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A  novel  population-based  algorithm  based  on  the mine  bomb  explosion  concept,  called  the  mine  blast
algorithm  (MBA),  is applied  to  the  constrained  optimization  and  engineering  design  problems.  A com-
prehensive  comparative  study  has  been  carried  out  to show  the  performance  of  the MBA over  other
recognized  optimizers  in terms  of computational  effort  (measured  as  the  number  of  function  evaluations)
and  function  value  (accuracy).  Sixteen  constrained  benchmark  and  engineering  design  problems  have
been  solved  and  the  obtained  results  were  compared  with  other  well-known  optimizers.  The  obtained
eywords:
ine blast algorithm
etaheuristic

onstrained optimization
ngineering design problems
onstraint handling
lobal optimization

results  demonstrate  that,  the  proposed  MBA  requires  less  number  of  function  evaluations  and  in  most
cases gives  better  results  compared  to other  considered  algorithms.

©  2012  Elsevier  B.V.  All rights  reserved.
. Introduction

Over the last decades, various algorithms have been used to
olve diverse constrained engineering optimization problems. Most
f these algorithms are based on numerical linear and nonlinear
rogramming methods that require substantial gradient informa-
ion and usually seek to improve the solution in the neighborhood
f a starting point.

These numerical optimization algorithms provide useful strate-
ies to obtain the global optimum using simple and ideal models.
any real-world engineering optimization problems, however, are

ery complex in nature and quite difficult to solve. If a problem has
ore than one local optimum, the result may  depend on the selec-

ion of an initial point, and the obtained optimal solution may  not
ecessarily be the global optimum.

Furthermore, the gradient search may  become difficult and
nstable when the objective function and the constraints have
ultiple or sharp peaks. The computational drawbacks of existing

umerical methods have forced researchers to rely on meta-
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

euristic algorithms based on the simulations and mimicking the
ehavior of natural phenomena to solve complex engineering opti-
ization problems.

∗ Corresponding author. Tel.: +60 126283265; fax: +60 379675330.
E-mail address: bahreininejad@um.edu.my (A. Bahreininejad).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.11.026
The common factor in metaheuristic algorithms is that they
combine rules and randomness to imitate natural phenomena [1].
These phenomena include the biological evolutionary process such
as genetic algorithms (GAs) proposed by Holland [2] and Goldberg
[3],  swarm behavior such as particle swarm optimization (PSO) pro-
posed by Kennedy and Eberhart [4],  and the physical annealing
which is generally known as simulated annealing (SA) proposed
by Kirkpatrick et al. [5].

Among optimization methods, evolutionary algorithms (EAs)
which are generally known as general purpose optimization algo-
rithms are capable of finding the near-optimal solution to the
numerical real-valued test problems. EAs have been successfully
applied to constrained optimization problems [6].

GAs are based on the genetic process of biological organisms
[2,3]. Over many generations, natural populations evolve according
to the principles of natural selection (i.e., survival of the fittest). The
efficiency of the different architectures of evolutionary algorithms
in comparison to other heuristic techniques has been tested in both
generic [7–9] and engineering design [10] problems.

Recently, Chootinan and Chen [11] proposed a constraint-
handling technique by taking a gradient-based repair method.
The proposed technique is embedded into GAs as a special
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

operator. Tang et al. [12] proposed the improved genetic algo-
rithm (IGA) based on a novel selection strategy to handle
nonlinear programming problems. Accordingly, Yuan and Qian
[13] developed a new hybrid genetic algorithm (HGA) to solve

dx.doi.org/10.1016/j.asoc.2012.11.026
dx.doi.org/10.1016/j.asoc.2012.11.026
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:bahreininejad@um.edu.my
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wice continuously differentiable nonlinear programming (NLP)
roblems.

The HGA combines the genetic algorithm with local solver
ifferently from some hybrid genetic algorithms. Amirjanov [14]

nvestigated an approach that adaptively shifts and shrinks the size
f the search space of the feasible region which is called changing
ange genetic algorithm (CRGA).

PSO is a recently developed heuristic technique, inspired by
horeography of a bird flock developed by Kennedy and Eberhart
4].  The approach can be viewed as a distributed behavioral algo-
ithm that performs a multidimensional search. It makes use of a
elocity vector to update the current position of each particle in the
warm.

In Ref. [15], there are some suggestions for choosing the param-
ters used in PSO. He and Wang [16] proposed an effective
o-evolutionary PSO (CPSO) for constrained problems, where PSO
as applied to evolve both decision and penalty factors. Recently,
omes applied PSO on truss optimization using dynamic con-
traints [17]. Coelho [18] studied quantum-behaved PSO (QPSO)
hich is derived using mutation operator with Gaussian probabil-

ty distribution. He and Wang [19] developed a new hybrid PSO
HPSO) with a feasibility-based rule to solve constrained optimiza-
ion problems.

Recently, several hybrid optimization methods have been
roposed for constrained optimization problems [20–22].  In addi-
ion, differential evolution (DE) algorithm which is a scheme for
enerating trial parameter vectors has been widely used for con-
trained optimization problems [23,24]. Various other optimization
ethods have been developed for solving complex and real-life

roblems, particularly for solving engineering constrained prob-
ems [25].

Examples of such methods include teaching-learning-based
ptimization (TLBO) [26–28] which is based on the influence of a
eacher on learners, the harmony search (HS) [1] algorithm which is
onceptualized using the musical process of searching for a perfect
tate of harmony, and the society and civilization (SC) [29] which
s inspired from intra and intersociety interactions within a formal
ociety and the civilization model to solve constrained optimization
roblems. These algorithms have been applied to numerous engi-
eering optimization problems and have shown the efficiencies in
olving some specific kinds of problem.

This paper introduces a new metaheuristic algorithm, so called
he mine blast algorithm (MBA) which the concepts are inspired
orm the explosion of mine bombs in real life situations. Recently,
izing optimization of truss structures with discrete variables was
olved using the MBA  [30]. In this paper, the proposed method
s applied for constrained and engineering design problems with
iscrete and continues variables.

The remaining of this paper is organized as follows: Section 2
resents the concepts of the proposed method in details. Guide-

ines for selecting the related MBA  parameters and their effects
re also given in Section 2. In Section 3, the performance of MBA
s tested on different constrained optimization and engineering
esign problems and the results are compared with other well-
nown optimizers in terms of number of function evaluations
computational cost) and function value (accuracy). Finally, con-
lusions are given in Section 4.

. Mine blast algorithm

.1. Basic concepts
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
engineering optimization problems, Appl. Soft Comput. J. (2012), http

The idea of the proposed algorithm is based on the observation
f a mine bomb explosion, in which the thrown pieces of shrapnel
ollide with other mine bombs near the explosion area resulting in
 PRESS
puting xxx (2012) xxx–xxx

their explosion. To understand this situation, consider a mine field
where the aim is to clear the mines. Hence, the goal is to find the
mines, while importantly to find the one with the most explosive
effect located at the optimal point X* which can cause the most
casualties (min or max  f(x) per X*).

The mine bombs of different sizes and explosive powers are
planted under the ground. When a mine bomb is exploded, it
spreads many shrapnel pieces and the casualties (f(x)) caused by
each piece of shrapnel are calculated. A high value for casualties
per piece of shrapnel in an area may  indicate the existence of other
mines which may  or may  not have higher explosive power.

Each shrapnel piece has definite directions and distances to col-
lide with other mine bombs which may  lead to the explosion of
other mines due to the collision. The collision of shrapnel pieces
with other mines may  lead us to discover the most explosive mine.
The casualties caused by the explosion of a mine bomb are con-
sidered as the fitness of the objective function at the mine bomb’s
location. The domain (mine field) solution may  be divided into infi-
nite grid where there is one mine bomb in each portion of the
grid.

2.2. Proposed method

The proposed MBA  starts with an initial point(s) called the first
shot point(s). The first shot point is represented by Xf

0. The super-
script f refers to the number of first shot point(s) (f = 1, 2, 3, . . .),
where f can be a user defined parameter. However, the proposed
algorithm can also randomly choose the location(s) of the first shot
point(s) using the lower and upper bound values of a problem.
This algorithm requires an initial population of individuals as is the
case with several other metaheuristic methods. This population is
generated by a first shot explosion producing a number of individ-
uals (shrapnel pieces). The number of initial population (Npop) is
considered as the number of shrapnel pieces (Ns).

The algorithm uses the lower and upper bound values specified
by a problem. It then creates the first shot point value by a small
randomly generated value given as:

X0 = LB + rand × (UB − LB)  (1)

where X0, LB and UB are the generated first shot point, lower and
upper bounds of the problem, respectively. rand is a uniformly
distributed random number between 0 and 1. Although in all opti-
mization simulations conducted in this research one first shot point
was used efficiently, however, more than one first shot points may
be used which results in an increase in the initial population and
subsequently results in an increase in the number of function eval-
uations (computational cost).

Suppose that X is the current location of a mine bomb given as:

X = {Xm}, m = 1, 2, 3, . . . , Nd (2)

in which Nd is the search space dimension equal to the num-
ber of independent variables. Consider that Ns shrapnel pieces are
produced by the mine bomb explosion causing another mine to
explode at Xn+1 location:

Xf
n+1 = Xf

e(n+1) + exp

(
−
√

mf
n+1

df
n+1

)
Xf

n, n = 0, 1, 2, 3, . . . (3)

where Xf
e(n+1), df

n+1 and mf
n+1 are the location of exploding mine

bomb collided by shrapnel, the distance and the direction (slope)
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

of the thrown shrapnel pieces in each iteration, respectively. The
location of exploding mine bomb Xf

e(n+1) is defined as:

Xf
e(n+1) = df

n × rand × cos(�), n = 0, 1, 2, . . . (4)

dx.doi.org/10.1016/j.asoc.2012.11.026
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here rand is a uniformly distributed random number and � is
he angle of the shrapnel pieces which is a constant value and is
alculated using � = 360/Ns.

The concept of Eq. (4) is to simulate the explosion of mine bombs
n the real world. Each shrapnel pieces (individual), having vari-
ble distances from the point of explosion and definite directions,
xplore the domain space in 360◦ at each iteration specified by �

nd df
n in order to find the best optimal point. The value of � is set

o 360/Ns in order to conduct uniform search in the domain space.
his can prevent the accumulation of individuals in a specific region
f the domain search.

The exponential term in Eq. (3) is used to improve the obtained
last point by influencing the information from previous solutions
Xf

n). The distance df
n+1 and the direction of shrapnel pieces mf

n+1
re defined as:

f
n+1 =

√
(Xf

n+1 − Xf
n)

2 + (Ff
n+1 − Ff

n)
2
, n = 0, 1, 2, 3, . . . (5)

f
n+1 =

Ff
n+1 − Ff

n

Xf
n+1 − Xf

n

, n = 0, 1, 2, 3, . . . (6)

here F is the function value for the X. To calculate the initial dis-
ance for each shrapnel pieces d0 = (UB − LB)  in each dimensions
s used. The initial distance given by the proposed algorithm is
sed to search the best solution within a range (LB < d0 < UB) that is
omputed by the product of the initial distance and a randomly gen-
rated number (for example rand function in MATLAB software).

Furthermore, in order to conduct exploration of the design
pace at smaller and larger distances, the exploration factor (�)
s introduced. This constant, which is used in the early iterations
f the algorithm, is compared with an iteration number index (k),
nd if it is higher than k, then the exploration process begins. The
quations for the exploration of the solution space are given as:

f
n+1 = df

n × (
∣∣randn

∣∣)2
, n = 0, 1, 2, . . . (7)

f
e(n+1) = df

n+1 × cos(�), n = 0, 1, 2, . . . (8)

here randn is normally distributed pseudorandom number
obtained using randn function in MATLAB). During the exploration
rocess when the � is applied, the distance of each shrapnel pieces

s modified using Eq. (7).  The square of a normally distributed ran-
om number offers the advantage of search ability at smaller and

arger distances giving better exploration in early iterations. There-
ore, the exploration process shifts the shrapnel pieces closer to the
ptimum point in early iterations. A higher value for the exploration
actor (�) makes it possible to explore more remote regions (better
xploration), thus, the value of � determines the intensity of the
xploration.

To increase the global search ability of the proposed method,
nitial distance of shrapnel pieces are reduced gradually to allow
he mine bombs search the probable global minimum location. The
eduction in df

0 is given as:

f
n =

df
n−1

exp(k/˛)
, n = 1, 2, 3, . . . (9)

here  ̨ and k are reduction constants and iteration number index,
espectively. The choice of  ̨ which is user parameter depends on
he complexity of the problem. The effect of  ̨ is to reduce the
istance of each shrapnel pieces adaptively using Eq. (9).  Thus
he whole interval from lower bound to upper bound for a given
roblem is searched. At the final iteration, the value of distance of
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

hrapnel will be approximately equal to zero (ε = 2.2E–16 in MAT-
AB). The schematic diagram of the algorithm representing two
spects of the MBA  (exploration in color lines and exploitation in
lack color lines) is shown in Fig. 1.
 PRESS
puting xxx (2012) xxx–xxx 3

Based on Fig. 1, there are two processes for searching the solu-
tion domain in order to find the global optimum solution, the
exploration and exploitation processes. The difference between
these two processes is how they influence the whole search pro-
cess toward the optimal solution. More specifically, the exploration
factor describes the exploration process (color lines in Fig. 1). The
exploration factor (�) represents the number of first iterations.
Hence, if � is set to 10, then for 10 iterations the algorithm uses
Eqs. (7) and (8) for calculating the distance of shrapnel pieces and
the location of the exploded mine bomb, respectively.

On the other hand, for the exploitation process (black lines in
Fig. 1), the algorithm is encouraged to focus on the optimal point.
In particular, with respect to the exploitation process, the proposed
algorithm converges to the global optimum solution using Eqs.
(4)–(6) to calculate the location of exploded mine bomb, distance
and the direction of shrapnel pieces, respectively. The distance of
shrapnel pieces is reduced adaptively using Eq. (9) in exploitation
process (i.e., as it converges to the optimal solution). The pseu-
docode for the exploration and exploitation processes is as follows:
if � > k
Exploration (Eqs. (7) and (8))
else
Exploitation (Eqs. (4)–(6),  and (9))
end

where k is the iteration number index.

2.3. Setting the user parameters

Wrong choice of values for algorithm parameters may result in
a low convergence rate, convergence to a local minimum, or unde-
sired solutions. Hence, the following guidelines to fine tune the
parameters are offered:

• For simple to medium complexity optimization problems, a
choice of 10–15 pieces of shrapnel per mine bomb may  be suffi-
cient. For more complex problems, higher values for the number
of shrapnel pieces (Ns) is recommended for more mine explo-
sions in the field which allows better search for the design space.
For highly complex problems Ns may  be chosen as 50. On  the
other hand, increasing the number of shrapnel pieces increases
the computation time in addition to an increase in the number
of function evaluations. In other word, the number of shrapnel
pieces is equal to the number of population (Ns = Npop).

• Exploration factor (�) highly depends on the complexity of the
problem, the number of independent variables and constraints,
in addition to the interval span. Usually, for less than four design
variables and moderately complex functions, the value of � may
be taken as zero. Increasing � may  lead the possibility of getting
trapped in local minima.

• Reduction constant (˛) also depends on the complexity of the
problem, number of decision variables, and interval span. When
the interval span (LB and UB)  is large, large value for  ̨ should be
chosen for more exploration. That means if we have interval span
[−100,100], then  ̨ = 100 may  not be a good choice and instead

 ̨ = 1000 may  be better choice. A large value for  ̨ increases the
probability of finding global minimum but leads to increase in
computational time.

2.4. Effects of algorithm parameters

The choice and tuning of the initial parameters are highly impor-
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

tant attributes for most metaheuristic algorithms. As explained in
Section 2.3, the wrong choice of user parameters may  lead to unsa-
tisfactory results, high computational costs and getting trapped in
local minima.

dx.doi.org/10.1016/j.asoc.2012.11.026
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of iterations, CPU time, or ε which is a small value and is defined
as an allowable tolerance between the last two results. The MBA
proceeds until the above convergence criteria are satisfied.
ig. 1. Schematic view of the mine blast algorithm including of exploration (color li
n  this figure legend, the reader is referred to the web  version of the article.)

In order to further clarify the setting of the initial parameters
or the proposed method, three cases are provided. In each case,
ifferent results using diverse user parameters are shown. Case 3
epresents the best used initial parameters. The number of popu-
ation (Npop) which is considered as the number of shrapnel pieces
Ns) and number of iterations are assumed constant parameters.

The number of shrapnel pieces (Ns = Npop) was  chosen 50 for
ressure vessel and speed reducer design problems. Similarly, the
umber of iterations was considered 2000 and 1000 iterations for
ressure vessel and speed reducer design problems, respectively.
hese two test functions are given in Appendix B.

The exploration and reduction constants (� and ˛) were varied
o see the effects of changing the user parameters for statisti-
al results. Table 1 demonstrates the effect of choosing initial
arameters for the two considered design problems. The task of
ptimization was  run for 30 independent runs for both problems.

As can be seen from Table 1 and described in Section 2.3,  Case 3
ffers superior results compared with other cases in terms of statis-
ical results for both design problems. Using exploration factor (�)
ives the algorithm more freedom to search wider range resulting
n detection of better solutions.

Accordingly, as the name of reduction constant (˛) represents,
t divides the distance of each shrapnel pieces to  ̨ interval dis-
ances and enables searching within the reduced intervals in each
teration. The simple concept behind  ̨ is that searching in smaller
istance is carried out faster than searching in a large space. Hence,
igher values of  ̨ results in increasing the probability of finding
lobal optimum solution.

.5. Constraint handling

In the current work, a modified feasible-based mechanism is
sed to handle the problem specific constraints which consist of
he following four rules [31]:

Rule 1: Any feasible solution is preferred to any infeasible solu-
tion.
Rule 2: Infeasible solutions containing slight violation of the
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
engineering optimization problems, Appl. Soft Comput. J. (2012), http

constraints (from 0.01 in the first iteration to 0.001 in the last
iteration) are considered as feasible solutions.
Rule 3: Between two feasible solutions, the one having the better
objective function value is preferred.
nd exploitation (black lines) processes. (For interpretation of the references to color

• Rule 4: Between two  infeasible solutions, the one having the
smaller sum of constraint violation is preferred.

By using the first and fourth rules, the search is oriented to the
feasible region rather than to the infeasible region, and by employ-
ing the third rule the search is directed to the feasible region with
good solutions [31]. For most structural optimization problems, the
global minimum locates on or close to the boundary of a feasi-
ble design space. By applying rule 2, the shrapnel pieces approach
the boundaries and can reach the global minimum with a higher
probability [32].

Fig. 2 shows the constraint handling approach by the MBA. As
can be seen from Fig. 2, in the search space, shrapnel pieces may
violate either the problem specific constraints or the limits of the
design variables. In this case, the distance of infeasible shrapnel
piece (e.g. X3 in Fig. 2) is reduced adaptively using Eq. (9) whereas
that violated shrapnel piece is also placed in the feasible region.

2.6. Convergence criteria

For termination criteria, as commonly considered in meta-
heuristic algorithms, the best result is calculated where the
termination condition may be assumed as the maximum number
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

Fig. 2. Schematic view of constraint handling approach using the proposed method.

dx.doi.org/10.1016/j.asoc.2012.11.026
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Table  1
Effects of the algorithm parameters for two  design problems.

Results Pressure vessel problem Speed reducer problem

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
�  = 0 � = 5 � = 10 � = 0 � = 5 � = 10
˛  = 5000  ̨ = 25,000  ̨ = 50,000  ̨ = 100  ̨ = 300  ̨ = 500

Best 5935.8659 5949.6481 5889.3216 3000.5738 2997.3158 2994.4824
00.6476 3009.2497 3000.8920 2996.6524
92.5062 3020.1824 3005.5041 2999.6524
60.34 5.29 3.25 1.56
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Table 2
User parameters used for MBA  for sixteen constrained and engineering problems.

Problem Ns  ̨ � Max  iteration

Problem 1 20 500 0 500
Problem 2 15 20,000 0 1000
Problem 3 30 1000 0 300
Problem 4 25 300 0 100
Problem 5 15 1000 0 300
Problem 6 50 100,000 10 2500
Problem 7 50 20,000 5 1000
Problem 8 50 5000 0 500
Three-bar truss 40 5000 0 500
Pressure vessel 50 50,000 10 2000
Spring design 50 5000 0 1000
Welded beam 30 150,000 5 2000
Speed reducer 50 500 10 500

for this problem is equal to zero, which indicates that the worst,
mean, and best solutions are the same.

Table 3 represents the comparison of the best solution and the
corresponding design variables among different optimizers. As can

Table 3
Comparison of results obtained from different methods for constrained problem 1.

Method X1 X2 h(X) g(X) f(X)

EP 0.8350 0.9125 1.0E−02 −7.0E−02 1.3772
Mean 6278.2867 6110.8637 62
Worst 6876.8879 6481.8895 63
SD 313.56 177.3 1

.7. The steps of MBA

The steps of MBA  are summarized as follows:

Step 1: Choose the initial parameters of MBA: Ns, �, ˛, and maxi-
mum  number of iterations.
Step 2: Check the condition of exploration factor (�).
Step 3: If condition of exploration factor is satisfied, calculate the
distance of shrapnel pieces and their locations according to Eqs.
(7) and (8),  respectively. Otherwise, go to Step 10.
Step 4: Calculate the direction of shrapnel pieces according to Eq.
(6).
Step 5: Generate the shrapnel pieces and compute their improved
locations using Eq. (3).
Step 6: Check the constraints for generated shrapnel pieces.
Step 7: Save the best shrapnel piece as the best temporal solution.
Step 8: Does the shrapnel piece have the lower function value than
the best temporal solution?
Step 9: If true, exchange the position of the shrapnel piece with
the best temporal solution. Otherwise, go to Step 10.
Step 10: Calculate the distance of shrapnel pieces and their loca-
tions using Eqs. (4) and (5) and return to Step 4.
Step 11: Reduce the distance of the shrapnel pieces adaptively
using Eq. (9).
Step 12: Check the convergence criteria. If the stopping criterion is
satisfied, the algorithm will be stopped. Otherwise, return to Step
2.

. Experimental studies

In this section, the performance of MBA  is examined by solving
everal constrained optimization problems. In order to validate the
roposed method for constraint problems, first, eight constrained
enchmark problems (see Appendix A) have been examined and
hen, the resulting performance of MBA  against eight engineering
enchmark design problems (see Appendix B) that are widely used

n literatures were tested and the results have been compared with
ther well-known optimizers. Obtained optimization results were
ompared in terms of statistical results and NFEs.

The number of function evaluations (NFEs) (computational cost)
hich is considered as the best NFEs corresponding to the obtained

est solution in this paper, is calculated by the product of the
umber of shrapnel pieces and the number of iterations (i.e.
FEs = Ns × Iteration number). In other words, the NFEs considered

n this paper is the one found for the best optimal solution.
The reported benchmark problems include objective functions

nd constraints of various types and natures (quadratic, cubic, poly-
omial and nonlinear) with various number of design variables, and
umber of inequality and equality constraints.

The proposed algorithm was coded in MATLAB programming
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

oftware and the simulations and numerical solutions were run
n a Pentium V 2.53 GHz with 4 GB RAM. The task of optimizing
ach constrained benchmark and mechanical design problems was
xecuted using 100 independent runs. Relatively simple constraint
Gear train 20 1000 0 500
Belleville spring 50 100,000 10 300
Rolling element bearing 50 5000 10 1000

functions to complex and nonlinear programming (NLPs) problems
were solved in this research.

The maximization problems were transformed into minimi-
zation ones using −f(x). All equality constraints were converted
into inequality ones, |h(x)| − ı ≤ 0 using the degree of violation
ı = 2.2E−16 that was  taken from MATLAB software. The user param-
eters of MBA  which were used for benchmark constrained functions
and engineering problems are presented in Table 2.

3.1. Constrained problem 1

This minimization problem, originally introduced by Braken
and McCormick [33], is a relatively simple constrained minimi-
zation problem. The optimum solution is obtained at X* = (0.82288,
0.91144) with an objective function value equal to f(X*) = 1.393454.
Homaifar and his colleagues [34] solved this problem using the GA.

Fogel [35] compared the result of evolutionary programming
(EP) with results obtained using GA. Lee and Geem [1] applied
harmony search (HS) method and found their best solution after
approximately 40,000 searches. By applying the MBA, the best
solution obtained at X* = (0.822875, 0.911437) with an objective
function value equal to f(X*) = 1.3934649 only after 2140 function
evaluations. The standard deviation (SD) of the proposed method
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

GA  0.8080 0.8854 3.7E−02 5.2E−02 1.4339
HS 0.8343 0.9121 5E−03 5.4E−03 1.3770
MBA  0.822875 0.911437 1.11E−16 0 1.3934649
Optimal 0.82288 0.91144 7.05E−09 1.73E−08 1.393454

dx.doi.org/10.1016/j.asoc.2012.11.026
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Fig. 3. Function values versus number of iterations for the constrained problem 1.

Table 4
Comparison of best solution for constrained problem 2.

Method X1 X2 h(X) f(X)

b
i
c
s
t

3

t
(
m
m
e
m
r
l
w
a
[
m

a
s
T

T
C
p

CULDE −0.707036 0.500000 1.94E−04 0.749900
MBA  −0.706958 0.499790 8.82E−15 0.750000
Optimal −0.70711 0.5 0 0.750000

e seen from Table 3, the optimization results obtained by MBA
s very close to the optimal solution and MBA  outperformed other
onsidered optimizers in terms of the objective function value, con-
traint accuracy, and NFEs. Fig. 3 shows the function values versus
he number of iterations for the constrained problem 1.

.2. Constrained problem 2

For this minimization problem, MBA  is compared with six-
een optimizers: CRGA [14], self adaptive penalty function
SAPF) [36], cultured differential evolution (CULDE) [37], simple

ulti-membered evolution strategy (SMES) [38], homomorphous
appings (HM) [39], adaptive segregational constraint handling

volutionary algorithm (ASCHEA) [40], PSO, particle swarm opti-
ization with differential evolution (PSO-DE) [41], stochastic

anking (SR) [42], differential evolution (DE) [43], differential evo-
ution with level comparison (DELC) [44], differential evolution

ith dynamic stochastic selection (DEDS) [45], hybrid evolution-
ry algorithm and adaptive constraint handling technique (HEAA)
46], improved stochastic ranking (ISR) [47],  ̨ constraint simplex

ethod (  ̨ Simplex) [48], and artificial bee colony (ABC) [49].
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
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Table 4 represents the comparisons between optimal solutions
nd related design variables for two methods. The comparison of
tatistical results for constrained problem 2 is given in Table 5. From
able 5, MBA  reached the optimal solution as most of the algorithms

able 5
omparison of statistical results obtained using different algorithms for constrained
roblem 2. “N.A” means not available.

Method Worst Mean Best SD NFEs

HM 0.75 0.75 0.75 N.A 1,400,000
ASCHEA N.A 0.75 0.75 N.A 1,500,000
CRGA 0.757 0.752 0.750 2.5E−03 3000
SAPF 0.757 0.751 0.749 2E−03 500,000
CULDE 0.796455 0.757995 0.749900 1.71E−02 100,100
SMES 0.75 0.75 0.75 1.52E−04 75,000
PSO  0.998823 0.860530 0.750000 8.4E−02 70,100
PSO-DE 0.750001 0.749999 0.749999 2.5E−07 70,100
DE  0.74900 0.74900 0.74900 N.A 30,000
SR  0.750 0.750 0.750 8E−05 350,000
DELC 0.750 0.750 0.750 0 50,000
DEDS 0.7499 0.7499 0.7499 0 225,000
HEAA 0.750 0.750 0.750 3.4E−16 200,000
ISR 0.750 0.750 0.750 1.1E−16 137,200
˛  Simplex 0.7499 0.7499 0.7499 4.9E−16 308,125
ABC 0.75 0.75 0.75 0 240,000
MBA  0.750011 0.750003 0.750000 3.29E−06 6405
Fig. 4. Function values versus number of iterations for the constrained problem 2.

considered in this paper. However, except for CRGA, MBA  offered
better results compared to all considered optimizers in terms of
NFEs as shown in Table 5.

Fig. 4 depicts the function values with respect to the number of
iterations for the constrained problem 2. By observing Fig. 4, MBA
reached the near optimal solution in the early iterations of the algo-
rithm. This advantage is seen in other constrained problems and
may  be considered as a superiority factor of the proposed method.

3.3. Constrained problem 3

The constrained minimum solution is located at X* = (2.246826,
2.381865) with an objective function value equal to
f(X*) = 13.59085. The MBA  was  applied and found its optimal
solution at X* = (2.24683, 2.381997) with a corresponding function
value f(X*) = 13.590842 using 4560 function evaluations. The
HS reached the same optimal value after 15,000 searches. The
statistical results (worst, mean, best solution, and SD) are given as
13.592670, 13.591027, 13.590842, and 3.64E−04, respectively.

The MBA’s best solution was compared to the previous solu-
tions reported by Deb [50] and HS, as shown in Table 6. Deb solved
this problem using the hybrid GA-based method with tournament
selection (TS-R method) and with Powell and Skolnick’s constraint
handling method (PS method), and obtained the best solution of
13.59085 using TS-R method, which showed an excellent agree-
ment with the optimal solution. The MBA  superiority on HS is in
terms of NFEs, function value, and constrained accuracy. Fig. 5 rep-
resents the function values versus the number of iterations for the
constrained problem 3.

3.4. Constrained problem 4

This maximization problem was  previously solved using HM,
SR, ASCHEA, cultural algorithms with evolutionary programming
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

(CAEP) [51], HPSO, hybrid nelder-mead simplex search and particle
swarm optimization (NM-PSO) [52], PSO-DE, PSO, GA [11], SMES,
CRGA, SAPF, CULDE, DE, DELC, DEDS, ISR, HEAA, ABC, and  ̨ Simplex.

Fig. 5. Function values versus number of iterations for the constrained problem 3.
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Table  6
Comparison of optimization results obtained from previous studies for constrained problem 3. “N.A” stands for not available.

D.V GA with PS (R = 0.01) GA with PS (R = 1) GA with TS HS MBA  Optimal solution

X1 N.A N.A 2.246826 2.246840 2.246833 2.246826
X2 N.A N.A 2.381865 2.382136 2.381997 2.381865
g1(X) N.A N.A N.A −2.09E−06 0 3.52E−07
g2(X) N.A N.A N.A −0.222181 −0.222183 −0.2221829
f(X)  13.58958 13.59108 13.59085 13.590845 13.590842 13.59085

Table 7
Comparison of statistical results obtained from MBA  and previous studies for constrained problem 4.

Method Worst Mean Best SD NFEs

HM −0.0291438 −0.0891568 −0.0958250 N.A 1,400,000
ASCHEA N.A −0.095825 −0.095825 N.A 1,500,000
PSO −0.02914408 −0.09449230 −0.09582594 9.4E−03 10,600
PSO-DE −0.0958259 −0.0958259 −0.0958259 1.3E−12 10,600
SR  −0.0958250 −0.0958250 −0.0958250 2.6E−17 76,200
CAEP −0.0958250 −0.0958250 −0.0958250 0 50,020
DE  −0.0958250 −0.0958250 −0.0958250 N.A 10,000
HPSO  −0.0958250 −0.0958250 −0.0958250 1.2E−10 81,000
NM-PSO −0.0958250 −0.0958250 −0.0958250 3.5E−08 2103
CRGA  −0.095808 −0.095819 −0.095825 4.40E−06 64,900
SAPF  −0.092697 −0.095635 −0.095825 1.055E−03 500,000
GA  −0.0958250 −0.0958250 −0.0958250 2.70E−09 4486
SMES −0.095825 −0.095825 −0.095825 0 240,000
CULDE −0.095825 −0.095825 −0.095825 1E−07 100,100
DELC −0.095825 −0.095825 −0.095825 1.0E−17 5000
DEDS  −0.095825 −0.095825 −0.095825 4.0E−17 225,000
HEAA  −0.095825 −0.095825 −0.095825 2.8E−17 200,000
ISR −0.095825 −0.095825 −0.095825 2.7E−17 160,000
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˛  Simplex −0.095825 −0.095825 

ABC  −0.0958250 −0.095825 

MBA  −0.0958250 −0.0958250 

The comparison of the obtained results for different algo-
ithms is given in Table 7. The MBA  obtained its best solution
fter 1600 function evaluations. From Table 7, although most con-
idered methods reached the optimal solution, however, MBA
ound its optimal solution with the lowest NFEs and SD equal
o zero. Fig. 6 represents the function values versus the num-
er of iterations for this problem. As shown in Fig. 6, the MBA
eached close to the optimum value in the early iterations of the
lgorithm.

.5. Constrained problem 5

This minimization problem was previously solved using HM,
SCHEA, filter simulated annealing (FSA) [53], GA, NM-PSO, SR,
RGA, CULDE, PSO-DE, PSO, SAPF, SMES, DE, DELC, DEDS, ISR, HEAA,
BC, and  ̨ Simplex. The comparison of the obtained results for
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
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ifferent algorithms is given in Table 8. Almost all considered opti-
izers found the best solution, however MBA  reached its best

olution faster with considerably less NFEs. Fig. 7 shows the func-
ion values in terms of the number of iterations for the constrained

ig. 6. Function values versus number of iterations for constrained problem 4.
−0.095825 3.8E−13 306,248
−0.095825 0 240,000
−0.0958250 0 1600

problem 5. By observing Fig. 7, the proposed algorithm converged
to near optimum point in the early iterations.

3.6. Constrained problem 6

For this minimization problem, best solution for a number of
optimizers was compared in Table 9. Table 10 represents the com-
parison of statistical results for the constrained problem 6 obtained
using MBA, and the results reported by HM,  ASCHEA, IGA, GA
[11], GA1 [50], GA2 [54], CRGA, SMES, SAPF, PSO, SR, DE, CULDE,
HS, coevolutionary particle swarm optimization using gaussian
distribution (CPSO-GD) [55], DELC, DEDS, ISR, HEAA,  ̨ Simplex,
ABC, particle evolutionary swarm optimization (PESO) [56], co-
evolutionary differential evolution (CoDE) [57], and TLBO.

From Table 10 optimizers TLBO,  ̨ Simplex, ISR, DEDS, DELC,
CULDE, SR, and GA have given more accurate optimal solutions
as compared to MBA. However, the MBA  requires comparatively
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

less NFEs and offers satisfactory solution. CRGA outperformed MBA
with 50,000 function evaluations, while MBA  surpassed CRGA in
terms of function value (accuracy). Fig. 8 illustrates the function
values versus the number of iterations for constrained problem 6.

Fig. 7. Function values versus number of iterations for the constrained problem 5.
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Table 8
Comparison of statistical results obtained from MBA  and other optimizers for the constrained problem 5.

Method Worst Mean Best SD NFEs

HM −5473.9 −6342.6 −6952.1 N.A 1,400,000
ASCHEA N.A −6961.81  −6961.81 N.A 1,500,000
CULDE −6961.813876 −6961.813876 −6961.813876 1E−07 100,100
DE  −6961.814 −6961.814 −6961.814 N.A 15,000
FSA  −6961.8139 −6961.8139 −6961.8139 0 44,538
GA  −6961.8139 −6961.8139 −6961.8139 0 13,577
CRGA  −6077.123 −6740.288 −6956.251 2.70E+2 3700
NM-PSO −6961.8240 −6961.8240 −6961.8240 0 9856
PSO-DE −6961.81388 −6961.81388 −6961.81388 2.3E−09 140,100
PSO −6961.81381 −6961.81387 −6961.81388 6.5E−06 140,100
SR  −6350.262 −6875.940 −6961.814 160 118,000
SMES  −6962.482 −6961.284 −6961.814 1.85 240,000
SAPF  −6943.304 −6953.061 −6961.046 5.876 500,000
DELC −6961.814 −6961.814 −6961.814 7.3E−10 20,000
DEDS  −6961.814 −6961.814 −6961.814 0 225,000
ABC −6961.805 −6961.813 −6961.814 2E−03 240,000
HEAA −6961.814 −6961.814 −6961.814 4.6E−12 200,000
ISR −6961.814 −6961.814 −6961.814 1.9E−12 168,800
˛  Simplex −6961.814 −6961.814 −6961.814 1.3E−10 293,367
MBA −6961.813875 −6961.813875 −6961.813875 0 2835

Table 9
Comparison of the best solution given by previous studies and the proposed method for constrained problem 6.

D.V IGA HS MBA  Optimal

X1 2.330499 2.323456 2.326585 2.330499
X2 1.951372 1.951242 1.950973 1.951372
X3 −0.477541 −0.448467 −0.497446 −0.477541
X4 4.365726 4.361919 4.367508 4.365726
X5 −0.624487 −0.630075 −0.618578 −0.624487
X6 1.038131 1.03866 1.043839 1.038131
X7 1.594227 1.605348 1.595928 1.594227
g1(X) 4.46E−05 0.208928 1.17E−04 4.46E−05
g2(X) −252.561723 −252.878859 −252.400363 −252.561723

347 

414 

3574 

3

A

T
C

g3(X) −144.878190 −145.123
g4(X) 7.63E−06 −0.263
f(X) 680.63006 680.641
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.7. Constrained problem 7

This minimization problem was previously solved using HM,
SCHEA, SR, CAEP, HPSO, CRGA, DE, CULDE, PSO-DE, PSO, HS, SMES,

able 10
omparison of statistical results for various algorithms including MBA for the constrained

Method Worst Mean 

HM 683.1800 681.1600 

ASCHEA N.A 680.641 

IGA  680.6304 680.6302 

GA  680.6538 680.6381 

GA1 680.6508 680.6417 

GA2  N.A N.A 

CRGA  682.965 681.347 

SAPF  682.081 681.246 

SR  680.763 680.656 

HS  N.A N.A 

DE  680.144 680.503 

CULDE 680.630057 680.630057 

PSO  684.5289146 680.9710606 

CPSO-GD 681.371 680.7810 

SMES  680.719 680.643 

DELC  680.630 680.630 

DEDS  680.630 680.630 

HEAA  680.630 680.630 

ISR  680.630 680.630 

˛  Simplex 680.630 680.630 

PESO  680.630 680.630 

CoDE 685.144 681.503 

ABC 680.638 680.640 

TLBO  680.638 680.633 

MBA 680.7882 680.6620 
−144.912069 −144.878190
1.39E−04 7.63E−06

680.6322202 680.6300573
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

SAPF, DELC, DEDS, ISR, HEAA, ABC, and  ̨ Simplex. Table 11 com-
pares the results for CULDE, HS, GA1, GA2, and MBA  with optimal
solution. The statistical optimization results for different algo-
rithms are given in Table 12.  The MBA  reached the optimal solution

 problem 6.

Best SD NFEs

680.9100 4.11E−02 1,400,000
680.630 N.A 1,500,000
680.6301 1.00E−05 N.A
680.6303 6.61E−03 320,000
680.6344 N.A 350,070
680.642 N.A 350,070
680.726 5.70E−01 50,000
680.773 0.322 500,000
680.63 0.034 350,000
680.6413 N.A 160,000
680.771 0.67098 240,000
680.630057 1E−07 100,100
680.6345517 5.1E−01 140,100
680.678 0.1484 N.A
680.632 1.55E−02 240,000
680.630 3.2E−12 80,000
680.630 2.9E−13 225,000
680.630 5.8E−13 200,000
680.630 3.2E−13 271,200
680.630 2.9E−10 323,426
680.631 N.A 350,000
680.771 N.A 248,000
680.634 4E−03 240,000
680.630 N.A 100,000
680.6322 3.30E−02 71,750

dx.doi.org/10.1016/j.asoc.2012.11.026
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Table  11
Comparison of best solution for the constrained problem 7 given by various optimizers.

D.V CULDE HS GA1 GA2 MBA  Optimal

X1 78.000000 78.0 80.39 78.0495 78.00000 78.00000
X2 33.000000 33.0 35.07 33.007 33.00000 33.00000
X3 29.995256 29.995 32.05 27.081 29.99526 29.99526
X4 45.000000 45.0 40.33 45.00 44.99999 45.00000
X5 36.775813 36.776 33.34 44.94 36.77581 36.77581
g1(X) 1.35E−08 4.34E−05 −0.343809 1.283813 1.33E−08 −9.71E−04
g2(X) −92.00000001 −92.000043 −91.656190 −93.283813 −91.99999 −92
g3(X) −11.15945 −11.15949 −10.463103 −9.592143 −11.159499 −1.11E+01
g4(X) −8.840500 −8.840510 −9.536896 −10.407856 −8.84050 −8.87
g5(X) −4.999999 −5.000064 −4.974473 −4.998088 −4.99999 −5
g6(X) 4.12E−09 6.49E−05 −0.025526 1.91E−03 −3.06E−09 9.27E−09
f(X)  −30665.5386 −30665.500 −30005.700 −31020.859 −30665.5386 −30665.539

Table 12
Comparison of statistical results for various optimizers for the constrained problem 7.

Method Worst Mean Best SD NFEs

HM −30645.900 −30665.300 −30664.500 N.A 1,400,000
ASCHEA N.A −30665.5 −30665.5 N.A 1,500,000
SR  −30665.539 −30665.539 −30665.539 2E−05 88,200
CAEP  −30662.200 −30662.500 −30665.500 9.3 50,020
PSO  −30252.3258 −30570.9286 −30663.8563 81 70,100
HPSO −30665.539 −30665.539 −30665.539 1.7E−06 81,000
PSO-DE −30665.5387 −30665.5387 −30665.5387 8.3E−10 70,100
CULDE −30665.5386 −30665.5386 −30665.5386 1E−07 100,100
DE  −30665.509 −30665.536 −30665.539 5.067E−03 240,000
HS  N.A N.A −30665.500 N.A 65,000
CRGA −30660.313 −30664.398 −30665.520 1.6 54,400
SAPF  −30656.471 −30655.922 −30665.401 2.043 500,000
SMES −30665.539 −30665.539 −30665.539 0 240,000
ABC  −30665.539 −30665.539 −30665.539 0 240,000
DELC  −30665.539 −30665.539 −30665.539 1.0E−11 50,000
DEDS  −30665.539 −30665.539 −30665.539 2.7E−11 225,000
HEAA  −30665.539 −30665.539 −30665.539 7.4E−12 200,000
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best solution for MBA, DEDS, and PSO-DE is presented in Table 14.
ISR −30665.539 −30665.539 

˛  Simplex −30665.539 −30665.539 

MBA −30665.3300 −30665.5182 

aster (less NFEs) than other compared algorithms in this paper
s shown in Table 12.  The function values versus the number of
terations for the constrained problem 7 are shown in Fig. 9.

.8. Constrained problem 8

This minimization problem has n decision variables and one
quality constraint. The optimal solution of the problem is at X∗ =
1/

√
n, . . . , 1/

√
n) with a corresponding function value of f(x) = −1.

or this problem n is considered equal to 10. This problem was
reviously solved using HM,  ASCHEA, PSO-DE, PSO, CULDE, SR, DE,
APF, SMES, GA [11], CRGA, DELC, DEDS, ISR, HEAA,  ̨ Simplex, PESO,
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

oDE, ABC, and TLBO.
The statistical results of optimization for twenty-one algorithms

ncluding MBA  are shown in Table 13.  From Table 13,  TLBO, ABC,
EAA, DELC, SMES, and SR have found the best optimal solution

ig. 8. Function values versus number of iterations for constrained problem 6.
−30665.539 1.1E−11 192,000
−30665.539 4.2E−11 305,343
−30665.5386 5.08E−02 41,750

as compared to MBA. However, MBA  requires comparatively less
NFEs and provides a reasonably accurate solution. Fig. 10 shows
the function values with respect to the number of iterations for the
constrained problem 8.

3.9. Engineering benchmark constrained and mechanical design
problem

3.9.1. Three-bar truss design problem
The three-bar truss problem is one of the engineering minimi-

zation test problems for constrained algorithms. The comparison of
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

The comparison of statistical results for MBA  with previous studies
including DEDS, PSO-DE, HEAA, and SC is presented in Table 15.

Fig. 9. Function values versus number of iterations for the constrained problem 7.
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Table 13
Comparison of statistical results given by various algorithms for the constrained problem 8.

Method Worst Mean Best SD NFEs

HM −0.9978 −0.9989 −0.9997 N.A 1,400,000
ASCHEA N.A −0.99989 −1.0 N.A 1,500,000
PSO −1.0042690 −1.0048795 −1.0049865 1.0E+0 140,100
PSO-DE −1.0050100 −1.0050100 −1.0050100 3.8E−12 140,100
CULDE −0.639920 −0.788635 −0.995413 0.115214 100,100
CRGA −0.9931 −0.9975 −0.9997 1.4E−03 67,600
SAPF  −0.887 −0.964 −1.000 3.01E−01 500,000
SR −1.0000 −1.0000 −1.0000 1.9E−04 229,000
ISR −1.001 −1.001 −1.001 8.2E−09 349,200
DE −1.0252 −1.0252 −1.0252 0 8,000,000
SMES −1.000 −1.000 −1.000 2.09E−04 240,000
GA  −0.99979 0.99992 0.99998 5.99E−05 320,000
DELC  −1.000 −1.000 −1.000 2.1E−06 200,000
DEDS −1.0005 −1.0005 −1.0005 1.9E−08 225,000
HEAA −1.000 −1.000 −1.000 5.2E−15 200,000
˛  Simples −1.0005 −1.0005 −1.0005 8.5E−14 310,968
PESO  −0.464 −0.764813 −0.993930 N.A 350,000
ABC −1  −1 −1 0 240,000
TLBO  −1 −1 −1 0 100,000
MBA −0.996539 −0.999147 −0.999813 5.44E−04 14,950

Fig. 10. Function values versus number of iterations for constrained problem 8.

Table 14
Comparison of best solution obtained by previous algorithms for three-bar truss
design problem.

D.V DEDS PSO-DE MBA

X1 0.78867513 0.7886751 0.7885650
X2 0.40824828 0.4082482 0.4085597
g1(X) 1.77E−08 −5.29E−11 −5.29E−11
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The reported optimization results were compared with the pro-
posed method in terms of statistical results as given in Table 17.
From this table, MBA  outperforms all other algorithms in terms
g2(X) −1.4641016 −1.4637475 −1.4637475
g3(X) −0.53589836 −0.5362524 −0.5362524
f(X) 263.8958434 263.8958433 263.8958522

The optimization results obtained by all considered methods
lightly outperformed the results given by MBA  in terms of statis-
ical results. However, the proposed MBA  offered its best solution
ith less NFEs as indicated in Table 15.  Fig. 11 shows the func-

ion values versus the number of iterations for the three-bar truss
esign problem.
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
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.9.2. Pressure vessel design problem
In the pressure vessel design problem, proposed by Kannan and

ramer [58], the aim is to minimize the total cost, including the cost

able 15
omparison of statistical results obtained using various algorithms for the three-bar
russ design problem.

Method Worst Mean Best SD NFEs

SC 263.969756 263.903356 263.895846 1.3E−02 17,610
PSO-DE 263.895843 263.895843 263.895843 4.5E−10 17,600
DEDS 263.895849 263.895843 263.895843 9.7E−07 15,000
HEAA 263.896099 263.895865 263.895843 4.9E−05 15,000
MBA 263.915983 263.897996 263.895852 3.93E−03 13,280
Fig. 11. Function values versus number of iterations for three-bar truss problem.

of material, forming, and welding. A cylindrical vessel is capped at
both ends by hemispherical heads as shown in Fig. 12.  They are four
design variables in this problem: Ts (x1, thickness of the shell), Th
(x2, thickness of the head), R (x3, inner radius), and L (x4, length of
the cylindrical section of the vessel). Among the four design vari-
ables, Ts (x1) and Th (x2) are expected to be integer multiples of
0.0625 in,  and R and L are continuous variables.

Table 16 represents the comparisons of best solution for MBA
and other reported methods. This problem has been solved pre-
viously using other optimizers including GA based co-evolution
model (GA3) [59], GA through the use of dominance-based tour
tournament selection (GA4) [60], CPSO, CDE, HPSO, NM-PSO, G-
QPSO, QPSO, PSO, PSO-DE, unified particle swarm optimization
(UPSO) [61], ABC [62], (� + �)-ES [63], and TLBO.
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

of best solution. However, the NFEs for MBA  are higher as

Fig. 12. Pressure vessel design problem.
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Table  16
Comparison of best solution obtained from various previous studies for pressure vessel problem.

D.V GA3 GA4 CPSO HPSO NM-PSO G-QPSO CDE MBA

X1 0.8125 0.8125 0.8125 0.8125 0.8036 0.8125 0.8125 0.7802
X2 0.4375 0.4375 0.4375 0.4375 0.3972 0.4375 0.4375 0.3856
X3 40.3239 42.0974 42.0913 42.0984 41.6392 42.0984 42.098411 40.4292
X4 200.0000 176.6540 176.7465 176.6366 182.4120 176.6372 176.637690 198.4964
g1(X) −3.42E−02 −2.01E−03 −1.37E−06 −8.80E−07 3.65E−05 −8.79E−07 −6.67E−07 0
g2(X) −5.28E−02 −3.58E−02 −3.59E−04 −3.58E−02 3.79E−05 −3.58E−02 −3.58E−02 0
g3(X) −304.4020 −24.7593 −118.7687 3.1226 −1.5914 −0.2179 −3.705123 −86.3645
g4(X) −400.0000 −63.3460 −63.2535 −63.3634 −57.5879 −63.3628 −63.362310 −41.5035
f(X) 6288.7445 6059.9463 6061.0777 6059.7143 5930.3137 6059.7208 6059.7340 5889.3216

Table 17
Comparison of statistical results given by different methods for pressure vessel design problem.

Method Worst Mean Best SD NFEs

GA3 6308.4970 6293.8432 6288.7445 7.4133 900,000
GA4 6469.3220 6177.2533 6059.9463 130.9297 80,000
CPSO 6363.8041 6147.1332 6061.0777 86.45 240,000
HPSO  6288.6770 6099.9323 6059.7143 86.20 81,000
NM-PSO 5960.0557 5946.7901 5930.3137 9.161 80,000
G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000
QPSO  8017.2816 6440.3786 6059.7209 479.2671 8000
PSO  14076.3240 8756.6803 6693.7212 1492.5670 8000
CDE 6371.0455 6085.2303 6059.7340 43.0130 204,800
UPSO  N.A 9032.55 6544.27 995.573 100,000
PSO-DE N.A 6059.714 6059.714 N.A 42,100
ABC  N.A 6245.308 6059.714 205 30,000
(�  + �)-ES N.A 6379.938 

TLBO N.A 6059.71434 

MBA  6392.5062 6200.64765 
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3.9.4. Welded beam design problem
This design problem, which has been often used as a benchmark

problem, was  firstly proposed by Coello [59]. In this problem, a
welded beam is designed for minimum cost subject to constraints
ig. 13. Function values versus number of iterations for the pressure vessel problem.

ompared to TLBO, PSO, QPSO, and G-QPSO algorithms. Fig. 13
hows the function values versus the number of iterations for pres-
ure vessel design problem.

.9.3. Tension/compression spring design problem
The tension/compression spring design problem is described in

rora [64] for which the aim is to minimize the weight (f(x)) of a ten-
ion/compression spring (as shown in Fig. 14)  subject to constraints
n minimum deflection, shear stress, surge frequency, limits on
utside diameter, and design variables. The design variables are
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

ire diameter d(x1), mean coil diameter D(x2), and number of active
oils P(x3).

The comparison of best solution among several algorithms is
iven in Table 18.  This problem has been used as a benchmark

Fig. 14. Tension/compression string design problem.
6059.7016 210 30,000
6059.714335 N.A 10,000
5889.3216 160.34 70,650

problem for testing different optimization methods, such as GA3,
GA4, CAEP, UPSO, CPSO, HPSO, NM-PSO, G-QPSO, QPSO, PSO-DE,
PSO, DELC, DEDS, HEAA, SC, DE, CDE, (� + �)-ES, ABC, and TLBO.

The obtained statistical results by the considered methods and
MBA  are given in Table 19.  As it can be seen in Table 19,  MBA
requires only 7650 function evaluations for solving this problem
with function value of 0.012665, while G-QPSO, QPSO, and PSO
require 2000 function evaluations with function values of 0.012665,
0.012669, and 0.012857, respectively. The best function value is
0.0126302 with 80,000 function evaluations obtained by NM-PSO.

For other algorithms in Table 19,  MBA  shows superiority in
terms of NFEs and the obtained function value. However, TLBO and
ABC algorithms have both given the same function value while
they require slightly higher NFEs as compared to MBA. Fig. 15
shows the function values versus the number of iterations for ten-
sion/compression spring problem.
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

Fig. 15. Function values versus number of iterations for tension/compression spring
problem.
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Table 18
Comparison of best solution obtained from various algorithms for the tension/compression spring problem.

D.V DELC DEDS CPSO HPSO NM-PSO G-QPSO HEAA MBA

X1 0.051689 0.051689 0.051728 0.051706 0.051620 0.051515 0.051689 0.051656
X2 0.356717 0.356717 0.357644 0.357126 0.355498 0.352529 0.356729 0.355940
X3 11.288965 11.288965 11.244543 11.265083 11.333272 11.538862 11.288293 11.344665
g1(X) −3.40E−09 1.45E−09 −8.25E−04 −3.06E−06 1.01E−03 −4.83E−05 3.96E−10 0
g2(X) 2.44E−09 −1.19E−09 −2.52E−05 1.39E−06 9.94E−04 −3.57E−05 −3.59E−10 0
g3(X) −4.053785 −4.053785 −4.051306 −4.054583 −4.061859 −4.0455 −4.053808 −4.052248
g4(X) −0.727728 −0.727728 −0.727085 −0.727445 −0.728588 −0.73064 −0.727720 −0.728268
f(X)  0.012665 0.012665 0.0126747 0.0126652 0.0126302 0.012665 0.012665 0.012665

Table 19
Comparisons of the statistical results given by different algorithms for the tension/compression spring problem.

Method Worst Mean Best SD NFEs

GA3 0.0128220 0.0127690 0.0127048 3.94E−05 900,000
GA4  0.0129730 0.0127420 0.0126810 5.90E−05 80,000
CAEP 0.0151160 0.0135681 0.0127210 8.42E−04 50,020
CPSO  0.0129240 0.0127300 0.0126747 5.20E−04 240,000
HPSO  0.0127190 0.0127072 0.0126652 1.58E−05 81,000
NM-PSO 0.0126330 0.0126314 0.0126302 8.47E−07 80,000
G-QPSO 0.017759 0.013524 0.012665 0.001268 2000
QPSO  0.018127 0.013854 0.012669 0.001341 2000
PSO  0.071802 0.019555 0.012857 0.011662 2000
DE 0.012790 0.012703 0.0126702 2.7E−05 204,800
DELC  0.012665575 0.012665267 0.012665233 1.3E−07 20,000
DEDS 0.012738262 0.012669366 0.012665233 1.3E−05 24,000
HEAA  0.012665240 0.012665234 0.012665233 1.4E−09 24,000
PSO-DE 0.012665304 0.012665244 0.012665233 1.2E−08 24,950
SC 0.016717272 0.012922669 0.012669249 5.9E−04 25,167
UPSO  N.A 0.02294 0.01312 7.20E−03 100,000
CDE  N.A 0.012703 0.01267 N.A 240,000
(�  + �)-ES N.A 0.013165 0.012689 3.9E−04 30,000
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ABC  N.A 0.012709 

TLBO  N.A 0.01266576 

MBA  0.012900 0.012713 

n shear stress (�), bending stress (�) in the beam, buckling load
n the bar (Pb), end deflection of the beam (ı), and side constraints.
here are four design variables for this problem including h(x1),

(x2), t(x3), and b(x4) as shown in Fig. 16.
The optimization methods previously applied to this problem

nclude GA3, GA4, CAEP, CPSO, HPSO, NM-PSO, HGA, MGA [65], SC,
E, UPSO, CDE, ABC, (� + �)-ES, and TLBO. The comparison for the
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
engineering optimization problems, Appl. Soft Comput. J. (2012), http

est solution given by such algorithms is presented in Table 20.
The comparison of the statistical results is given in Table 21.

mong those studies, the best solution was obtained by NM-PSO

Fig. 16. Welded beam design problem.
0.012665 0.012813 30,000
0.012665 N.A 10,000
0.012665 6.30E−05 7650

with an objective function value of f(x) = 1.724717 after 80,000
function evaluations. By applying the proposed method, the best
solution of f(x) = 1.72536 was obtained. It is worth to mention that
the number of function evaluations for the MBA is 42,960. The opti-
mization results obtained by NM-PSO, PSO-DE, HPSO, CAEP, ABC,
and TLBO outperformed the results obtained by MBA  in terms of
the best solution. However, while offering satisfactory result, MBA
requires less NFEs as compared to the NM-PSO, PSO-DE, HPSO, and
CAEP.

Fig. 17 shows the function values versus the number of itera-
tions for the welded beam design problem. One of the advantages
of the MBA  over other metaheuristic algorithms is that the function
values are reduced to near optimum point at the early itera-
tions. This may  be due to the searching criteria and constraint
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

handling approach for MBA  where it searches a wide region
of problem domain and rapidly focuses on the near optimum
solution.

Fig. 17. Function values versus number of iterations for the welded beam problem.
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Table  20
Comparison of the best solution obtained from various algorithms for the welded beam problem.

D.V GA4 HGA CPSO CAEP CPSO HPSO NM-PSO MBA

X1(h) 0.205986 0.2057 0.202369 0.205700 0.202369 0.20573 0.20583 0.205729
X2(l) 3.471328 3.4705 3.544214 3.470500 3.544214 3.470489 3.468338 3.470493
X3(t) 9.020224 9.0366 9.048210 9.036600 9.04821 9.036624 9.036624 9.036626
X4(b) 0.206480 0.2057 0.205723 0.205700 0.205723 0.20573 0.20573 0.205729
g1(X) −0.103049 1.988676 −13.655547 1.988676 −12.839796 −0.025399 −0.02525 −0.001614
g2(X) −0.231747 4.481548 −78.814077 4.481548 −1.247467 −0.053122 −0.053122 −0.016911
g3(X) −5E−04 0 −3.35E−03 0 −1.49E−03 0 0.0001 −2.40E−07
g4(X) −3.430044 −3.433213 −3.424572 −3.433213 −3.429347 −3.432981 −3.433169 −3.432982
g5(X) −0.080986 −0.080700 −0.077369 −0.080700 −0.079381 −0.08073 −0.08083 −0.080729
g6(X) −0.235514 −0.235538 −0.235595 −0.235538 −0.235536 −0.235540 −0.235540 −0.235540
g7(X) −58.646888 2.603347 −4.472858 2.603347 −11.681355 −0.031555 −0.031555 −0.001464
f(X)  1.728226 1.724852 1.728024 1.724852 1.728024 1.724852 1.724717 1.724853

Table 21
Comparison of the statistical results obtained from different optimizers for welded beam problem.

Method Worst Mean Best SD NFEs

GA3 1.785835 1.771973 1.748309 1.12E−02 900,000
GA4  1.993408 1.792654 1.728226 7.47E−02 80,000
CAEP 3.179709 1.971809 1.724852 4.43E−01 50,020
CPSO  1.782143 1.748831 1.728024 1.29E−02 240,000
HPSO 1.814295 1.749040 1.724852 4.01E−02 81,000
PSO-DE 1.724852 1.724852 1.724852 6.7E−16 66,600
NM-PSO 1.733393 1.726373 1.724717 3.50E−03 80,000
MGA 1.9950 1.9190 1.8245 5.37E−02 N.A
SC  6.3996785 3.0025883 2.3854347 9.6E−01 33,095
DE  1.824105 1.768158 1.733461 2.21E−02 204,800
UPSO N.A 2.83721 1.92199 0.683 100,000
CDE  N.A 1.76815 1.73346 N.A 240,000
(�  + �)-ES N.A 1.777692 1.724852 8.8E−02 30,000
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tively. The lower and upper bounds of integer design variables are
12 and 60, respectively. The gear ratio is defined as nBnD/nFnA.
Table 24 shows the comparison of the best solution for ABC and
ABC  N.A 1.741913 

TLBO N.A 1.72844676 

MBA  1.724853 1.724853 

.9.5. Speed reducer design problem
In this constrained optimization problem (see Fig. 18), the

eight of speed reducer is to be minimized subject to constraints
n bending stress of the gear teeth, surface stress, transverse deflec-
ions of the shafts, and stresses in the shafts [63]. The variables x1
o x7 represent the face width (b), module of teeth (m), number of
eeth in the pinion (z), length of the first shaft between bearings (l1),
ength of the second shaft between bearings (l2), and the diameter
f first (d1) and second shafts (d2), respectively.

This is an example of a mixed integer programming problem.
he third variable x3 (number of teeth) is of integer values while
ll other variables are continuous. There are 11 constraints in this
roblem resulting in high complexity of the problem [66] (the solu-
ion reported in [66] is infeasible).

The comparison of best solution with previous methods is given
n Table 22.  The statistical results of nine optimization methods
ncluding DELC, DEDS, PSO-DE, ABC, TLBO, modified differential
volution (MDE) [67,68], SC, HEAA, and (� + �)-ES is compared with
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
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he proposed method which is given in Table 23.
From Table 23,  among the compared optimization algorithms,

ELC and DEDS have found the best solution so far. Although, MBA

Fig. 18. Speed reducer design problem.
1.724852 3.1E−02 30,000
1.724852 N.A 10,000
1.724853 6.94E−19 47,340

could not match the best solution obtained by DELC and DEDS,
however, it detected its best solution (second best solution) with
considerably less NFEs. Fig. 19 depicts the reduction of function
values versus the number of iterations for speed reducer design
problem.

3.9.6. Gear train design problem
Gear train design aims to minimize the cost of the gear ratio of

the gear train as shown in Fig. 20.  The constraints are only limits on
design variables (side constraints). Design variables to be optimized
are in discrete form since each gear has to have an integral number
of teeth.

Constrained problems with discrete variables may  increase the
complexity of the problem. The decision variables of the problem
are nA, nB, nD, and nF which are denoted as x1, x2, x3, and x4, respec-
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

MBA  in terms of the value of design variables and function value.

Fig. 19. Function values versus number of iterations for the speed reducer problem.
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Table 22
Comparison of best solution obtained using different optimizers for speed reducer design problem.

D.V DEDS DELC HEAA MDE  PSO-DE MBA

X1 3.5 + 09 3.5 + 09 3.500022 3.500010 3.5000000 3.500000
X2 0.7 + 09 0.7 + 09 0.70000039 0.70000 0.700000 0.700000
X3 17 17 17.000012 17 17.000000 17.000000
X4 7.3 + 09 7.3 + 09 7.300427 7.300156 7.300000 7.300033
X5 7.715319 7.715319 7.715377 7.800027 7.800000 7.715772
X6 3.350214 3.350214 3.350230 3.350221 3.350214 3.350218
X7 5.286654 5.286654 5.286663 5.286685 5.2866832 5.286654
f(X)  2994.471066 2994.471066 2994.499107 2996.356689 2996.348167 2994.482453

Table 23
Comparison of statistical results using various algorithms for speed reducer design problem.

Method Worst Mean Best SD NFEs

SC 3009.964736 3001.758264 2994.744241 4.0 54,456
PSO-DE 2996.348204 2996.348174 2996.348167 6.4E−06 54,350
DELC 2994.471066 2994.471066 2994.471066 1.9E−12 30,000
DEDS  2994.471066 2994.471066 2994.471066 3.6E−12 30,000
HEAA  2994.752311 2994.613368 2994.499107 7.0E−02 40,000
MDE  N.A 2996.367220 2996.356689 8.2E−03 24,000
(�  + �)-ES N.A 2996.348 2996.348 0 30,000
ABC  N.A 2997.058 2997.058 0 30,000
TLBO  N.A 2996.34817 2996.34817 0 10,000
MBA 2999.652444 2996.769019 2994.482453 1.56 6300
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were compared in Table 27.  It is observed from Table 27 that MBA
surpassed ABC and TLBO for offering the best solution in terms of
SD and NFEs. The best solution obtained by all three algorithms is
same. However, TLBO performs slightly better than MBA  in terms
Fig. 20. Great train design problem.

BA  found the function value same as ABC, however, with different
alues for design variables as shown in Table 24.

The statistical results for optimization of gear train problem
sing different optimizers are given in Table 25.  In terms of sta-
istical results, MBA  surpassed other reported optimizers with
cceptable NFEs as shown in Table 25.  However, ABC obtained
he best solution faster (less NFEs) than other methods. Fig. 21
emonstrates the reduction of function values (gear ratio cost) with
espect to the number of iterations.

.9.7. Belleville spring design problem
The Belleville spring problem, as shown in Fig. 22,  is a minimi-

ation problem in which one parameter existing in the constraints
s to be selected according to the design variable ratios. The objec-
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
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ive is to design a Belleville spring having minimum weight and
atisfying a number of constraints. This problem has 4 design vari-
bles: external diameter of the spring (De), internal diameter of the

able 24
omparison of best solution obtained using ABC and MBA  for gear train problem.

D.V ABC MBA

X1 49 43
X2 16 16
X3 19 19
X4 43 49
f(X) 2.700857E−12 2.700857E−12
Fig. 21. Function values versus number of iterations for the gear train problem.

spring (Di), thickness of the spring (t), and the height (h) of the
spring, as shown in Fig. 22.

The subjected constraints concern the compressive stress,
deflection, height to deflection, height to maximum height, outer
diameter, inner diameter, and slope. The problem for the Belleville
spring was studied by Coello [69], Gene AS I, Gene AS II [70], Sid-
dal [71], ABC, and TLBO. Table 26 represents the comparisons of
different optimizers for the best obtained solution.

The obtained statistical results for Belleville spring problem
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

Fig. 22. Belleville spring design problem.
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Table  25
Comparison of statistical results using various algorithms for gear train problem.

Method Worst Mean Best SD NFEs

UPSO N.A 3.80562E−08 2.700857E−12 1.09E−07 100,000
ABC N.A 3.641339E−10 2.700857E−12 5.52E−10 60
MBA 2.062904E−08  2.471635E−09 2.700857E−12 3.94E−09 1120

Table 26
Comparison of best solution obtained using TLBO and MBA  for Belleville spring problem.

D.V Coello Gene AS I Gene AS II Siddal TLBO MBA

X1 0.208 0.205 0.210 0.204 0.204143 0.204143
X2 0.2 0.201 0.204 0.200 0.2 0.2
X3 8.751 9.534 9.268 10.030 10.03047 10.0304732
X4 11.067 11.627 11.499 12.010 12.01 12.01
g(X1) 2145.4109 −10.3396 2127.2624 134.0816 1.77E−06 4.58E−04
g(X2) 39.75018 2.8062 194.222554 −12.5328 7.46E−08 3.04E−07
g(X3) 0.00000 0.0010 0.0040 0.0000 5.8E−11 9.24E−10
g(X4) 1.592 1.5940 1.5860 1.5960 1.595857 1.595856
g(X5) 0.943 0.3830 0.5110 0.0000 2.35E−09 0
g(X6) 2.316 2.0930 2.2310 1.9800 1.979527 1.979526
g(X7) 0.21364 0.20397 0.20856 0.19899 0.198966 0.198965
f(X)  2.121964 2.01807 2.16256 1.978715 1.979675 1.9796747

Table 27
Comparison of statistical results using three optimizers for the Belleville spring problem.

Method Worst Mean Best SD NFEs

o
r
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ABC 2.104297 1.995475 

TLBO  1.979757 1.97968745 

MBA  2.005431 1.984698 

f mean and worst solutions. As shown in Fig. 23a, the convergence
ate of ABC and TLBO is nearly same with slight dominance of TLBO
ver ABC. However, as shown in Fig. 23b, MBA  converged to near
ptimum solution at early iterations compared to other optimizers
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
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n this paper.

ig. 23. Comparison of convergence rate for the Belleville spring design problem
sing: (a) TLBO and ABC, (b) MBA.
1.979675 0.07 150,000
1.979675 0.45 150,000
1.9796747 7.78E−03 10,600

3.9.8. Rolling element bearing design problem
The objective of this problem is to maximize the dynamic load

carrying capacity of a rolling element bearing, as demonstrated in
Fig. 24.  This problem has 10 decision variables which are pitch
diameter (Dm), ball diameter (Db), number of balls (Z), inner and
outer raceway curvature coefficients (fi and fo), KDmin, KDmax, ε, e,
and � (see Fig. 24).  The five latter variables only appear in con-
straints and indirectly affect the internal geometry. The number
of balls (Z) is the discrete design variable and the remainder are
continuous design variables. Constraints are imposed based on
kinematic and manufacturing considerations.

The problem of the rolling element bearing was  studied by GA
[72], ABC, and TLBO. Table 28 shows the comparison of best solution
for three optimizers in terms of design variables and function val-
ues, and constraints accuracy. The statistical optimization results
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

for reported algorithms were compared in Table 29.
From Table 29,  the proposed method detected the best solu-

tion with considerable improvement over other optimizers in this

Fig. 24. Rolling element bearing design problem.

dx.doi.org/10.1016/j.asoc.2012.11.026
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Table 28
Comparison of the best solution obtained using three algorithms for the rolling
element bearing problem.

D.V GA TLBO MBA

X1 125.7171 125.7191 125.7153
X2 21.423 21.42559 21.423300
X3 11 11 11.000
X4 0.515 0.515 0.515000
X5 0.515 0.515 0.515000
X6 0.4159 0.424266 0.488805
X7 0.651 0.633948 0.627829
X8 0.300043 0.3 0.300149
X9 0.0223 0.068858 0.097305
X10 0.751 0.799498 0.646095
g(X1) −0.000821 0 0
g(X2) −13.732999 13.15257 −8.630183
g(X3) −2.724000 1.5252 −1.101429
g(X4) 3.606000 0.719056 −2.040448
g(X5) −0.717000 16.49544 −0.715366
g(X6) −4.857899 0 −23.611002
g(X7) −0.003050 0 −0.000480
g(X8) −0.000007 2.559363 0
g(X9) −0.000007 0 0
g(X10) −0.000005 0 0
f(X)  81843.3 81859.74 85535.9611

Table 29
Comparison of statistical results using four optimizers for the rolling element bear-
ing  problem.

Method Worst Mean Best SD NFEs

GA N.A N.A 81843.3 N.A 225,000
ABC 78897.81 81496 81859.7416 0.69 10,000

p
w
c

T
b

F
p

TLBO 80807.8551 81438.987 81859.74 0.66 10,000
MBA  84440.1948 85321.4030 85535.9611 211.52 15,100

aper. In terms of statistical results, MBA  offered better results
ith acceptable NFEs against other considered algorithms. Fig. 25

ompares the convergence rate for used optimizers.
From Fig. 25a it is seen that the convergence rate of ABC and
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
engineering optimization problems, Appl. Soft Comput. J. (2012), http

LBO is nearly same with a slightly higher mean searching capa-
ility for TLBO. However, MBA  reached the best solution at 302

ig. 25. Comparison of convergence rate for the rolling element bearing design
roblem using: (a) TLBO and ABC, (b) MBA.
 PRESS
puting xxx (2012) xxx–xxx

iterations (iteration number for obtained best solution = NFEs/Ns),
offering the best solution so far as shown in Fig. 25b.

These overall results may  suggest that the proposed MBA  may
be considered as an effective optimization technique for solving
constrained optimization problems. The MBA  may  be considered as
an attractive alternative optimizer for constrained and engineering
optimization offering faster convergence and solution quality.

4. Conclusions

This paper presented a new optimization technique, called the
mine blast algorithm (MBA). The fundamental concepts and ideas
which underlie the method are inspired from the explosion of mine
bombs in real world. In this paper, the MBA  is proposed for solv-
ing sixteen constrained optimization and engineering problems.
Computational results in this paper, based on the comprehensive
comparative study, illustrate the attractiveness of the proposed
method for handling numerous types of constraints. The obtained
results show that the proposed algorithm generally offers better
solutions than other optimizers considered in this research in terms
of objective function values for some problems and the number of
function evaluations (computational cost) for almost every prob-
lem. Also, the MBA  method may  be used for solving the real world
optimization problems which may  require significant computa-
tional efforts with acceptable degree of accuracy for the solutions.

Although, the proposed method is capable in finding global opti-
mum  point, however, in case of obtaining unsatisfactory results,
the tuning of initial parameters (as in other metaheuristic algo-
rithms) is a crucial step. In general, the MBA  offers competitive
solutions compared with other metaheuristic optimizers based on
the experimental results in this research. However, the computa-
tional efficiency and quality of solutions given by the MBA  depends
on the nature and complexity of the underlined problem. This is
true for most metaheuristic methods.
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Appendix A.

A.1. Constrained problem 1

min  f (x) = (x1 − 2)2 + (x2 − 1)2

subject to:

h(x) = x1 − 2x2 + 1 = 0

g(x) = −(x2
1/4) − x2

2 + 1 ≥ 0

−10 ≤ xi ≤ 10,  i = 1, 2

A.2. Constrained problem 2

min f (x) = x2
1 + (x2 − 1)2

subject to:
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

h(x) = x2 − x2
1 = 0

−1 ≤ xi ≤ 1, i = 1, 2

dx.doi.org/10.1016/j.asoc.2012.11.026
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.3. Constrained problem 3

 (x) = (x2
1 + x2 − 11)

2 + (x1 + x2
2 − 7)

2

ubject to:

1(x) = 4.84 − (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0

2(x) = x2
1 + (x2 − 2.5)2 − 4.84 ≥ 0

 ≤ xi ≤ 6, i = 1, 2

.4. Constrained problem 4

ax f (x) = sin3(2	x1) sin(2	x2)

x3
1(x1 + x2)

ubject to:

1(x) = x2
1 − x2 + 1 ≤ 0

2(x) = 1 − x1 + (x2 − 4)2 ≤ 0

 ≤ xi ≤ 10,  i = 1, 2

.5. Constrained problem 5

in  f (x) = (x1 − 10)3 + (x2 − 20)3

ubject to:

1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

3 ≤ x1 ≤ 100

 ≤ x2 ≤ 100

.6. Constrained problem 6

in f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+ 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7

ubject to:

1(x) = 127 − 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 ≥ 0

2(x) = 282 − 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0

3(x) = 196 − 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0

2 2 2
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

4(x) = −4x1 − x2 + 3x1x2 − 2x3 − 5x6 + 11x7 ≥ 0

10 ≤ xi ≤ 10,  i = 1, 2, 3, 4, 5, 6, 7
 PRESS
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A.7. Constrained problem 7

min  f (x) = 5.3578547x3
3 + 0.8356891x1x5

+ 37.293239x1 + 40729.141

subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407 − 0.0056858x2x5

− 0.0006262x1x4 − 0.0022053x3x5 ≤ 0

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0

g4(x) = −80.51249 − 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0

g6(x) = −9.300961 − 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ xi ≤ 45,  i = 3, 4, 5

A.8. Constrained problem 8

min  f (x) = −(
√

n)
n ·

n∏
i=1

xi

subject to:

h(x) =
n∑

i=1

x2
i = 1

0 ≤ xi ≤ 1, i = 1, . . . , n

Appendix B.

B.1. Three-bar truss design problem

min  f (x) = (2
√

2x1 + x2) × l
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

subject to:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
P − � ≤ 0

dx.doi.org/10.1016/j.asoc.2012.11.026
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Table B1
Variation of f(a) with a.

2.1
0.5

g

g

0

l

B

m

s

g

g

g

g

0

1

B

f

s

g

g

g

g

0

0

2

B

f

s

g

g

g

a ≤1.4 1.5 1.6 1.7 1.8 1.9 2 

f(a) 1 0.85  0.77 0.71 0.66 0.63 0.6 

2(x) = x2√
2x2

1 + 2x1x2
P − � ≤ 0

3(x) = 1√
2x2 + x1

P − � ≤ 0

 ≤ xi ≤ 1, i = 1, 2

 = 100 cm, P = 2 kN/cm2, � = 2 kN/cm2

.2. Pressure vessel design problem

in  f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

ubject to:

1(x) = −x1 + 0.0193x

2(x) = −x2 + 0.00954x3 ≤ 0

3(x) = −	x2
3x4 − (4/3)	x3

3 + 1, 296, 000 ≤ 0

4(x) = x4 − 240 ≤ 0

 ≤ xi ≤ 100, i = 1, 2

0 ≤ xi ≤ 200, i = 3, 4

.3. Tension/compression spring design problem

 (x) = (x3 + 2)x2x2
1

ubject to:

1(x) = 1 − (x3
2x3/71, 785x4

1) ≤ 0

2(x) = (4x2
2 − x1x2/12, 566(x2x3

1 − x4
1)) + (1/5108x2

1) − 1 ≤ 0

3(x) = 1 − (140.45x1/x2
2x3) ≤ 0

4(x) = (x2 + x1)/1.5 − 1 ≤ 0

.05 ≤ x1 ≤ 2.00

.25 ≤ x2 ≤ 1.30

.00 ≤ x3 ≤ 15.00

.4. Welded beam design problem

 (x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2)

ubject to:

1(x) = �(x) − �max ≤ 0
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
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2(x) = �(x) − �max ≤ 0

3(x) = x1 − x4 ≤ 0
 2.2 2.3 2.4 2.5 2.6 2.7 ≥2.8
8 0.56 0.55 0.53 0.52 0.51 0.51 0.5

g4(x) = 0.10471x2
1 + 0.04811x3x4(14 + x2) − 5 ≤ 0

g5(x) = 0.125 − x1 ≤ 0

g6(x) = ı(x) − ımax ≤ 0

g7(x) = P − Pc(x) ≤ 0

0.1 ≤ xi ≤ 2, i = 1, 4

0.1 ≤ xi ≤ 10,  i = 2, 3

where

�(x) =
√

(� ′)2 + 2� ′� ′′ x2

2R
+ (� ′′)2, � ′ = P√

2x1x2
, � ′′ = MR

J

M = P
(

L + x2

2

)
, R =

√
x2

2
4

+
(

x1 + x3

2

)2
, J

= 2

{√
2x1x2

[
x2

2
12

+
(

x1 + x3

2

)2
]}

�(x) = 6PL

x4x2
3

, ı(x) = 4PL3

Ex3
3x4

, Pc(x) = 4.013E
√

(x2
3x6

4/36)

L2

×
(

1 − x3

2L

√
E

4G

)

P = 6000 lb, L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi

�max = 13,  600 psi, �max = 30,  000 psi, ımax = 0.25 in

B.5. Speed reducer design problem

min  f (x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

− 1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+ 0.7854(x4x2
6 + x5x2

7)

subject to:

g1(x) = 27

x1x2
2x3

− 1 ≤ 0

g2(x) = 397.5

x1x2
2x2

3

− 1 ≤ 0

g3(x) = 1.93x3
4

x2x4
6x3

− 1 ≤ 0
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

g4(x) = 1.93x3
5

x2x4
7x3

− 1 ≤ 0

dx.doi.org/10.1016/j.asoc.2012.11.026
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5(x) =
[
(745(x4/x2x3))2 + 16.9 × 106

]1/2

110x3
6

− 1 ≤ 0

6(x) =
[
(745(x5/x2x3))2 + 157.5 × 106

]1/2

85x3
7

− 1 ≤ 0

7(x) = x2x3

40
− 1 ≤ 0

8(x) = 5x2

x1
− 1 ≤ 0

9(x) = x1

12x2
− 1 ≤ 0

10(x) = 1.5x6 + 1.9
x4

− 1 ≤ 0

11(x) = 1.1x7 + 1.9
x5

− 1 ≤ 0

here

.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,  7.3 ≤ x4

≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

.6. Gear train design problem

in  f (x) = ((1/6.931) − (x3x2/x1x4))2

ubject to:

2 ≤ xi ≤ 60

.7. Belleville spring design problem

in  f (x) = 0.07075	(D2
e − D2

i )t

ubject to:

1(x) = S − 4Eımax

(1 − �2)˛D2
e

[
ˇ

(
h − ımax

2

)
+ 
t

]
≥ 0

2(x) =
(

4Eımax

(1 − �2)˛D2
e

[
(h − ı

2
)(h − ı)t + t3

])
ı=ımax

− Pmax ≥ 0

3(x) = ı1 − ımax ≥ 0

4(x) = H − h − t ≥ 0

5(x) = Dmax − De ≥ 0

6(x) = De − Di ≥ 0

7(x) = 0.3 − h

De − Di
≥ 0

here

 = 6
	 ln K

(
K − 1

K

)2
,  ̌ = 6

	 ln K

(
K − 1
ln K

− 1
)

, 

Please cite this article in press as: A. Sadollah, et al., Mine blast algori
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= 6
	 ln K

(
K − 1

2

)
, Pmax = 5400 lb,

 = 30e6 psi
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ımax = 0.2 in, � = 0.3, S = 200 KPsi, H = 2 in, Dmax

= 12.01 in, K = De/Di, ı1 = f (a)a,
a = h/t

.

Values for f(a) vary as shown in Table B1.

B.8. Rolling element bearing design problem

max  Cd = fcZ2/3D1.8
b

if D ≤ 25.4 mm
Cd = 3.647fcZ2/3D1.4

b
if D � 25.4 mm

subject to:

g1(x) = �0

2sin−1(Db/Dm)
− Z + 1 ≥ 0

g2(x) = 2Db − KDmin(D − d) ≥ 0

g3(x) = KDmax(D − d) − 2Db ≥ 0

g4(x) = �Bw − Db ≤ 0

g5(x) = Dm − 0.5(D + d) ≥ 0

g6(x) = (0.5 + e)(D + d) − Dm ≥ 0

g7(x) = 0.5(D − Dm − Db) − εDb ≥ 0

g8(x) = fi ≥ 0.515

g9(x) = fo ≥ 0.515

where

fc = 37.91

[
1 +
{

1.04
(

1 − 


1 + 


)1.72( fi(2fo − 1)
fo(2fi − 1)

)0.41
}10/3

]−0.3

×
[


0.3(1 − 
)1.39

(1 + 
)1/3

][
2fi

2fi − 1

]0.41

�o = 2	 − 2cos−1

(
[{(D − d)/2 − 3(T/4)}2 + {D/2 − T/4 − Db}2 − {d/2 + T/4}2]

2{(D − d)/2 − 3(T/4)}{D/2  − T/4 − Db}

)


 = Db

Dm
, fi = ri

Db
, fo = ro

Db
, T = D − d − 2Db

D = 160, d = 90, Bw = 30,  ri = ro = 11.033

0.5(D + d) ≤ Dm ≤ 0.6(D + d), 0.15(D − d) ≤ Db

≤ 0.45(D − d), 4 ≤ Z ≤ 50,  0.515 ≤ fi and fo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ e ≤ 0.4, 0.02

≤ e ≤ 0.1, 0.6 ≤ � ≤ 0.85.

References

[1] K.S. Lee, Z.W. Geem, A new meta-heuristic algorithm for continuous engineer-
ing optimization: harmony search theory and practice, Computer Methods in
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

Applied Mechanics and Engineering 194 (2005) 3902–3933.
[2] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, MI,  1975.
[3] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, Reading, MA,  1989.

dx.doi.org/10.1016/j.asoc.2012.11.026


 ING Model
A

2 ft Com

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARTICLESOC-1808; No. of Pages 21

0 A. Sadollah et al. / Applied So

[4]  J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the
IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp.
1942–1948.

[5]  S. Kirkpatrick, C. Gelatt, M.  Vecchi, Optimization by simulated annealing, Sci-
ence 220 (1983) 671–680.

[6] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art, Computer Meth-
ods in Applied Mechanics and Engineering 191 (2002) 1245–1287.

[7]  S. Areibi, M. Moussa, H. Abdullah, A comparison of genetic/memetic algorithms
and other heuristic search techniques, in: ICAI, Las VeGAs, Nevada, 2001.

[8]  E. Elbeltagi, T. Hegazy, D. Grierson, Comparison among five evolutionary-based
optimization algorithms, Advanced Engineering Informatics 19 (2005) 43–53.

[9]  H. Youssef, S.M. Sait, H. Adiche, Evolutionary algorithms, simulated annealing
and tabu search: a comparative study, Engineering Applications of Artificial
Intelligence 14 (2001) 167–181.

10] L. Giraud-Moreau, P. Lafon, Comparison of evolutionary algorithms for mechan-
ical design components, Engineering Optimization 34 (2002) 307–322.

11] P. Chootinan, A. Chen, Constraint handling in genetic algorithms using a
gradient-based repair method, Computers & Operations Research 33 (2006)
2263–2281.

12] K.Z. Tang, T.K. Sun, J.Y. Yang, An improved genetic algorithm based on a novel
selection strategy for nonlinear programming problems, Computers and Chem-
ical Engineering 35 (2011) 615–621.

13] Q. Yuan, F. Qian, A hybrid genetic algorithm for twice continuously differen-
tiable NLP problems, Computers and Chemical Engineering 34 (2010) 36–41.

14] A. Amirjanov, The development of a changing range genetic algorithm,
Computer Methods in Applied Mechanics and Engineering 195 (2006)
2495–2508.

15] I.C. Trelea, The particle swarm optimization algorithm: convergence anal-
ysis and parameter selection, Information Processing Letters 85 (2003)
317–325.

16] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization
for engineering optimization problems, Engineering Applications of Artificial
Intelligence 20 (2006) 89–99.

17] H.M. Gomes, Truss optimization with dynamic constraints using a particle
swarm algorithm, Expert Systems with Applications 38 (2011) 957–968.

18] L.D.S. Coelho, Gaussian quantum-behaved particle swarm optimization
approaches for constrained engineering design problems, Expert Systems with
Applications 37 (2010) 1676–1683.

19] Q. He, L. Wang, A hybrid particle swarm optimization with a feasibility-based
rule for constrained optimization, Applied Mathematics and Computation 186
(2007) 1407–1422.

20] Y. Wang, Z. Cai, A hybrid multi-swarm particle swarm optimization to solve
constrained optimization problems, Frontiers of Computer Science 3 (1) (2009)
38–52.

21] Y. Wang, Z. Cai, G. Guo, Y. Zhou, Multiobjective optimization and hybrid
evolutionary algorithm to solve constrained optimization problems, IEEE
Transactions on Systems Man  and Cybernetics Part B 37 (3) (2007) 560–575.

22] Y. Wang, Z. Cai, A dynamic hybrid framework for constrained evolutionary opti-
mization, IEEE Transactions on Systems Man  and Cybernetics Part B 42 (1)
(2012) 203–217.

23] Y. Wang, Z. Cai, Combining multiobjective optimization with differential
evolution to solve constrained optimization problems, IEEE Transactions on
Evolutionary Computation 16 (1) (2012) 117–134.

24] Y. Wang, Z. Cai, Constrained evolutionary optimization by means of (� + �)-
differential evolution and improved adaptive trade-off model, Evolutionary
Computation 19 (2) (2011) 249–285.

25] R.V. Rao, V.J. Savsani, Mechanical Design Optimization Using Advanced Opti-
mization Techniques, Springer-Verlag, London, 2012.

26] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching-learning-based optimization:
a  novel method for constrained mechanical design optimization problems,
Computer-Aided Design 43 (2011) 303–315.

27] R.V. Rao, V. Patel, An elitist teaching-learning-based optimization algorithm for
solving complex constrained optimization problems, International Journal of
Industrial Engineering Computations 3 (2012) 535–560.

28] R.V. Rao, V. Patel, Multi-objective optimization of heat exchangers using a mod-
ified teaching-learning-based-optimization algorithm, Applied Mathematical
Modelling (2012), http://dx.doi.org/10.1016/j.apm.2012.03.043.

29] T. Ray, K.M. Liew, Society and civilization: an optimization algorithm based on
the simulation of social behavior, IEEE Transactions on Evolutionary Computa-
tion 7 (2003) 386–396.

30] A. Sadollah, A. Bahreininejad, H. Eskandar, M.  Hamdi, Mine blast algorithm for
optimization of truss structures with discrete variables, Computers & Struc-
tures 102–103 (2012) 49–63.

31] E.M. Montes, C.A.C. Coello, An empirical study about the usefulness of evolution
strategies to solve constrained optimization problems, International Journal of
General Systems 37 (2008) 443–473.

32] A. Kaveh, S. Talatahari, A particle swarm ant colony optimization for truss struc-
tures with discrete variables, Journal of Constructional Steel Research 65 (2009)
1558–1568.

33] J. Bracken, G.P. Mccormick, Selected Applications of Nonlinear Programming,
Please cite this article in press as: A. Sadollah, et al., Mine blast algor
engineering optimization problems, Appl. Soft Comput. J. (2012), http

John Wiley & Sons, New York, 1968.
34] A. Homaifar, C.X. Qi, S.H. Lai, Constrained optimization via genetic algorithms,

Simulation 62 (1994) 242–253.
35] D.B. Fogel, A comparison of evolutionary programming and genetic algorithms

on selected constrained optimization problems, Simulation 64 (1995) 397–404.

[

[

 PRESS
puting xxx (2012) xxx–xxx

36] B. Tessema, G.G. Yen, A self adaptive penalty function based algorithm for con-
strained optimization, IEEE Transactions on Evolutionary Computation (2006)
246–253.

37] R. Becerra, C.A.C. Coello, Cultured differential evolution for constrained opti-
mization, Computer Methods in Applied Mechanics and Engineering 195
(2006) 4303–4322.

38] E. Mezura-Montes, C.A.C. Coello, A simple multimembered evolution strategy
to  solve constrained optimization problems, IEEE Transactions on Evolutionary
Computation 9 (2005) 1–17.

39] S. Koziel, Z. Michalewicz, Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization, IEEE Transactions on Evolutionary
Computation 7 (1999) 19–44.

40] S. Ben Hamida, M.  Schoenauer, ASCHEA: new results using adaptive segre-
gational constraint handling, IEEE Transactions on Evolutionary Computation
(2002) 884–889.

41] H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm optimization with differen-
tial evolution for constrained numerical and engineering optimization, Applied
Soft Computing 10 (2010) 629–640.

42] T.P. Runarsson, Y. Xin, Stochastic ranking for constrained evolutionary opti-
mization, IEEE Transactions on Evolutionary Computation 4 (2000) 284–294.

43] J.  Lampinen, A constraint handling approach for the differential evolution algo-
rithm, IEEE Transactions on Evolutionary Computation (2002) 1468–1473.

44] L. Wang, L.P. Li, An effective differential evolution with level comparison for
constrained engineering design, Structural and Multidisciplinary Optimization
41 (2010) 947–963.

45] M.  Zhang, W.  Luo, X. Wang, Differential evolution with dynamic stochas-
tic selection for constrained optimization, Information Sciences 178 (2008)
3043–3074.

46] Y. Wang, Z. Cai, Y. Zhou, Z. Fan, Constrained optimization based on hybrid evo-
lutionary algorithm and adaptive constraint handling technique, Structural and
Multidisciplinary Optimization 37 (2009) 395–413.

47] T.P. Runarsson, Y. Xin, Search biases in constrained evolutionary optimization,
IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications and
Reviews 35 (2005) 233–243.

48] T. Takahama, S. Sakai, Constrained optimization by applying the ˛; constrained
method to the nonlinear simplex method with mutations, IEEE Transactions on
Evolutionary Computation 9 (2005) 437–451.

49] D. Karaboga, B. Basturk, Artificial Bee Colony (ABC) Optimization Algorithm for
Solving Constrained Optimization Problems, LNAI, vol. 4529, Springer-Verlag,
Berlin, 2007, pp. 789–798.

50] K. Deb, An efficient constraint handling method for genetic algorithms, Com-
puter Methods in Applied Mechanics and Engineering 186 (2000) 311–338.

51] C.A.C. Coello, R.L. Becerra, Efficient evolutionary optimization through the use
of  a cultural algorithm, Engineering Optimization 36 (2004) 219–236.

52] E. Zahara, Y.T. Kao, Hybrid Nelder-Mead simplex search and particle swarm
optimization for constrained engineering design problems, Expert Systems
with Applications 36 (2009) 3880–3886.

53] A.R. Hedar, M.  Fukushima, Derivative-free filter simulated annealing method
for  constrained continuous global optimization, Journal of Global Optimization
35  (2006) 521–549.

54] Z. Michalewicz, Genetic algorithms, numerical optimization, and constraints,
in:  L. Esheman (Ed.), Proceedings of the Sixth International Conference on
Genetic Algorithms, Morgan Kaufmann, San Mateo, 1995, pp. 151–158.

55] A.K. Renato, C. Leandro Dos Santos, Coevolutionary particle swarm optimiza-
tion using gaussian distribution for solving constrained optimization problems,
IEEE Transactions on Systems Man  and Cybernetics Part B: Cybernetics 36
(2006) 1407–1416.

56] A.E.M. Zavala, A.H. Aguirre, E.R.V. Diharce, Constrained optimization via evo-
lutionary swarm optimization algorithm (PESO), in: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, 2005, pp. 209–216.

57] F.Z. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution
for constrained optimization, Applied Mathematics and Computation 186 (1)
(2007) 340–356.

58] B.K. Kannan, S.N. Kramer, An augmented lagrange multiplier based method
for mixed integer discrete continuous optimization and its applications to
mechanical design, Journal of Mechanical Design 116 (1994) 405–411.

59] C.A.C. Coello, Use of a self-adaptive penalty approach for engineering optimiza-
tion problems, Computers in Industry 41 (2000) 113–127.

60] C.A.C. Coello, E. Mezura Montes, Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection, Advanced Engi-
neering Informatics 16 (2002) 193–203.

61] K. Parsopoulos, M. Vrahatis, Unified particle swarm optimization for solving
constrained engineering optimization problems Adv. Nat. Computation, LNCS,
vol.  3612, Springer-Verlag, Berlin, 2005, pp. 582–591.

62] B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale prob-
lems and engineering design optimization, Journal of Intelligent Manufacturing
(2010), http://dx.doi.org/10.1007/s10845-010-0393-4.

63] E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering opti-
mization with evolutionary algorithms, in: MICAI 2005: Lect. Notes Artif. Int.,
vol.  3789, 2005, pp. 652–662, http://dx.doi.org/10.1007/11579427 66.

64] J.S. Arora, Introduction to Optimum Design, McGraw-Hill, New York, 1989.
ithm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

65] C.A.C. Coello, Constraint-handling using an evolutionary multiobjective opti-
mization technique, Civil Engineering and Environmental Systems 17 (2000)
319–346.

66] J.K. Kuang, S.S. Rao, L. Chen, Taguchi-aided search method for design optimiza-
tion of engineering systems, Engineering Optimization 30 (1998) 1–23.

dx.doi.org/10.1016/j.asoc.2012.11.026
dx.doi.org/10.1016/j.apm.2012.03.043
dx.doi.org/10.1007/s10845-010-0393-4
dx.doi.org/10.1007/11579427_66


 ING Model
A

ft Com

[

[

[

[

ARTICLESOC-1808; No. of Pages 21

A. Sadollah et al. / Applied So

67]  E. Mezura-Montes, J. Velazquez-Reyes, C.A.C. Coello, Modified differential evo-
lution for constrained optimization, in: Evol. Comput., CEC 2006, IEEE Congress,
2006, pp. 25–32.

68] E. Montes-Montes, C.A.C. Coello, J. Velazquez-Reyes, Increasing successful
Please cite this article in press as: A. Sadollah, et al., Mine blast algori
engineering optimization problems, Appl. Soft Comput. J. (2012), http

offspring and diversity in differential evolution for engineering design, in:
Proceedings of the Seventh International Conference on Adaptive Computing
in  Design and Manufacture, 2006, pp. 131–139.

69] C.A.C. Coello, Treating constraints as objectives for single-objective evolution-
ary optimization, Engineering Optimization 32 (3) (2000) 275–308.

[

[

 PRESS
puting xxx (2012) xxx–xxx 21

70] K. Deb, M.  Goyal, Optimizing engineering designs using a combined genetic
search, in: L.J. Eshelman (Ed.), Proceedings of the Sixth International Conference
in  Generic Algorithms, University of Pittsburgh, Morgan Kaufmann Publishers,
San Mateo, CA, 1995, pp. 521–528.
thm: A new population based algorithm for solving constrained
://dx.doi.org/10.1016/j.asoc.2012.11.026

71] J.N. Siddall, Optimal Engineering Design, Principles and Applications, Marcel
Dekker, New York, 1982.

72] S. Gupta, R. Tiwari, B.N. Shivashankar, Multi-objective design optimization of
rolling bearings using genetic algorithm, Mechanism and Machine Theory 42
(2007) 1418–1443.

dx.doi.org/10.1016/j.asoc.2012.11.026

	Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
	1 Introduction
	2 Mine blast algorithm
	2.1 Basic concepts
	2.2 Proposed method
	2.3 Setting the user parameters
	2.4 Effects of algorithm parameters
	2.5 Constraint handling
	2.6 Convergence criteria
	2.7 The steps of MBA

	3 Experimental studies
	3.1 Constrained problem 1
	3.2 Constrained problem 2
	3.3 Constrained problem 3
	3.4 Constrained problem 4
	3.5 Constrained problem 5
	3.6 Constrained problem 6
	3.7 Constrained problem 7
	3.8 Constrained problem 8
	3.9 Engineering benchmark constrained and mechanical design problem
	3.9.1 Three-bar truss design problem
	3.9.2 Pressure vessel design problem
	3.9.3 Tension/compression spring design problem
	3.9.4 Welded beam design problem
	3.9.5 Speed reducer design problem
	3.9.6 Gear train design problem
	3.9.7 Belleville spring design problem
	3.9.8 Rolling element bearing design problem


	4 Conclusions
	Acknowledgments
	A.1 Constrained problem 1
	A.2 Constrained problem 2
	A.3 Constrained problem 3
	A.4 Constrained problem 4
	A.5 Constrained problem 5
	A.6 Constrained problem 6
	A.7 Constrained problem 7
	A.8 Constrained problem 8
	B.1 Three-bar truss design problem

	B.2 Pressure vessel design problem
	B.3 Tension/compression spring design problem
	B.4 Welded beam design problem
	B.5 Speed reducer design problem
	B.6 Gear train design problem
	B.7 Belleville spring design problem
	B.8 Rolling element bearing design problem
	References
	B.8 Rolling element bearing design problem

	References


