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Abstract In this paper, a hybrid discrete firefly algorithm is
presented to solve the multi-objective flexible job shop sched-
uling problem with limited resource constraints. The main
constraint of this scheduling problem is that each operation
of a job must follow a process sequence and each operation
must be processed on an assigned machine. These constraints
are used to balance between the resource limitation and ma-
chine flexibility. Three minimisation objectives—the maxi-
mum completion time, the workload of the critical machine
and the total workload of all machines—are considered simul-
taneously. In this study, discrete firefly algorithm is adopted to
solve the problem, in which the machine assignment and
operation sequence are processed by constructing a suitable
conversion of the continuous functions as attractiveness, dis-
tance and movement, into new discrete functions. Meanwhile,
local search method with neighbourhood structures is
hybridised to enhance the exploitation capability. Benchmark
problems are used to evaluate and study the performance of
the proposed algorithm. The computational result shows that
the proposed algorithm produced better results than other
authors’ algorithms.

Keywords Flexible job shop scheduling . Hybrid discrete
firefly algorithm .Multi-objective optimisation . Limited
resource constraints . Local search

1 Introduction

Scheduling involves the allocation of resources over a period
of time to perform a collection of tasks. It is a decision making
process that plays an important role in most manufacturing
and service industries [1]. One of the most difficult problems
in the area of production scheduling is the job-shop schedul-
ing problem (JSP). It is well known that this problem is
nondeterministic polynomial-time (NP) hard [2]. The classical
JSP consists of scheduling a set of jobs on a set of machines
with the objective to minimise a certain criterion, subjected to
the constraint that each job has a specific processing order
through all machines, which are fixed and known in advance.

The flexible job-shop scheduling problem (FJSP) is an
extension of the classical JSP that allows an operation to be
processed on any machine from a given set of alternative
machines. It is closer to the real manufacturing situation. FJSP
is more complex than classical JSP because of the additional
need to determine the assignment of machines for each
operation.

FJSP reduces the constraint of a machine, but extends the
search range for a solution. It is a more complex NP-hard
problem [3], and it incorporates all the difficulties and com-
plexities of JSP. The FJSP consists of two sub-problems of
routing and scheduling. The routing sub-problem assigns each
operation to a machine among a set of capable machines
authorised for each job. The scheduling sub-problem involves
sequencing the operations assigned to the machines in order to
obtain a feasible schedule that minimises a predefined objec-
tive [4]. Since all machines can process all operations, it is
logical to restrict this freedom, especially when resources are
limited. Therefore, resource constraints are added to enhance
the practicability of the algorithm. The wider availability of
machines for all the operations gives flexibility to perform an
operation by any available set of machines. However, if the
degree of flexibility is too high, the machines will surely
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process more operations. Since resources are limited, more
flexible machines cannot guarantee that more operations will
be executed on each machine. If more flexible machines are
available, the workload of each machine tends to be small;
hence, the balance between resource limitation and machine
flexibility is more important [5].

In the scheduling literature, it is usually assumed that
machines are available during the whole planning horizon.
This assumption may no longer be true in actual workshop,
since breakdowns can happen at any moment, making one or
several machines unavailable for processing jobs. In fact, in
manufacturing systems, machines are periodically submitted
to washing, control, or setup operations [6]. Therefore, avail-
ability constraints of machines should be considered while
formulating a realistic scheduling model. There are various
kinds of availability constraints on production systems.
Roughly, they can be categorised into two types: fixed and
non-fixed. The unavailable period of a fixed availability con-
straint starts at a fixed time point. For non-fixed availability
constraints, the starting time of the unavailable period is
supposed to be flexible and must be determined during the
production scheduling procedure [7].

Leon and Wu [8] considered single machine sequencing
problem with ready time and due date constraints on jobs and
vacation constraints on the machine to minimise maximum
lateness. Qi et al. [9] used branch and bound algorithm to solve
single machine problem with preventive maintenance. Schmidt
[10] has reviewed most results related to deterministic sched-
uling problems with availability constraints. Gharbi and
Haouari [11] and Liao et al. [12] addressed the parallel machine
scheduling problemwith availability constraints. Aggoune [13]
proposed a heuristic approach based on genetic algorithm and
tabu search to solve the flow shop scheduling problem with
unavailability periods imposed onmachines due to a preventive
maintenance activity with the objective to minimise the
makespan. Aggoune and Portman [6] addressed a general flow
shop scheduling problem with limited machine availability.
Allaoui and Artiba [14] investigated the two-stage hybrid flow
shop scheduling problem, in which each machine is subject to
at most one unavailability period. In Mauguière et al. [15],
branch-and-bound algorithms are proposed to solve the job-
shop problem with various types of unavailability periods.
Chan et al. [5] has used GA for flexible job-shop scheduling
problems under resource constraints and effectively minimised
machine idle cost. Zirbi et al. [16] addresses a job shop with
multi-purpose machine scheduling problem with availability
constraints. Lei [17] presents a random key genetic algorithm
to solve fuzzy job shop scheduling problem with availability
constraints. Rajkumar et al. [18] proposed GRASP algorithm to
solve FJSP with limited resource constraints.

Most of the research on FJSP has been concentrated on
mono-objective alone. However, several objectives must be
considered simultaneously in the real world production situation

and these objectives often conflict with each other. In recent
years, multi-objective FJSP (MOFJSP) has gained attention of
some researchers. Kacem et al. [19, 20] developed an effective
evolutionary algorithm controlled by an assigned model based
on the approach of localisation to solve the FJSP. Xia and Wu
[4] proposed a hybrid optimisation approach using a particle
swarm optimisation (PSO) algorithm to assign operations on
machines and a simulated annealing (SA) algorithm to schedule
operations on each machine in solving MOFJSP. An algorithm
hybridised with evolving dispatching rules and genetic pro-
gramming was proposed by Tay and Ho [21]. Gao et al. [22]
developed a hybrid genetic algorithm (GA) for the FJSP with
three objectives. Zhang et al. [23] introduced a hybrid PSO and
tabu search (TS) algorithm to solve the multi-objective FJSP.
Xing et al. [24] proposed an efficient search method for the
multi-objective flexible job-shop scheduling problems. An ef-
fective hybrid tabu search algorithm was introduced by Li et al.
[25] for solving multi-objective flexible job shop scheduling
problems. A Pareto approach to MOFJSP using PSO and local
search was proposed by Moslehi and Mahnam [26]. Li et al.
[27] proposed a hybrid shuffled frog-leaping algorithm for
solving the MOFJSP. Rahmati et al. [28] developed two multi-
objective evolutionary algorithms to solve the multi-objective
FJSP with three objectives. A discrete particle swarm optimisa-
tion algorithm hybridised with SA algorithm to solve multi-
objective FJSP was proposed by Shao et al. [29].

The firefly algorithm (FA) is a novel metaheuristic algorithm
inspired by the social behaviour of fireflies. By idealising some
of the flashing characteristics of fireflies, the firefly-inspired
algorithm was presented by Yang in 2008 [30]. Yang [31]
proposed a firefly algorithm to solve nonlinear design prob-
lems. Lukasik and Zak [32] developed the firefly algorithm for
the continuous constrained optimisation task. Their experimen-
tal evaluation demonstrates the efficiency of the firefly algo-
rithm. Sayadia et al. [33] presented a discrete firefly algorithm
for makespan minimisation in permutation flow shop schedul-
ing problems. A discrete firefly algorithm was proposed by Jati
[34] to solve the travelling salesman problem. Khadwilard et al.
[35] solved the job shop scheduling problems using firefly
algorithm. Marichelvam et al. [36] proposed a discrete firefly
algorithm using the SPV rule for the multi-objective hybrid
flow shop scheduling problems. Yang [37] proposed multi-
objective firefly algorithm to solve multi-objective design op-
timisation problems. Vahedi Nouri et al. [38] presented a hybrid
firefly-simulated annealing algorithm for the flow shop prob-
lem with learning effects and flexible maintenance activities.
The traditional firefly algorithm is a population based technique
for solving continuous optimisation problems, especially for
continuousNP-hard problems. The learning process is based on
the real number such that, the standard firefly algorithm cannot
be directly applied to solve the discrete optimisation problems.

In this paper, we propose a hybrid algorithm combining
discrete firefly algorithm (DFA) with a local search approach
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to solve MOFJSP with limited resource constraints in which
each operation of a job must be followed by a process se-
quence and each operation must be processed on an assigned
machine. There are no precedence constraints among the
operations of different jobs. This paper describes firefly algo-
rithm’s discretisation, which consists of constructing a suitable
conversion of the continuous functions such as attractiveness,
distance and movement, into new discrete functions. DFA
allows an extensive search for the solution space, while the
local search method is employed to reassign the machines for
operations and to reschedule the results obtained from DFA,
which will enhance the convergence speed. The objectives
considered in this paper are to minimise maximal completion
time, the workload of the critical machine and the total work-
load of machines simultaneously.

The remainder of this paper is organised as follows. The
problem formulation and notation of multi-objective FJSP are
introduced in Section 2. Section 3 describes the standard
firefly algorithm. In Section 4, the proposed approach is
presented to solve the FJSP. Section 5 shows the computa-
tional results and present study on well-known FJSP with
multi-constraints problems. Finally, Section 6 provides con-
clusions and scope for further research.

2 Problem formulation

The flexible job-shop scheduling problem with limited re-
source constraints can be described as follows. There are m
machines and n jobs. Each job Ji (1≤ i≤n) consists of a
sequence of ni operations. Each operation Oij (i=1,2,…,n;
j=1,2,…,ni) of job (Ji) can be processed by one machine mij

in the set of eligible machinesMij. Pijk denotes the processing
time of operationOij onmachine k∈Mij. At the starting time of
scheduling, it is not that all the machines are unoccupied. The
role of scheduling is that the starting time of machine for
different operations are determined, and the maximum process
time is minimised.

The FJSP with limited resource constraints is needed to
assign operations to a machine and schedule job operations
subject to the constraint that [19]:

1. The operation sequence for each job is prescribed and the
appointed process order must be followed.

2. Each machine can process only one operation at a time.
3. Each operation must be processed on an appointed

machine.

For example, FJSP with three jobs and four machines is
shown in Table 1, the numbers in the table present the pro-
cessing time of operations, and the symbol ‘–’ means the
operation cannot be processed on the corresponding machine.

In this study, the following objectives are to be minimised:

1. Makespan (Cm) of the jobs, i.e. the completion time of all
jobs

2. Maximal machine workload (Wm), i.e. the maximum
working time spent on any machine

3. Total workload of the machines (Wt) which represent the
total working time over all machines.

The hypotheses of this scheduling are as follows: an oper-
ation cannot be interrupted during the process; there is no
operation order constraint between different jobs; different
jobs have the same priority; all the jobs can be processed at
the starting time of scheduling; and setup time and transfer
time are included in the processing time.

The notations used in this study are listed as follows:

i,h index of jobs, i, h=1, 2, . . . , n
j,g index of operation sequence, j, g=1, 2, . . . , ni
k index of machines, k=1, 2, . . . , m
n total number of jobs
m total number of machines
ni total number of operations of job i
Oij the jth operation of job i
Mij the set of available machines for the operation Oij

Pijk processing time of operation Oij on machine k
tijk start time of operation Oij on machine k
Cij completion time of the operation Oij

Ck is the completion time of Mk

Wk is the workload of Mk.

Decision variable

X ijk ¼ 1; if machine k is selected for the operation 0ij
0; otherwise

�

Our model is presented as follows:

min f 1 ¼ max
1≤ k ≤m

Ckð Þ ð1Þ

min f 2 ¼ max
1≤ k ≤m

Wkð Þ ð2Þ

Table 1 Example of FJSP with three jobs and four machines

Job Position Operation M1 M2 M3 M4

J1 1 O1,1 2 – 1 6

2 O1,2 5 3 – 2

3 O1,3 – 2 4 –

J2 4 O2,1 7 – – 11

5 O2,2 4 4 12 8

J3 6 O3,1 2 – 7 9

7 O3,2 3 5 8 1

8 O3,3 4 3 – 5
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min f 3 ¼
X
k¼1

m

Wk ð3Þ

Subject to:

Cij−Ci j−1ð Þ≥PijkX ijk ; j ¼ 2;… …ni;∀i; j ð4Þ

Chg−Cij−thjk
� �

X hgkX ijk ≥0
� �

v Cij−Chg−tijk
� �

XhjiX ijk ≥0
� �

;

∀ i; jð Þ; h; gð Þ; k ð5Þ

X
k∈Mij

X ijk ¼ 1;∀i; j ð6Þ

Equation (1) ensures the minimisation of maximal comple-
tion time of the machines. Equation (2) ensures the
minimisation of maximal machine critical workload among
all the machines available. Equation (3) ensures the
minimisation of total work load of machines. Inequality (4)
ensures the operation precedent constraint. Inequality (5) en-
sures that each machine could process only one operation at
each time when the first or the second condition mentioned in
the constraint satisfies all stated elements. Equation (6) states
that one machine could be selected from the set of machines
for each operation.

Many approaches have been formulated to solve the multi-
objective optimisation. These approaches can be classified
into three categories [39].

1. Transform the multi-objective problem to a mono-
objective problem by a weighted sum approach.

2. The non-Pareto approach deals with different objectives
in a separated way.

3. The Pareto approach based on the Pareto optimality
concept.

The objective function in this paper is based on the first
type. The weighted sum of the three objective values is taken
as the objective function:

Minimize F cð Þ ¼ W 1 � f 1 þW 2 � f 2 þW 3 � f 3 ð7Þ

Subject to:

W 1 þW 2 þW 3 ¼ 1; 0≤W 1;W 2;W 3≤1 ð8Þ

where F(c) denotes the combined objective function value of a
schedule; f1, f2 and f3 denote the makespan (Cm), maximal
machine workload (Wm) and total workload of machines (Wt),
respectively. W1, W2 and W3 represent the weight coefficient

for the three objective values, which could be set of different
values depending upon the requirement. If the decision maker
pays more attention to a certain objective, a large weight is
defined to it. Otherwise, a small weight for the given objective
can be defined. The advantage of utilising the weighted sum-
mation approach is its algorithmic actualisation, which is
effortless and the users can change the weight of different
objectives for satisfying the requirements of decision makers.

3 Firefly algorithm

The firefly algorithm is a novel population based technique for
solving continuous optimisation problems, especially for con-
tinuous NP-hard problems and has been motivated by the
simulation of the social behaviour of fireflies. It is possible
to formulate optimisation algorithms because the flashing
light can be formulated in such a way that it is associated with
the objective function of problems considered, in order to
obtain efficient optimal solutions [30].

Firefly-inspired algorithm uses the following three
idealised rules [30, 31]: (1) all fireflies are unisex, which
means that they are attracted to other fireflies regardless of
their sex; (2) attractiveness of a firefly is proportional to their
brightness; thus for any two flashing fireflies, the less brighter
one will move towards the brighter one. The attractiveness is
proportional to the brightness and they both increase as their
distance decreases. If there is no brighter one than a particular
firefly, it will move randomly; (3) the brightness of a firefly is
determined by the value of the objective function. For a
maximisation problem, the brightness may be proportional
to the objective function value and inverse for the
minimisation problem. The basic steps of the FA are
summarised by the pseudocode shown in Fig. 1, which con-
sists of three rules discussed above.

Based on Yang [40], FA is very efficient in finding the
global optimal value with high success rates. Simulations and
results indicate that FA is superior to both PSO and GA in
terms of both efficiency and success rate. These facts give
inspiration to investigate to find optimal solution using FA in
solving FJSP. The challenges are how to compute discrete
distance between two fireflies and how they move in coordi-
nation. The following issues are important in this algorithm.

3.1 Distance

The distance between any two fireflies i and j, at positions xi
and xj, respectively, can be defined as a Cartesian distance:

rij ¼ xi−x j
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

k¼1
xi;k−x j;k
� �2r

ð9Þ
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where xi,k is the kth component of the spatial coordinate xi of
the ith firefly, and d is the number of dimensions.

3.2 Attractiveness

The attractiveness of a firefly is determined by its light inten-
sity. Each firefly has its distinctive attractiveness β, which
implies how strong it attracts other members of the swarm.
The form of attractiveness function of a firefly is the following
monotonically decreasing function [32]

β rð Þ ¼ β0e
−γrm ; m≥1ð Þ ð10Þ

where r is the distance between two fireflies, β0 is the attrac-
tiveness at r=0 and γ is a fixed light absorption coefficient.

3.3 Movement

The movement of a firefly i, which is attracted by a more
attractive (i.e. brighter) firefly j, is given by the following
equation [32]

xi ¼ xi þ β0e
−γr2ij x j−xi

� �þ α rand−1=2ð Þ ð11Þ

where the first term is the current position of a firefly, the second
term is due to attraction and the third term is a randomisationwith
α being the randomisation parameter, while rand is a random
number generator uniformly distributed in the space [0, 1].

The γ value ensures the firefly algorithm to search for the
global solution in the large search space and is explained
below [30, 31].

From Eq. (11), it is easy to see that there exist two limit
cases when γ is small or large, respectively. When γ→0, the
attractiveness is constant β(r)=β0. This is equivalent to saying
that the light intensity does not decrease in an idealised sky.

Thus, a flashing firefly can be seen anywhere in the domain.
This limiting case can lead to a variant of standard particle
swarm optimisation (PSO) algorithm. Here, β(r) is always the
largest; it could possibly be, therefore, fireflies attempt to
advance towards other fireflies with the largest possible steps.
The exploration–exploitation, in this case, is out of balance
because exploitation is maximal and exploration is normal. On
the other hand, when γ→∞, the attractiveness is almost zero
in the sight of other fireflies. This is equivalent to the case
where the fireflies are surrounded with very thick fog and
could not see any of the other fireflies. The only movement
fireflies would be doing is the α-steps; this means that all
fireflies move almost randomly, which corresponds to a ran-
dom search technique. Here, the exploration–exploitation is
out of the balance as well, as fireflies would do only the
exploration, with no exploitation in the search space.

In general, the firefly algorithm corresponds to the situation
between these two limit cases, and it is thus possible to fine-
tune these parameters so that FA can outperform both PSO
and random search. In fact, FA can find the global optima as
well as all the local optima simultaneously in a very effective
manner. The most efficient searching is when the exploration–
exploitation is in balance, or first to emphasise the exploration,
and then the exploitation. The parameter γ now characterises
the variation of the attractiveness, and its value is crucially
important in determining the speed of the convergence and
how the FA algorithm behaves. In theory, γ can range in the
interval (0, ∞). However, its value depends on the character-
istic length of γ of the system to be optimised: In most
applications, it typically varies from 0.01 to 100.

Based on the effectiveness of the firefly algorithm in
optimising continuous problems, it is predicted that this algo-
rithm will be impressive in solving discrete optimisation prob-
lems. The firefly algorithm cannot be applied directly to solve
the discrete optimisation problems.

4 Hybrid discrete firefly algorithm

The firefly algorithm has been originally developed for solv-
ing continuous optimisation problems. In order to make it
applicable for solving the problem, considered a novel hybrid
discrete firefly algorithm, named hybrid discrete firefly algo-
rithm (HDFA), is proposed in this section.

4.1 Solution representation

Solution representation is one of the most important issues in
designing a DFA. The FJSP problem is a combination of
machine assignment and operation scheduling decisions, so
the solution can be expressed by the assignment of operations
on machines and the processing sequence of operations on the
machines. In this study, we used improved A-string (machine

Firefly Algorithm

Objective function f( x), x = (x 1 , . . . , x d )T

Generate initial population of fireflies xi (i = 1, 2, . . . ,n )
Light intensity I i at xi  is determined by f (xi )
Define light absorption coefficient 
while (t  < Max Generation )

for i  = 1 : n all n fireflies
for j  = 1 : i all n fireflies
if ( I j  > I i ) , Move firefly i towards j in d-dimension ; end if
Attractiveness varies with distance r  via exp [- r ]
Evaluate new solutions and update light intensity
end for j

     end for i
     Rank the fireflies and find the current best
end while
Postprocess results and visualization

Fig. 1 Pseudo code of the firefly algorithm
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assignment vector) and B-string (operation scheduling vector)
representation for each firefly that could be used to solve the
multi-objective FJSP efficiently and avoid the use of a repair
mechanism to maintain feasibility [23]. Machine assignment
vector tells the machine assigned for each operation, while the
operation scheduling vector displays the sequence of the
operations on each machine.

Machine assignment An array of integer values is used to
represent a machine assignment vector. The length of the array
is equal to the sum of all operations of all jobs. Each integer
value equals the index of the array of alternative machine set
of each operation.

Operation scheduling Operation scheduling vector has the
same length as the machine assignment vector. It consists of
a sequence of job numbers in which job number i occurs ni
times. It can avoid creating an infeasible schedule when
replacing each operation by the corresponding job index.

The candidate solution generated at each level of iteration
has to satisfy the constraints stated in the problem formulation
model discussed in Section 2, and thus, feasibility of the
solution is checked and ensured.

Table 1 gives a processing time table for an example problem
with three jobs, fourmachines and eight operations. Themachine
assignment vector and operation scheduling vector of a solution
for the given problem is shown in Fig. 2. The solution in Fig. 2 in
this study is represented by a vector {3,4,2,1,1,1,4,2 |
2,3,1,1,2,3,3,1}. The first part {3,4,2,1,1,1,4,2} denotes the ma-
chine assigned to the operation, i.e. {(O11,M3),(O12,M4),(O13,-
M2),(O21,M1),(O22,M1),(O31,M1), (O32,M4),(O33,M2)}. The sec-
ond part {2,3,1,1,2,3,3,1} is the scheduling component tells that
the scheduling sequence is {O21>O31>O11>O12>O22>O32>
O33>O13}. When a firefly solution is decoded, operation sched-
uling vector is converted to a sequence of operations at first. Then
each operation is assigned to a processing machine according to
machine assignment vector as follows: [(O2,1, M1),(O3,1,
M1),(O1,1, M3),(O1,2, M4),(O2,2, M1),(O3,2, M4),(O3,3, M2),(O1,3,
M2)]. Gantt chart of the decoded solution is shown in Fig. 3.

Through this representation, every solution could decode a
feasible FJSP schedule effectively.

4.2 Population initialisation

The quality of the initial population has a greater effect on the
performance of an algorithm. A good initial population locates
promising areas in the search space and provides enough
diversity to avoid premature convergence.

4.2.1 Machine assignment component initial rules

Initiate the machine assignment component of the population
using the following two rules: the operation minimum pro-
cessing time rule [41] denoted by Rma1, the global machine
workload balance rule [27] denoted by Rma2.

4.2.2 Scheduling component initial rules

The scheduling component considers how to sequence the
operations at each machine, i.e. to determine the start time of
each operation. Following are initial approaches for schedul-
ing component: the most work remaining (MWR) rule [42]
denoted byRsc1, the most number of operations remaining rule
[41] denoted by Rsc2.

To consider both the problem feature and solution quality,
in the first part of the population, machine assignment com-
ponents and scheduling components are generated according
to percentage of population size given by rules Rma1, Rma2,
Rsc1 and Rsc2, respectively. All other solutions in the initial
population are generated randomly to enhance the diversity of
the population.

4.3 Firefly evaluation

Each firefly is represented by a machine assignment vector
and an operation scheduling vector. Using the permutation of
these vectors in the population each firefly is evaluated to
determine the objective function. The objective function value
of each firefly is associated with the light intensity of the
corresponding firefly. In this work, the evaluation of the
goodness of schedule is measured by the combined objective
function, which can be calculated using Eq. (7). Table 2 shows
the initial firefly generation with calculated combined objec-
tive function value for the example problem given in Table 1.

Position 1 2 3 4 5 6 7 8

Operation O11 O12 O13 O21 O22 O31 O32 O33

Machine 3 4 2 1 1 1 4 2

Sequence 2 3 1 1 2 3 3 1

Operation O21 O31 O11 O12 O22 O32 O33 O13

Position 4 6 1 2 5 7 8 3

Machine assignment vector

Operation scheduling vector

Fig. 2 Illustration of the firefly representation

M1

M2

M3 O1,1

M4 O3,2

11 13 15

O2,1 O3,1 O2,2

O3,3 O1,3

O1,2

1 3 75 9

7 9 13

10 13 15

1

1 3 9        10

Fig. 3 Gantt chart (Cm=15, Wm=13, Wt=22)
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The number of fireflies (population size) used in this problem
is 10. The best firefly (Pbest) based on the combined objective
function value is population P-9.

4.4 Solution updation

In firefly algorithm, firefly movement is based on light intensity
and comparing it between two fireflies. The attractiveness of a
firefly is determined by its brightness, which in turn is associated
with the encoded objective function. Thus, for any two fireflies,
the less bright one will move towards the brighter one. If none is
brighter than a particular firefly, it will move randomly. In this
work, discretisation is done for the following issues:

4.4.1 Distance

There are two possible ways to measure the distance between
two permutations: (a) Hamming distance and (b) the number
of the required swaps of the first solution in order to get the
second one. In A-string, the distance between any two fireflies
i and j, at positions xi and xj, respectively, can be measured
using Hamming distance. The Hamming distance between
two permutations is the number of non-corresponding ele-
ments in the sequence [43]. The distance between two permu-
tations in the B-string can be measured using swap distance.
The swap distance is the number of minimal required swaps of
one permutation in order to obtain the other one.

4.4.2 Attraction and movement

Attraction and movement has to be implemented and
interpreted for FJSP in the same way as it is intended for the
continuous firefly algorithm. In this study, we can break up an
attraction step given in Eq. (11) into two sub-steps: β-step and

α-step as given in Eqs. (12) and (13), respectively. We can do
this, since we know that the result will not change.

xi ¼ β rð Þ x j−xi
� � ð12Þ

xi ¼ xi þ α rand−1=2ð Þ ð13Þ

The attraction stepsα and β are not interchangeable. The β-
step must be computed before the α-step while finding the
new position of the firefly.

β-Step It brings the iterated firefly always closer to another
firefly. In other words, after applying β-step on a firefly
towards the other firefly, their distance is always decreased,
and the decrement is proportional to their former distance. The
steps involved in β-step are as follows:

Let

d the difference between the elements of best firefly and
other firefly

r Hamming distance for A-string and swap distance for B-
string

Step 1: All necessary insertions in the machine assignment
vector and all necessary pair-wise exchanges in the
operation scheduling vector, to make the elements of
the current firefly solution equal to best firefly solu-
tion are found and stored in d.

Step 2: Counting the number of insertions in machine as-
signment vector and number of pair-wise exchanges
in operation scheduling vector between two firefly
solutions will give the hamming distance and swap
distance respectively, which is stored in r.

Step 3: Compute β probability using Eq. (14). Since it is
often faster to calculate 1/(1+r2) than an exponential
function, the Eq. (10) can be approximated as men-
tioned below

β rð Þ ¼ β0= 1þ γr2
� � ð14Þ

Step 4: Random number rand ( ) is generated in the range (0,
1) according to the number of counts in the set d of
machine assignment vector and operation scheduling
vector.

Step 5: If rand ( )≤β, then the corresponding insertion in the
machine assignment vector and pair-wise exchange
in the operation scheduling vector is performed on
the elements of the current firefly. This procedure

Table 2 Illustration of initial firefly generation with objective function

Population P Initial firefly generation Objective function

A-string B-string f1 f2 f3 F(c)

1 3 4 2 1 1 1 4 2 4 6 1 2 5 7 8 3 15 13 22 15.8

2 3 4 2 1 1 1 4 2 4 6 1 2 5 7 3 8 13 13 22 14.8

3 3 4 2 1 2 1 4 2 4 6 1 5 7 2 8 3 16 9 22 15.1

4 3 2 2 4 2 1 4 1 1 6 2 4 7 3 5 8 16 12 28 17.2

5 3 4 3 1 2 1 4 2 6 7 1 2 4 5 3 8 16 9 24 15.5

6 3 4 3 1 2 1 4 2 4 6 1 2 7 5 8 3 14 9 24 14.5

7 3 4 3 1 2 1 4 2 1 4 2 6 7 8 3 5 17 9 24 16.0

8 3 4 2 1 2 1 4 2 6 4 7 1 8 5 2 3 15 9 22 14.6

9 3 4 2 1 2 1 4 2 1 2 4 6 3 5 7 8 14 9 22 14.1a

10 1 4 2 1 1 1 4 2 6 4 7 1 5 8 2 3 15 15 23 16.6

(w1=0.5, w2=0.3, w3=0.2)
aPbest best firefly solution
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moves the current firefly to the global best position,
which is controlled by the β probability.

α-Step It is much simpler than the β-step. In Eq. (13) the
randommovement of fireflyα (rand−1/2) is approximated as
α (randint) given in Eq. (15), which allows us to shift the
permutation into one of the neighbouring permutations.

xi ¼ xi þ α randintð Þ ð15Þ

In machine assignment vectorα-step is applied by random-
ly choosing an element position using α (randint) and the
machine assignment component of that position is replaced
with a new machine having minimum processing time among
the set of available machines. In operation scheduling vector
α-step is applied by randomly choosing an element position
by using α (randint) and swap with another position in the
string which is also chosen at random. The random number
randint is a positive integer generated between the minimum
and maximum number of elements in the string.

Table 3 illustrates the firefly position update procedure for
population 1 in the first generation. The parameters used in
this illustration are as follows: β0=1, γ=0.1, α=1. The im-
provement of objective function value F(c) from 17.2 to 15.1
shows the movement of firefly from its current solution to the
best firefly solution. The objective function of each firefly
population obtained in the first generation replaces its previ-
ous value (P), if its current solution is better than the previ-
ously stored firefly solution. The best solution of the first
iteration replaces the global best firefly solution (Pbest) if it is
better than the previously stored global best solution. The
procedure is repeated until the termination criterion is satis-
fied. In this study, the termination criterion is the total number
of generations.

4.5 Local search

In each generation of the discrete firefly algorithm, we im-
prove the quality of the solution (firefly) using a local search
mechanismwhich explore the neighbourhood of the generated
solution for better ones. Neighbourhood structures are pro-
posed to enhance both the search exploitation and exploration
ability of the algorithm, that is, to increase the capability of
convergence to the near optimal solution by keeping the
diversity of the solution population. Local search moves from
one solution to another solution in the neighbourhood have
good feature in exploiting the promising search space, so as to
find optimal solutions around a near-optimal solution. The
following are the neighbourhood structures for machine as-
signment and scheduling component.

4.5.1 Neighbourhood structure for machine assignment

Random neighbourhood (Lma1) The neighbouring structure
of machine assignment is to find the alternative machine
randomly. Wang et al. [44] used this neighbourhood struc-
ture as a mutation operator in genetic algorithm. The
neighbourhood is generated by following steps: (1) select
operation Oi,j randomly from machine assignment vector
of solution; (2) detect machine Mk that is currently select-
ed to process Oi,j ; (3) detect a set of machines M that
can process Oi,j; and (4) select a random machine from
machine set M (except Mk) to process Oi,j.

Critical operations neighbourhood (Lma2) The neighbouring
structure is used to find the machine with most critical oper-
ations, and then find some of the critical operations to assign
another machine for the operation [27]. The steps are as
follows: (1) get the number of critical operations for each
machine; (2) sort all machines in non-increasing order

Table 3 Illustration of firefly so-
lution updation Solution vector Machine assignment Operation scheduling

Current firefly position (P4) 3 2 2 4 2 1 4 1 1 6 2 4 7 3 5 8

Combined objective function for P4 F(c)=17.2

Best firefly position (Pbest) 3 4 2 1 2 1 4 2 1 2 4 6 3 5 7 8

Combined objective function for Pbest F(c)=14.1

Difference between the elements (d ) {(2,4), (4,1), (8,2)} {(2,3), (3,4), (5,6), (6,7)}

Hamming distance (r) 3 4

Attractiveness β-step β rð Þ ¼ β0

1þγ: r2ð Þ 0.53 0.38

Random number generation rand ( ) between (0,1) {0.72, 0.52, 0.06} {0.46,0.66, 0.08, 0.76}

Movement β-step (4,1), (8,2) (5,6)

Firefly position after β-step 3 2 2 1 2 1 4 2 1 6 2 4 3 7 5 8

Attractiveness α-step α (randint) 3 4 2 1 2 1 4 2 1 6 2 4 3 5 7 8

Combined objective function after movement F(c)=15.1
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according to their number of critical operations; (3) select the
first machine with the most number of critical operations and
denote as Mold. Randomly search an operation that is sched-
uled on Mold, and denote as Oi,j; (4) assign a machine with
relatively less critical operations from other machines which is
capable of processingOi,j, denotedMs, and schedule operation
Oi,j onMs ; (5) replace the machine assignment component of
the current solution at position Oi,j with the value of Ms.

4.5.2 Neighbourhood structure for operation scheduling

Critical operation swap neighbourhood (Lswap) The
neighbourhood solution is generated by moving two critical
operations on the critical path. It was proposed by Nowicki
and Smutnicki, [45] for job shop scheduling. For FJSP, we
have to make an extra check that the two operations to be
swapped does not belong to the same job. The rules of
swapping two operations on the critical path are as follows:
(1) if the first (last) block contains more than two operations,
we only swap the last (first) two operations in the block.
Otherwise, if the first (last) block contains only two opera-
tions, these operations are swapped; (2) in each critical block,
we only swap the last two and first two operations; (3) if a
critical block contains only one operation, then no swap is
made.

Critical operation insert neighbourhood (Linsert) Dell’Amico
and Trubian [46] proposed the neighbourhood by moving one
critical operation on the critical path to job shop scheduling.
Hence we adopt by moving one operat ion. The
neighbourhood is generated by the following steps: (1) ran-
domly select a critical block with at least two critical opera-
tions; (2) in each critical block, the first (or last) operation is
inserted into the internal operation within the critical block; (3)
in each critical block, the internal operation is inserted at the
beginning or at the end of the critical block; and (4) if a critical
block contains only one operation, then no swap is made.

The local search approach is carried out by selecting ran-
domly one approach each from machine assignment
neighbourhood structure and operation scheduling
neighbourhood structure. Figure 4 illustrates the neighbourhood

generated using this approach for the decoded solution of the
example problem given in Fig. 3. In machine assignment,
operation J2,2 is assigned to machine M2 from M1 based on
the steps involved in critical operations neighbourhood. Then,
according to critical operation swap neighbourhood the opera-
tions are swapped which in turn gives the better solution (Cm=
13, Wm=9, Wt=22) than the previous one (Cm=15, Wm=13,
Wt=22).

4.6 The framework of HDFA

The proposed HDFA could keep the balance of both the
global exploration and local exploitation, and it also stress-
es the diversity of the population during the searching
process. Thus, it is expected to achieve good performance
in solving the multi-objective flexible job shop scheduling
problem. The framework of the proposed HDFA is illus-
trated in Fig. 5. During the operation process, the
initialisation is done with multiple strategies. Then, each
individual in the population is evaluated. If the stop crite-
rion is met, the non-dominated solution is the output.
Otherwise, update each firefly according to Eqs. (12) and
(15). In local search, neighbourhood structures are used to
search the solution space. The algorithm is repeated until a
termination criterion is met.

M1

M2

M3 O1,1

M4 O3,2

13

7 9

5 7 9

1

O1,2
1

11 13 15

O3,1
2

O2,1

O1,3
3 5

O3,3 O2,2
8      9

3        4

1 3

Fig. 4 Gantt chart (Cm=13, Wm=9, Wt=22)

Set the parameter values

Initialise the firefly 
population 

Evaluation

Local Search

If termination 
condition met? 
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dominated solutions 

Update the 
firefly position

N

Y

Fig. 5 Framework of the proposed hybrid algorithm
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5 Computational results

This section describes the computational experiments used to
evaluate the performance of the proposed algorithm. In order to
conduct the experiment, we implement the algorithm in C++ on
an Intel Core 2 Duo 2.0 GHz PC with 4 GB RAM memory.
Three representative instances based on the practical data have
been considered. Each instance can be characterised by the
following parameters: number of jobs (n), number of machines
(m) and the number of operations (ni). Two problem instances
(problem 8×5 and problem 12×5) are taken from Du et al. [3]
and the third problem instance (problem 8×8) from Rajkumar
et al. [18]. The best and average results of experiments from 20
different runs were collected for performance comparison.

The parameters of the hybrid algorithm are as follows. Set
the population sizePsize=200, rate of machine assignment rule
Rma1 and scheduling component rule Rsc1=20 %, rate of
machine assignment rule Rma2 and scheduling component rule
Rsc2=30 %, the maximum number of generations maxgen=
100, maximum local search iteration itemax=50, attractiveness
of fireflies β0=1.0, light absorption coefficient γ=0.1 and
randomisation parameter α=1.0.

5.1 Problem 8×5

A small scale instance 8×5 with 20 operations, which is taken
from Du et al. [3], is shown in Table 4, and it is taken to

evaluate the efficiency of our proposed hybrid algorithm. In
the data of Table 4, symbol ‘−’ indicates that the machine is
not available for the corresponding operation. The computa-
tional results obtained by the proposed hybrid algorithm are
shown as follows:

Makespan Cmð Þ ¼ 24;maximal workload Wmð Þ
¼ 24; total workload Wtð Þ ¼ 101:

The comparison of the results of the proposed HDFA
and DFA with other algorithms is shown in Table 5. It
also shows that the combined objective function value
F(c) for different weights assigned to makespan, maximum
workload and total workload. From Table 5, it can be
seen that the proposed HDFA outperforms DFA. The
column labelled ‘GA’ refers to genetic algorithm proposed
by Du et al. [3], and the next column labeled ‘GRASP’
refers to greedy randomised adaptive search procedure
proposed by Rajkumar et al. [18]. The comparison result
shows that the proposed algorithm is more suitable for
solving problems with multi constraints. In Fig. 6, the
solution is shown by Gantt chart. The representation O1,1

(job, operation) inside the block denotes the first operation
of job 1, and so on. The hatched blocks represent the
machine’s idle periods.

Table 4 Problem 8×5 with 20 operations

Job Oij M1 M2 M3 M4 M5

J1 O1,1 5 3 – – –

O1,2 – 7 – – –

J2 O2,1 – – 6 – –

O2,2 – – – 3 4

J3 O3,1 – 4 6 – –

O3,2 7 – – – –

O3,3 – – – 7 –

J4 O4,1 – – – – 10

J5 O5,1 – – – 5 –

O5,2 4 5 8 – –

O5,3 – – – 6 5

O5,4 – 3 – – 4

J6 O6,1 – 2 6 – –

O6,2 – - 8 – –

J7 O7,1 – – 3 8 –

O7,2 – – – 7 4

J8 O8,1 3 – 5 – –

O8,2 – – - 9 6

O8,3 – – 7 – –

O8,4 – 3 – – –

Table 5 Comparison of results on problem 8×5

GA GRASP DFA HDFA

Makespan (Cm) 27 24 28 24

Maximal machine workload (Wm) 27 24 25 24

Total workload of the machines (Wt) 109 101 102 101

F(0.5–0.3–0.2) 43.4 39.4 41.9 39.4

F(0.3–0.2–0.5) 68 62.5 64.4 62.5

F(0.2–0.5–0.3) 51.6 47.1 48.7 47.1

Computational time (s) – – 0.18 0.45

24

3

3 5

7 9 16 19 22

9

O1,2 O8,4 O5,4

16

16

O6,2

19 23

5    6 9 15  16 23

O7,2O8,2 O4,1

9

0

M1

M2

M3

M4

M5
3

242 4 6 8 10 12 14 16 18 20 22

O3,3

O8,1

O1,1

O2,1 O7,1

O3,1

O5,1 O2,2

O5,2

O5,3

O6,1

O8,3

O3,2

6 9

Fig. 6 Gantt chart of problem 8×5 with 20 operations (Cm=24,Wm=24,
Wt=101)
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5.2 Problem 12×5

Table 6 displays the middle scale instance of 12×5 with 30
operations, which is taken from Du et al. [3]. The best

computational results of our hybrid algorithm are shown as
follows:

Makespan Cmð Þ ¼ 31;maximal workload Wmð Þ
¼ 30; total workload Wtð Þ ¼ 140:

The schedule using Gantt chart representation correspond-
ing to the optimal solution is shown in Fig. 7. The comparison

Table 6 Problem 12×5 with 30 operations

Job Oij M1 M2 M3 M4 M5

J1 O1,1 5 3 – – –

O1,2 – 7 – – –

J2 O2,1 – – 6 – –

O2,2 – – – 3 4

J3 O3,1 – 4 6 – –

O3,2 7 – – – –

O3,3 – – – 7 –

J4 O4,1 – – – – 10

J5 O5,1 – – – 5 –

O5,2 4 5 8 – –

O5,3 – – – 6 5

O5,4 – 3 – – 4

J6 O6,1 – 2 6 – –

O6,2 – – 8 – –

J7 O7,1 – – 3 8 –

O7,2 – – – 7 4

J8 O8,1 3 – 5 – –

O8,2 – – – 9 6

O8,3 – – 7 – –

O8,4 – 3 – – –

J9 O9,1 – 4 – – –

O9,2 4 – – – 3

J9 O10,1 – – 4 – –

O10,2 – – – 5 –

O10,3 – 3 – – –

J10 O11,1 – 4 – – 4.5

O11,2 – – 6 – 4

O11,3 3 4 – – –

J11 O12,1 – 5 – 4 –

O12,2 – – 4 3 –

8

M1 O1,1 O8,1 O5,2 O3,2

M4 O5,1 O12,1

O10,3 O8,4

M3 O7,1 O8,3 O6,2

O5,4M2 O3,1 O11,1 O9,1 O6,1 O1,2

M5 O4,1 O8,2 O11,2 O5,3

0 4 8

O9,2 O11,3

O2,2 O12,2 O3,3

27

32

O10,1 O2,1

O10,2

12 16 20 24 28

O7,2

10 16 20 25

31

5 9 14 17 20 27

29

3 7 13 16 23

30

5 12 19 23 26

4 8 12 14 21 24

Fig. 7 Gantt chart of problem 12×5 with 30 operations (Cm=31, Wm=
30, Wt=140)

Table 7 Comparison of results on problem 12×5

GA GRASP DFA HDFA

Makespan (Cm) 33 33 34 31

Maximal machine workload (Wm) 33 33 32 30

Total workload of the machines (Wt) 145 138 139 140

F(0.5–0.3–0.2) 55.4 54 54.4 52.5

F(0.3–0.2–0.5) 89 85.5 86.1 85.3

F(0.2–0.5–0.3) 66.6 64.5 64.5 63.2

Computational time (s) – – 0.37 0.93

Table 8 Problem 8×8 with 27 operations

Job Oij M1 M2 M3 M4 M5 M6 M7 M8

J1 O1,1 5 – 7 – 3 – – 9

O1,2 – – – 4 3 – 6 –

O1,3 – – – 5 – 2 4 –

J2 O2,1 4 – 3 – 8 – 9 –

O2,2 – 8 – 2 6 – – –

O2,3 – – – 5 – 4 1 7

O2,4 10 – 9 – 4 7 – –

J3 O3,1 – – – – – 5 2 4

O3,2 – 5 6 4 – 9 – –

O3,3 1 – – 6 – 10 – 7

J4 O4,1 – 1 6 – – – 8 –

O4,2 – 11 – 8 9 5 6 –

O4,3 – – 2 – 3 – 5 7

J5 O5,1 3 – 7 – 9 – – –

O5,2 – – 7 4 – – 6 –

O5,3 – 9 – – 4 2 – –

O5,4 – – – 6 7 – 3 6

J6 O6,1 – – 1 – 3 – – –

O6,2 11 – 9 – – – 6 4

O6,3 – 5 9 10 – – – –

J7 O7,1 5 – 2 – – – 3 –

O7,2 – 9 – – 11 9 – 5

O7,3 – – – 3 – 6 – 7

J8 O8,1 2 8 – 9 – – – –

O8,2 – 4 7 – 9 – 10 –

O8,3 – 9 – 8 5 – – 1

O8,4 9 – 3 – 1 5 – –
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of our hybrid algorithm and DFA with other algorithms is
shown in Table 7. The column labeled ‘GA’ refers to genetic
algorithm proposed by Du et al. [3] and the next column
labeled ‘GRASP’ refers to greedy randomised adaptive search
procedure proposed by Rajkumar et al. [18]. Table 7 shows
our hybrid algorithm’s performance and effectiveness over
DFA and other algorithms.

5.3 Problem 8×8

This is a middle scale instance taken fromRajkumar et al. [18]
given in Table 8, in which 8 jobs with 27 operations are to be
performed on 8 machines. The obtained solutions by our
hybrid algorithm are characterised by the following values:

Makespan Cmð Þ ¼ 15;maximal workload Wmð Þ
¼ 12; total workload Wtð Þ ¼ 75

Figure 8 shows the result of solution in the form of a Gantt
chart. From Table 9, by comparison with DFA and GRASP

algorithm, the effectiveness of our proposed hybrid algorithm
is shown obviously.

6 Conclusions

In this paper, an effective HDFA is proposed for multi-
objective flexible job shop scheduling with limited resource
constraints. The objective function considered is minimisation
of makespan, maximal workload and total workload of ma-
chines. Instead of applying the standard firefly algorithm, we
proposed the discrete version of the continuous function such
as distance, attractiveness and movement to update a firefly
position. A combination of rules is utilised for generating the
initial population. In addition, two neighbourhood structures
in relation to machine assignment and operation sequence
were used in the algorithm to direct the local search to the
more promising search space. The performance of the pre-
sented approach is evaluated in comparison with the results
obtained from other authors’ algorithms for three representa-
tive instances. The obtained computational results and time
demonstrated the effectiveness of the proposed approach. The
future work is to enhance the convergence capability of the
algorithm and to generalise the application of the proposed
HDFA for other combinatorial optimisation problems.
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