual
machines to users. Because these users may use hundreds of
thousands of virtual machines (VMs)[4], it is difficult to
manually assign tasks to computing resources in clouds[5,
6]. So we need an efficient algorithm for task scheduling in
the cloud environment[7].

A good task scheduler should adapt its scheduling
strategy to the changing environment and the types of tasks.
Therefore, a dynamic task scheduling algorithm, such as Ant
Colony Optimization (ACO)[8, 9], is appropriate for clouds.

ACO algorithm is a random search algorithm, like other
evolutionary algorithms[10]. It imitates the behavior of real
ant colonies in nature to search for food and to connect to
each other by pheromone laid on paths traveled. Many
researchers used ACO to solve NP-hard problems such as

traveling salesman problem[10], graph coloring
problem[11], vehicle routing problem[12], and so on.

In this paper, we proposed a Load Balancing Ant Colony
Optimization (LBACO) algorithm to find the optimal
resource allocation for each task in the dynamic cloud
system. Not only does it minimize the makespan of a given
tasks set but it also adapts to the dynamic cloud computing
system and balance the entire system load. Then, this new
scheduling strategy was simulated using the CloudSim
version 2.1 toolkit package[13,14]. Experiments results
showed the proposed LBACO algorithm satisfies
expectation. The experiment considers:

• First Come First Served (FCFS)
• Ant Colony Optimization (ACO)
• Load Balancing Ant Colony Optimization (LBACO)
The rest of paper is organized as follows. Section Ⅱ

introduces the CloudSim toolkit. Section Ⅲ introduces the
basic Ant Colony algorithm. Section Ⅳ details the proposed
LBACO algorithm. Section Ⅴ presents the simulation
results. Finally, Section Ⅵ concludes this paper.

II. CLOUDSIM TOOLKIT

A. Characteristics of Cloud Simulator
Several Grid simulators, such as GridSim, SimGrid, and

GangSim have been developed. These toolkits are capable of
modeling and simulating the Grid application in a distributed
environment, but none of these are able to support the
infrastructure and application-level requirements arising
from Cloud computing paradigm, such as modeling of on-
demand virtualization enabled resource[15]. Hence, Cloud
infrastructure modeling and simulation toolkits must support
for real-time trading of services between customers and
providers. Among the currently developed simulators, only
GridSim offers support for economic-driven resource
management and application scheduling simulation. So
CloudSim framework is built based on GridSim toolkit[16].

CloudSim allows simulation of scenarios modeling IaaS
(Infrastructure as a Service), PaaS (Platform as a Service),
and SaaS (Software as a Service), because it offers basic
components such as Hosts, Virtual Machines, and
applications that model the three types of services.

CloudSim offers the following novel features: (i) support
model and instantiation of large scale Cloud computing

2011 Sixth Annual ChinaGrid Conference

978-0-7695-4472-4/11 $26.00 © 2011 IEEE

DOI 10.1109/ChinaGrid.2011.17

3

2011 Sixth Annual ChinaGrid Conference

978-0-7695-4472-4/11 $26.00 © 2011 IEEE

DOI 10.1109/ChinaGrid.2011.17

3

 1 / 7

infrastructure, including data centers on a single physical
computing node and java virtual machine; (ii) a self-
contained platform for modeling data centers, service
brokers, scheduling, and allocations policies; (iii)
availability of virtualization engine, which aids in creation
and management of multiple, independent, and co-hosted
virtualized services on a data center node; (iv) flexibility to
switch between space-shared and time-shared allocation of
processing cores to virtualized services[14].

B. CloudSim Work Style
CloudSim work style is shown as Fig. 1.
In general, the tasks from different users are relatively

independent; we consider there are m users, as User1,
User2, ……Userm, n independent tasks, as T1, T2 …Tn, n
VMs, as VM1, VM2 ……VMn and p datacenters, as
Datacenter1, Datacenter2 … Datacenterp.

Figure 1. CloudSim Work Style

CIS: The CIS (Cloud Information Service) provides
database level match-making services; it maps user requests
to suitable cloud providers. CIS and Data-CenterBroker of
CloudSim realized resource discovery and information
interaction, it is the core of simulated scheduling[14, 15, 16].

DatacenterBroker: This class models a broker, which is
responsible for mediating between users and service
providers depending on users’ QoS requirements. And the
broker deploys service tasks across clouds. User-developed
scheduling algorithms are implemented in DataCenterBroker
method. Hence, the researchers and system developers must
extend this class[14, 15, 16].

VmScheduler: This is an abstract class implemented by
a Host component; it represents the policies (space-shared,
time-shared) required for allocating processing power to
VMs. The functionalities of this class can easily be
overridden to accommodate specific processor sharing
policies[14, 15, 16].

VmAllocationPolicy: This abstract class represents the
provisioning policy that a VM Monitor utilizes for allocating
VMs to Hosts. The chief functionality of the
VmAllocationPolicy is to select available host in a

datacenter, which meets the memory, storage, and
availability requirement for a VM deployment[14, 15, 16].

It can be seen from Fig. 1, in the cloud computing
environment, we carry out the task scheduling in the virtual
machines. But in the grid computing environment, the task
scheduling is carried out in the idle hardware resources
directly.

C. Communication among Entities
Figure 2 depicts the flow of communication among core

CloudSim entities. In the beginning of the simulation, each
Datacenter entity registers itself with the CIS (Cloud
Information Service) Registry, and DatacenterBroker
manages information interaction among entities[14, 15, 16].

Figure 2. Simulation data flow.

III. THE BASIC ANT COLONY ALGORITHM
Dorigo M. introduced the ant algorithm based on the

behavior of real ants in 1996[2], it is a new heuristic
algorithm for the solution of combinatorial optimization
problems. Investigations show that: Ant has the ability of
finding an optimal path from nest to food[17,18,19].On the
way of ants moving, they lay some pheromone on the
ground; while an isolated ant encounter a previously laid
trail, this ant can detect it and decide with high probability to
follow it. Hence, the trail is reinforced with its own
pheromone. The probability of ant chooses a way is
proportion to the concentration of a way’s pheromone. To a
way, the more ants choose, the way has denser pheromone,
and the denser pheromone attracts more ants. Through this
positive feedback mechanism, ant can find an optimal way
finally[20, 21, 22].

At time zero, ants are positioned on different towns, the
initial values τij (0) for trail intensity are set on edge (i, j).
The first element of each ant’s tabu list is set to be equal to
its starting town[24, 25]. Thereafter the k-ant moves from
town i to town j with a probability that is defined as:

Datacenter 1
Host

Host

Datacenter p
Host

Host

DatacenterVirtual Machines

VM1

VM2

VM3

VM4

VM5

VMn

Tasks

T1

T2

T3

T4

T5

Tn

Users

User1

Usern

User2

CIS
Datacenter

Broker
VmSche-

duler
VmAllocation

Policy

44

Downloaded from Iran library: (www.libdl.ir) | Sponsored by Tehran Business School (www.tbs.ir)

 2 / 7

()
[] []

[] [])1(

0

)()(
)()(

p

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
∈

otherwise

allowedjif
tt

tt

t
k

allowedk
ikik

ijij

k
ij

k

βα

βα

ητ
ητ

Where allowedk= {N-tabuk}, tabuk is the tabu list of k-th
ant, τij (t) is the pheromone value on edge (i, j), ηij is the
value of the heuristic value, and ηij(t) =1/dij. Where dij is
the distance between node i and node j. α, β are two
parameters that control the relative weight of the pheromone
trail and heuristic value. Finally the most optimal and
effective path is selected and globally updated.

Figure 3 depicts programming steps of the basic ACO.
Procedure ACO

begin
Initialize the pheromone
while (stopping criterion not satisfied) do

Position each ant in a starting VM
while (stopping when every ant has

build a solution) do
for each ant do

Chose VM for next task by
pheromone trail intensity

end for
end while
Update the pheromone

end while
end

Figure 3. Programming steps of the basic ACO

IV. THE PROPOSED LBACO ALGORITHM

We utilize the characteristics of ant algorithms
mentioned above to schedule task[26, 27]. We can carry out
new task scheduling depending on the result in the past task
scheduling. It is very helpful in the cloud environment.

In contrast to other ACO algorithm, the LBACO
algorithm inherits the basic ideas from ACO algorithm to
decrease the computation time of tasks executing, it also
considers the loading of each VM. We can carry out new
task scheduling depending on the result in the past task
scheduling. It is very helpful in the cloud environment.

A. Initialize pheromone of VMj
At the beginning, ants are distributed on VMs randomly,

and then it will initialize the VMj pheromone value based
on:

)2(___)0(jjjj bwvmmipspenumpe +×=τ

Where pe_numj is the number of VMj processor, pe_mipsj is
the MIPS (Million Instructions Per Second) of each
processor of VMj and the parameter VM_bwj that is related
to the communication bandwidth ability of the VMj.

B. The rule of choosing VM for next task
The k-ant chooses VMj for next task with a probability

that is defined as:

()
[] [] []
[] [] [])3(

0

1
)(

)(

p

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
otherwise

njif
LBEVt

LBEVt

t kkk

jjj

k
j

γβα

γβα

τ
τ

Where
• τj(t) is the VMj pheromone value at time t.
• EV j is the computing capacity of VMj, it is defined

as follows:

)4(___ jjjj bwvmmipspenumpeEV +×=

Where pe_numj is the number of VMj processor,
pe_mipsj is the MIPS of each processor of VMj and
the parameter VM_bwj that is related to the
communication bandwidth ability of the VMj.

• LBj is the load balancing factor of VMj, to
minimize the degree of imbalance, which is defined
as follows:

）（ 5_
_

1 reslastAverres
reslastAverres

LB
j

j
j +

−
−=

Where lastAver_res is the average execution time
of the virtual machines in the last iteration of the
optimal path, and resj is the expected execution
time of the task in the VMj, which is defined as
follows:

）（ 6_
_

jjj bwvm
izeInputFiles

EV
tasklengthtotal

res +=

Where total_tasklength is the total length of the
tasks that have been submitted to VMj, and
InputFilesize is the length of the task before
execution.

• α, β andγ are three parameters that control the
relative weight of the pheromone trail, the
computing capacity of VMs and the load balancing
factor of VMs.

55

 3 / 7

Once some VMs are loading heavy, it becomes a
bottleneck in the cloud and it influences the makespan of a
given tasks set. Therefore we define the load balancing
factor LBj in the ant algorithm to improve the load balancing
capability, and the bigger LBj of VMj should be chosen with
high probability, that means the comprehensive ability of
VMj is power now, and then it is high desirable.

C. Phenomenon Updating
Let τj(t) be the intensity of VMj pheromone at time t. The

pheromone update is given by (7):

)7()()1()1(jjj tt ττρτ Δ+×−=+

Where ρ ∈(0, 1] is the pheromone trail decay coefficient.
The greater the value of ρ is, the less the impact of past
solution is. The value of ∆τj is defined as follows:

When an ant completes its tour, the local pheromone
updating is applied on the visited VMs, and the value of ∆τj
is given by (8).

∆τj=1/Tik (8)

Where Tik is the shortest path length that searched by k-
ant at i-th iteration.

When an ant completes its tour, if it finds the current
optimal solution, it can lay a larger intensity of the
pheromone on its tour[20, 21], and the global pheromone
updating is applied on the visited VMs, and the value of ∆τj
is given by (9).

∆τj=D/Top (9)

Where Top is the current optimal solution, and D is the
encouragement coefficient.

D. Programming Steps of the proposed LBACO
The programming steps of the proposed LBACO

algorithm in searching for the minimum makespan path can
be described as follows:

• Step1 Initialize the pheromones of all VMs.
• Step2 Place all ants at the starting VMs randomly.
• Step3 Every ant chooses the VM for the next task

according to formula (3) ~ (6).
• Step4 When an ant completes its tour, update the

pheromone according to formula (7) ~ (9).
• Step5 If all the ants end their trip, continue to Step6;

otherwise, repeat Step3
• Step6 Nc = Nc + 1, calculate the makespan of each

ant and reserve the current optimal solution.
• Step7 Judge if it satisfies the iterative condition Nc

> Ncmax, If it satisfies, end the iteration and output
the best solution, else return to Step2 until satisfy
the iterative condition.

The flowchart in Fig. 4 describes the above-mentioned
procedure.

Figure 4. Flowchart of LBACO

V. SIMULATIONS.
The experiment is implemented on the CloudSim

platform. The scheduling algorithms of the experiment
include the LBACO, the basic ACO[6] and FCFS (First
Come First Service).

A. Assumptions
Adopting the application model introduced in [15], we

assume that
• Tasks are mutually independent, i.e., there is no

precedence constraint between tasks.
• Tasks are computationally intensive.
• Tasks are not preemptive and they cannot be

interrupted or moved to another processor during
their execution.

The scheduling problem aims to minimize the total
execution time of tasks as well as to achieve a well-balanced
load across all VMs in Cloud. That is, there are two factors
considered here. One is the minimization of the tasks
completion time. The other is to distribute workload evenly
among virtual machines[28, 29].

B. Define the degree of imbalance
Moreover, we define the degree of imbalance (DI for

short) to measure the imbalance among VMs, which is
defined as follows:

66

Downloaded from Iran library: (www.libdl.ir) | Sponsored by Tehran Business School (www.tbs.ir)

 4 / 7

）（ 10__
_

jj

j
i mipspenumpe

tasklengthtotal
T ×=

Where total_tasklength is the total length of tasks which
are submitted to the VMj, pe_numj is the number of
processor of VMj and pe_mipsj is the MIPS of each
processor of VMj.

）（ 11minmax

avgT
TT

DI
−

=

Where Tmax and Tmin are the maximum and minimum Ti
among all VMs, Tavg is the average Ti of VMs. Thus, the
scheduling problem also aims to minimize the degree of
imbalance. The consideration of DI during the allocation
would help to avoid unbalanced workload of VMs.

C. Implementation environment
The experiment is implemented with 10 Datacenters and

100-500 tasks under the simulation platform. The resource
situation is shown in Table 1. The computation workload of
the task is from 5000 MI (Million Instruction) to 15000 MI,
and the manager type of 10 datacenters both have
space_shared and time_shared policy for VMs, but, to the
manager type of 50 VMs, we only set time_shared for tasks.
The parameters’ setting of cloud simulator is shown in Table
2.

TABLE 1. PARAMETERS SETTING OF CLOUD SIMULATOR

Type Parameters Value

Datacenter

Number of Datacenter 10
Number of Host 2-6
Type of Manager Space_shared

Time_shared
Datacenter Cost 1-15

Virtual
Machine

(VM)

Total number of VMs 50
MIPS of PE
(processing element)

250-2000
(MIPS)

 Number of PE per VM 2-8
VM memory(RAM) 512-2048(MB)
 Bandwidth 500-1000 bit
Type of Manager Time_shared

Task

Total number of task 100-500
Length of task 5000-15000MI
Number of PEs requirement 1-4

D. Parameters Setting of the basic ACO and LBACO
The performance evaluation of our proposed LBACO

algorithm and the comparison study with other algorithms
for task scheduling have been implemented on the CloudSim
platform[13, 14], the CloudSim is developed to support
simulation of heterogeneous cloud resources and application
models. The parameters’ setting is shown in Table 2.

TABLE 2. PARAMETERS OF LBACO

Parameters values

Number of tasks 100-500
Number of ants in colony 8
Number of iterations 50
ρ 0.01
α 3
β 2
γ 8

E. Experimental results
We compared our LBACO algorithm with the First-

Come-First-Served (FCFS) and the basic Ant Colony
System (ACO)[10]. The FCFS algorithm aims to find the
earliest completion time of each task individually. The basic
ACO algorithm aims to minimize the makespan of a given
set of tasks. The LBACO algorithm chooses optimal
resources to perform tasks according to resources status and
the size of given task in the Cloud environment. Not only
does it minimize the makespan of a given set of tasks but it
also balances the entire system load.

In the following experiments, we compared the average
makespan of the basic ACO and LBACO algorithm with
different iterations; we also compared the average makespan
of 100-500 tasks set, and the average degree of imbalance
(DI) of each algorithm in the following experiments.

The average makespan of the basic ACO and LBACO
algorithm with different iterations is shown in Fig. 5. In this
experiment, we used 300 tasks set to compare the average
performance of the basic ACO and the LBACO algorithm,
and we recorded the makespan using the time in the
CloudSim (ms).

62

63

64

65

66

67

68

10 20 30 40 50 60 70 80 90 100

Iteration

A
C

O
 M

ak
sp

an

41

42

43

44

45

46

47

48

49

LB
A

C
O

 M
ak

es
pa

n

ACO

LBACO

Figure 5. The average makespan of 300 tasks set

Fig. 5 shows that the average makespan of the basic
ACO and LBACO algorithm reduced roughly with the
number of iterations increased. But for the basic ACO and
LBACO algorithm, this change became slow after 50
iterations. Hence, we used 50 iterations for other
experiments in this paper.

The average makespan of each algorithm with the
number of tasks varying from 100 to 500 is shown in Fig. 6.
In this experiment, we also use the time in the CloudSim
(ms) to record the makespan.

At last the average degree of imbalance (DI) of each
algorithm with the number of tasks varying from 100 to 500
is shown in Fig. 7.

77

Downloaded from Iran library: (www.libdl.ir) | Sponsored by Tehran Business School (www.tbs.ir)

 5 / 7

0

50

100

150

200

250

100 200 300 400 500

Number of Submitted Tasks

M
a
k
e
s
p
a
n FCFS

ACO

LBACO

Figure 6. The average makespan of 100-500 tasks set

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 200 300 400 500

Number of Submitted Tasks

De
gr
e
e
o
f
Im

ba
l
an
c
e
(
DI
)

FCFS

ACO

LBACO

Figure 7. The average DI of each algorithn

It can be seen from the Figure 6 and Figure 7, the
average performance of the LBACO algorithm is better than
the FCFS algorithm and ACO algorithm. It means that the
LBACO can achieve good system load balance in any
situation and take less time to execute tasks. In other words,
these results demonstrated the effectiveness of the LBACO
algorithm.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed the LBACO algorithm

for achieving tasks scheduling with load balancing, and we
have experimentally evaluated the LBACO algorithm in
applications with the number of tasks varying from 100 to
500. The experimental result shows that the LBACO balance
the entire system load effectively. Weather the sizes of the
tasks are the same or not, LBACO can handle all conditions,
and outperforms FCFS and ACO algorithms in cloud
computing environment.

As for the future work, there are two interesting points
that deserve further investigation. First, in this work, we
assume that all Tasks are mutually independent, i.e., there is
no precedence constraint between tasks. Second, we assume
that tasks are computationally intensive, which is not
realistic for cloud systems. Moreover, as a future work, in
order to accommodate the heterogeneous processing of the
tasks, the availability vector should be extended to
incorporate information about task requirements.

REFERENCES
[1] A. Weiss, “Computing in the Clouds,” netWorker on Cloud

computing: PC functions move onto the web, vol. 11, Dec. 2007,
DOI: 10.1145/1327512.1327513, pp. 16-25, 2007.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization” in SOSP ’03: Proc. of 19th ACM symposium on
Operating systems principles, 2003.

[3] J. Fisher-Ogden, Hardware support for efficient virtualization,
http://cseweb.ucsd.edu/jfisherogden/hardwareVirt.pdf,April 2006.

[4] Fangzhe, C., Jennifer R., Ramesh, V.,“Optimal Resource Allocation
in Clouds” in 2010 IEEE 3rd International Conference on Cloud
Computing, pp. 189–196, 2010.

[5] F. Chang, J. Ren, and R. Viswanathan, “Optimal resource allocation
for batch testing” in ICST, 2009 IEEE International Conference on
Software Testing Verification and Validation, pp.91-100, 2009.

[6] F. Chang, J. Ren, and R. Viswanathan, “Optimal Resource Allocation
in Clouds” in 2010 IEEE 3rd International Conference on Cloud
Computing, pp.418-425, 2010.

[7] Qiyi, H., Tinglei, H., “An Optimistic Job Scheduling Strategy based
on QoS for Cloud Computing” in 2010 IEEE International
Conference on Intelligent Computing and Integrated Systems (ICISS),
DOI: 10.1109/ICISS.2010.5655492, pp.673-675, 2010.

[8] M. Dorigo, C. Blum, “Ant colony optimization theory: A survey” in
Theoretical Computer Science 344 (2–3) (2005), DOI:
10.1016/j.tcs.2005.05.020, pp.243–278, 2005.

[9] M. Dorigo, M. Birattari, T. Stutzel, “Ant colony optimization”, in
IEEE Computational Intelligence Magazine, DOI:
10.1109/MCI.2006.329691, pp.28-39, 2006.

[10] M. Dorigo, L.M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem”, in IEEE
Transactions on Evolutionary Computation (1997), DOI:
10.1109/4235.585892, pp.53–66, 1997.

[11] E. Salari, K. Eshghi, “An ACO algorithmfor graph coloring problem”
in Congress on Computational Intelligence Methods and
Applications, 2005, DOI: 10.1109/CIMA.2005.1662331, p. 5, 2005.

[12] Xiaoxia Zhang, Lixin Tang, “CT-ACO—hybridizing ant colony
optimization with cycle transfer search for the vehicle routing
problem” in Congress on Computational Intelligence Methods and
Applications, 2005, DOI: 10.1109/CIMA.2005.1662313, p. 6, 2005.

[13] Buyya, R., Ranjan, R., Calheiros, R.N., “Modeling and Simulation of
Scalable Cloud Computing Environments and the CloudSim Toolkit:
Challenges and Opportunities” in Proceedings of the 7th High
Performance Computing and Simulation (HPCS 2009) Conference,
Leipzig, Germany, DOI: 10.1109/HPCSIM.2009.5192685, 2009 .

[14] Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R., “
CloudSim: A Novel Framework for Modeling and Simulation of
Cloud Computing Infrastructures and Services” in Technical Report,
GRIDS-TR-2009-1, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia, 2009.

[15] Ghalem, B., Fatima Zohra, T., and Wieme, Z. “Approaches to
Improve the Resources Management in the Simulator CloudSim” in
ICICA 2010, LNCS 6377, DOI: 10.1007/978-3-642-16167-4_25, pp.
189–196, 2010.

[16] Bhathiya, W., Buyya, R., Ranjan, R., “CloudAnalyst: A CloudSim-
based Visual Modeller for Analysing Cloud Computing
Environments and Applications” in 2010 24th IEEE International
Conference on Advanced Information Networking and Applications,
pp.446-452, 2010.

[17] Hui, Y., Xueqin, S., Xing, L.,Minghui, W,. “An improved ant
algorithm for job scheduling in Grid ” in Proceedings of the Fourth
International Conference on Machine Learning and Cybernetics,
DOI: 10.1109/ICMLC.2005.1527448 , pp. 2957-2961, 2005.

[18] Manpreet Singh, “GRAAA: Grid Resource Allocation Based on Ant
Algorithm” in 2010 Academy Publisher DOI: 10.4304/jait.1.3.133-
135, 2010.

88

Downloaded from Iran library: (www.libdl.ir) | Sponsored by Tehran Business School (www.tbs.ir)

 6 / 7

[19] Ajay, K., Arnesh, S., Sanchit, A., and Satish, C., “An ACO Approach
to Job Scheduling in Grid Environment” in Springer-Verlag Berlin
Heidelberg 2010, SEMCCO 2010, LNCS 6466, DOI: 10.1007/978-3-
642-17563-3_35, pp. 286–295, 2010.

[20] Li, L., Yi, Y., Lian, L., and Wanbin, S.,“Using Ant Colony
Optimization for SuperScheduling in Computational Grid” in 2006
IEEE Asia-Pacific Conference on Service Computing, ISBN: 0-
7695-2751-5, 2006.

[21] Liang, B., Yanli, H., Songyang, L., Weiming, Z., “Task Scheduling
with Load Balancing using Multiple Ant Colonies Optimization in
Grid Computing” in 2010 Sixth International Conference on Natural
Computation (ICNC 2010), DIO: 10.1109/ICNC.2010.5582599,
pp.2715-2719, 2010.

[22] Bing, T., Yingying, Y., Quan, L., Zude, Z, “Research on the
Application of Ant Colony Algorithm in Grid Resource Scheduling”
in Wireless Communications, Networking and Mobile Computing,
2008. WiCOM '08. 4th International Conference, DOI:
10.1109/WiCom.2008.1354, pp.1-4, 2008.

[23] Jin, X., Lam, A.Y.S., Li, V.O.K., “Chemical Reaction Optimization
for the Grid Scheduling Problem” in Communications (ICC), 2010
IEEE International Conference, DOI: 10.1109/ICC.2010.5502406
pp.1-5, 2010.

[24] Meihong, W., Wenhua, Z., “A comparison of four popular heuristics
for task scheduling problem in computational grid” in Wireless
Communications Networking and Mobile Computing (WiCOM),
2010 6th International Conference, DOI:
10.1109/WICOM.2010.5600872, 2010.

[25] Ku Ruhana Ku-Mahamud, Husna Jamal Abdul Nasir, "Ant Colony
Algorithm for Job Scheduling in Grid Computing" in ams, 2010
Fourth Asia International Conference on Mathematical/Analytical
Modelling and Computer Simulation, pp.40-45, 2010

[26] M. Bandieramonte, A. Di Stefano and G. Morana, “Grid jobs
scheduling: The Alienated Ant Algorithm solution” in Multiagent
and Grid Systems – An International Journal 6 (2010), DOI:
10.3233/MGS-2010-0149, pp.225–243, 2010.

[27] Fidanova, S., and Durchova, M., “Ant Algorithm for Grid Scheduling
Problem” in Lecture Notes in Computer Science, 2006, Volume
3743/2006, DOI: 10.1007/11666806_46, pp.405-412, 2006.

[28] Bagherzadeh, J., MadadyarAdeh, M., “An Improved Ant Algorithm
for Grid Scheduling Problem” in Computer Conference, 2009.
CSICC 2009. 14th International CSI, DOI:
10.1109/CSICC.2009.5349368, pp.323-328, 2009.

[29] Lorpunmanee, S., Sap, M.N, Abdul Hanan Abdullah, A.H., “An Ant
Colony Optimization for Dynamic Job Scheduling in Grid
Environment” in Proceedings of World Academy of Science, English
and Technology Volume 23 august 2007, ISSN 1307-6884, 2007.

99

Downloaded from Iran library: (www.libdl.ir) | Sponsored by Tehran Business School (www.tbs.ir)

Powered by TCPDF (www.tcpdf.org)

 7 / 7

http://www.tcpdf.org

