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a b s t r a c t

The firefly algorithm has become an increasingly important tool of Swarm Intelligence that has been
applied in almost all areas of optimization, as well as engineering practice. Many problems from various
areas have been successfully solved using the firefly algorithm and its variants. In order to use the
algorithm to solve diverse problems, the original firefly algorithm needs to be modified or hybridized.
This paper carries out a comprehensive review of this living and evolving discipline of Swarm
Intelligence, in order to show that the firefly algorithm could be applied to every problem arising in
practice. On the other hand, it encourages new researchers and algorithm developers to use this simple
and yet very efficient algorithm for problem solving. It often guarantees that the obtained results will
meet the expectations.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Swarm Intelligence (SI) belongs to an artificial intelligence
discipline (AI) that became increasingly popular over the last
decade [1]. It is inspired from the collective behavior of social
swarms of ants, termites, bees, and worms, flock of birds, and
schools of fish. Although these swarms consist of relatively
unsophisticated individuals, they exhibit coordinated behavior
that directs the swarms to their desired goals. This usually
results in the self-organizing behavior of the whole system,
and collective intelligence or swarm intelligence is in essence
the self-organization of such multi-agent systems, based on simple
interaction rules. This coordinated behavior is performed due to
interaction between individuals, for example, termites and worms
are able to build sophisticated nests, while ants and bees also use
this collective behavior when searching for food. Typically, ants
interact with each other via chemical pheromone trails in order to
find the shortest path between their nest and the food sources. In
a bee colony, the role of informer is played by so-called scouts, i.e.,
individual bees that are responsible for searching for new promis-
ing areas of food sources. Here, the communication among bees is
realized by a so-called ‘waggle dance’, through which the bee
colony is directed by scouts. During this discovery of the new food
sources, a trade-off between exploration (the collection of new
information) and exploitation (the use of existing information)
must be performed by the bee colony [2]. That is, the bee colony
must be aware when to exploit existing food sources and when to
ll rights reserved.

c.uk (X.-S. Yang),
look for new food sources so as to maximize the overall nectar
intake while minimizing the overall foraging efforts.

The swarm of individuals shows collective behavior; for exam-
ple, where to forage, when to reproduce, where to live, and how to
divide the necessary tasks among the available work force [2]. In
fact, these decisions are made in a decentralized manner by
individuals based on local information obtained from interactions
with their intermediate environments.

Swarm intelligence refers to a research field that is concerned
with a collective behavior within self-organized and decentralized
systems. This term was probably first used by Beni [3] in the sense
of cellular robotic systems consisting of simple agents that organize
themselves through neighborhood interactions. Recently, methods
of swarm intelligence are used in optimization, the control of
robots, and routing and load balancing in new-generation mobile
telecommunication networks, demanding robustness and flexibil-
ity. Examples of notable swarm-intelligence optimization methods
are ant colony optimization (ACO) [4,5], particle swarm optimiza-
tion (PSO) [6], and artificial bee colony (ABC) [7,8]. Today, some of
the more promising swarm-intelligence optimization techniques
include the firefly algorithm (FA) [9–12], cuckoo-search [13], and
the bat algorithm [14], while new algorithms such as the krill herd
bio-inspired optimization algorithm [15] and algorithms for cluster-
ing [16,17] also emerged recently.

FA is one of the recent swarm intelligence methods developed
by Yang [9] in 2008 and is a kind of stochastic, nature-inspired,
meta-heuristic algorithm that can be applied for solving the
hardest optimization problems (also NP-hard problems). This
algorithm belongs to stochastic algorithms. This means that it
uses a kind of randomization by searching for a set of solutions. It
is inspired by the flashing lights of fireflies in nature. Heuristic
means ‘to find’ or ‘to discover solutions by trial and error’ [9].
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In fact, there is no guarantee that the optimal solution will be
found in a reasonable amount of time. Finally, meta-heuristic
means ‘higher level’, where the search process used in algorithms
is influenced by certain trade-off between randomization and local
search [9]. In the firefly algorithm, the ‘lower level’ (heuristic)
concentrates on the generation of new solutions within a search
space and thus, selects the best solution for survival. On the other
hand, randomization enables the search process to avoid the
solution being trapped into local optima. The local search
improves a candidate solution until improvements are detected,
i.e., places the solution in local optimum.

Each meta-heuristic search process depends on balancing
between two major components: exploration and exploitation
[18]. Both terms were defined implicitly and are affected by the
algorithm's control parameters. In the sense of the natural bee
colony, the actions of exploration and exploitation have yet to be
explained. For the meta-heuristic algorithms [19], the exploration
denotes the process of discovering the diverse solutions within the
search space, while exploitation means focusing the search pro-
cess within the vicinities of the best solutions, thus, exploiting the
information discovered so far.

Note that FA is population-based. The population-based algo-
rithms have the following advantages when compared with
single-point search algorithms [20]:
�
 Building blocks are put together from different solutions
through crossover.
�
 Focusing a search again relies on the crossover, and means that
if both parents share the same value of a variable, then the
offspring will also have the same value of this variable.
�
 Low-pass filtering ignores distractions within the landscape.

�
 Hedging against bad luck in the initial positions or decisions

it makes.

�
 Parameter tuning is the algorithm's opportunity to learn good

parameter values in order to balance exploration against
exploitation.

The rest of this section will discuss briefly the characteristics of
fireflies that have served as an inspiration for developing the
firefly algorithm.

The main characteristic of fireflies is their flashing light. These
lights have two fundamental functions: to attract mating partners
and to warn potential predators. However, the flashing lights obey
more physical rules. On the one hand, the light intensity I
decreases as the distance r increases according to the term
I∝1=r2. This phenomenon inspired Yang [9] to develop the firefly
algorithm. On the other hand, the firefly acts as an oscillator that
charges and discharges (fires) the light at regular intervals, i.e., at
θ¼ 2π. When the firefly is placed within the vicinity of another
firefly, a mutual coupling occurs between both fireflies. This
behavior of fireflies especially inspired the solution of graph
coloring problems. On this basis, a distributed graph coloring
algorithm was developed by Lee [21]. Recently, the similar and
greater researched behavior of Japanese tree frogs inspired Her-
nández and Blum [22] into developing a more useful distributed
graph coloring algorithm. Therefore, the further development of
the algorithm based on the oscillatory behavior of fireflies has
diminished. Therefore, in this paper we are focused on Yang's
firefly algorithm.

The aim of this paper is twofold: to present areas where FA has
been successfully applied, and thus to broaden the range of its
potential users. The structure of this paper is as follows: Section 2
discusses the biological foundations of the firefly algorithm. Main
characteristics of this algorithm are then exposed, and finally, the
algorithmic structure is presented. Section 3 provides an extensive
review of application areas to which this algorithm has already
been applied. Let us mention only the most important areas of its
application: continuous, combinatorial, constraint and multi-
objective optimization, and optimization in dynamic and noisy
environments. Beside optimization, it is applicable for solving
classification problems arose in areas like machine learning, data
mining, and neural network. Additionally, many applications cover
an area of engineering applications and solve real-world problems.
Section 4 brings the discussion of FA behavior and directions for
further development of these algorithms are covered. This paper
concludes with an overview of the work that has been performed
within the discipline of swarm intelligence.
2. Firefly algorithm

2.1. Biological foundations

Fireflies (Coleoptera: Lampyridae) are among the most
charismatic of all insects, and their spectacular courtship displays
have inspired poets and scientists alike [23]. Nowadays, more that
2000 species exist worldwide. Usually, fireflies live in a variety of
warm environments and they are most active in summer nights. A
lot of researchers have studied firefly phenomena in nature and
there exist numerous papers researching fireflies, for example,
[24–28].

Fireflies are characterized by their flashing light produced by
biochemical process bioluminescence. Such flashing light may
serve as the primary courtship signals for mating. Besides attract-
ing mating partners, the flashing light may also serve to warn off
potential predators. Note that in some firefly species some adults
are incapable of bioluminescence. These species attract their
mates due to pheromone, similarly to ants.

In fireflies, bioluminescent reactions take place from light-
producing organs called lanterns. The most bioluminescent organ-
isms provide only slowly modulated flashes (also glows). In
contrast, adults in many firefly species are able to control their
bioluminescence in order to emit high and discrete flashes. The
lanterns' light-production is initialized by signals originating
within the central nervous system of firefly.

Most firefly species rely on bioluminescent courtship signals.
Typically, the first signalers are flying males, who try to attract
flightless females on the ground. In response to these signals, the
females emit continuous or flashing lights. Both mating partners
produce distinct flash signal patterns that are precisely timed in
order to encode information like species identity and sex. Females
are attracted according to behavioral differences in the courtship
signal. Typically, females prefer brighter male flashes. It is well
known that the flash intensity varies with the distance from the
source. Fortunately, in some firefly species females cannot dis-
criminate between more distant flashes produced by stronger light
source and closer flashes produced by weaker light sources.

Firefly flash signals are highly conspicuous and may therefore
deter a wide variety of potential predators. In the sense of natural
selection [29], where only the strongest individual can survive,
flash signals evolve as defense mechanisms that serve to warn
potential predators.

Two features are characteristics for swarm intelligence: self-
organization and decentralized decision making. Here, autonomous
individuals live together in a common place as, for example, bees in
hives, ants in anthills, etc. In order to live in harmony, some
interaction or communication is needed among group members
who live together (sociality). In fact, individuals within a group
cannot behave as if they are solitary, but must adapt to the overall
goals within the groups. The social life of fireflies is not just dedicated
to foraging, but more to reproduction. These collective decisions are
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closely connected with the flashing light behavior that served as the
main biological foundation for developing the firefly algorithm.

2.2. Structure of the firefly algorithm

As mentioned in Section 1, this paper focuses on Yang's [9]
implementation of the firefly algorithm. This algorithm is based on
a physical formula of light intensity I that decreases with the
increase in the square of the distance r2. However, as the distance
from the light source increases, the light absorption causes that
light becomes weaker and weaker. These phenomena can be
associated with the objective function to be optimized. As a result,
the base FA can be formulated as illustrated in Algorithm 1.

Some flashing characteristics of the fireflies are idealized in
order to formulate the FA, as follows:

Algorithm 1. Pseudo-code of the base Firefly algorithm.
1:
 t ¼ 0; sn ¼∅; γ ¼ 1:0; // initialize: gen.counter, best
solution, attractiveness
2:
 Pð0Þ ¼ InitializeFAðÞ; // initialize a population

3:
 while ðtoMAX_FESÞ do

4:
 αðtÞ ¼ AlphaNewðÞ; // determine a new value of α

5:
 EvaluateFAðPðtÞ; f ðsÞÞ; // evaluate s according to f ðsÞ

6:
 OrderFAðPðtÞ; f ðsÞÞ; // sort s according to f ðsÞ

7:
 sn ¼ FindTheBestFAðPðtÞ; f ðsÞÞ; // determine the best

solution

8:
 Pðtþ1Þ ¼MoveFAðPðtÞÞ; // vary the attractiveness

accordingly

9:
 t ¼ t þ 1;

10:
 end while
�
 All fireflies are unisex.

�
 Their attractiveness is proportional to their light intensity.

�
 The light intensity of a firefly is affected or determined by the

landscape of the fitness function.

The population of fireflies is initialized by the ‘InitializeFA’
function. Typically, this initialization is performed randomly. The
firefly search process comprises the inside of the while loop (lines
3–10 in Algorithm 1) and is composed of the following steps:
Firstly, the ‘AlphaNew’ function is dedicated to modify the initial
value of parameter α. Note that this step is optional in the firefly
algorithm. Secondly, the ‘EvaluateFA’ function evaluates the qual-
ity of the solution. The implementation of a fitness function f(s) is
performed inside this. Thirdly, the ‘OrderFA’ function sorts the
population of fireflies according to their fitness values. Fourthly,
the ‘FindTheBestFA’ function selects the best individual in popula-
tion. Finally, the ‘MoveFA’ function performs a move of the firefly
positions in the search space. Note that the fireflies are moved
towards the more attractive individuals.

The firefly search process is controlled by the maximum
number of fitness function evaluations MAX_FES.

2.3. Characteristics of the firefly algorithm

In order to design FA properly, two important issues need to be
defined: the variation of light intensity and the formulation of
attractiveness. These two issues enable developers to tailor differ-
ent firefly algorithms in such a manner that they are best suited to
the demands of the problems to be solved. In the standard firefly
algorithm, the light intensity I of a firefly representing the solution
s is proportional to the value of fitness function IðsÞ∝f ðsÞ, while the
light intensity I(r) varies according to the following equation:

IðrÞ ¼ I0e−γr
2
; ð1Þ
where I0 denotes the light intensity of the source, and the light
absorption is approximated using the fixed light absorption
coefficient γ. The singularity at r¼0 in the expression I=r2 is
avoided by combining the effects of the inverse square law and
an approximation of absorption in Gaussian form. The attractive-
ness β of fireflies is proportional to their light intensities I(r).
Therefore, a similar equation to Eq. (1) can be defined, in order to
describe the attractiveness β

β¼ β0e
−γr2 ; ð2Þ

where β0 is the attractiveness at r¼0. The light intensity I and
attractiveness β are in some way synonymous. While the intensity
is referred to as an absolute measure of emitted light by the firefly,
the attractiveness is a relative measure of the light that should be
seen in the eyes of the beholders and judged by other fireflies [9].

The distance between any two fireflies si and sj is expressed as
the Euclidean distance by the base firefly algorithm, as follows:

rij ¼ ∥si−sj∥¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

k ¼ n

k ¼ 1
ðsik−sjkÞ2

s
; ð3Þ

where n denotes the dimensionality of the problem. The move-
ment of the i-th firefly is attracted to another more attractive
firefly j. In this manner, the following equation is applied:

si ¼ si þ β0e
−γr2ij ðsj−siÞ þ αϵi; ð4Þ

where ϵi is a random number drawn from Gaussian distribution.
The movements of fireflies consist of three terms: the current
position of i-th firefly, attraction to another more attractive firefly,
and a random walk that consists of a randomization parameter α
and the random generated number from interval ½0;1�. When
β0 ¼ 0 the movement depends on the random walk only. On the
other hand, the parameter γ has a crucial impact on the conver-
gence speed. Although the value of this parameter can theoreti-
cally capture any value from interval γ∈½0; ∞Þ, its setting depends on
the problem to be optimized. Typically, it varies from 0.1 to 10.

In summary, FA is controlled by three parameters: the rando-
mization parameter α, the attractiveness β, and the absorption
coefficient γ. According to the parameter setting, FA distinguishes
two asymptotic behaviors. The former appears when γ-0 and the
latter when γ-∞. If γ-0, the attractiveness becomes β¼ β0.
That is, the attractiveness is constant anywhere within the search
space. This behavior is a special case of particle swarm optimiza-
tion (PSO). If γ-∞, the second term falls out from Eq. (4), and the
firefly movement becomes a random walk, which is essentially a
parallel version of simulated annealing. In fact, each implementa-
tion of FA can be between these two asymptotic behaviors.
3. Studies on firefly algorithms: classifications and analysis

Several variants of firefly algorithms exist in the literature.
A certain classification scheme is necessary in order to classify
them. The easiest way to achieve this purpose is to distinguish the
firefly algorithms according to the settings of their algorithm
parameters (also strategy parameters) [30]. The settings of these
parameters are crucial for good performance and, therefore, care-
fully selected by developers. In general, there are two ways to seek
algorithm parameters properly. On the one hand, by parameter
tuning [31] the good values of parameters are found before the
algorithm's run, and are fixed during iterations. On the other
hand, by parameter control [30] the values of the parameters are
modified during the runs.

Furthermore, the behavior of FA does not depend only on the
proper values of parameters, but also on what components or
features are incorporated into it. Therefore, the classification
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scheme should be able to classify firefly algorithms according to
these aspects being taken into account. In this review, we were
interested in the following aspects:
�
 What is modified?

�
 How are the modifications made?

�
 What is the scope of the modifications?
From the first aspect, firefly algorithms can be classified
according to the components or features of which they consists.
These are
�
 representation of fireflies (binary, real-valued),

�
 population scheme (swarm, multi-swarm),

�
 evaluation of the fitness function,

�
 determination of the best solution (non-elitism, elitism),

�
 moving fireflies (uniform, Gaussian, Lévy flights, chaos

distribution).
With regard to the second aspect, the categories of parameter
control in firefly algorithms can be divided into: deterministic,
adaptive, and self-adaptive. Finally, according to the last aspect,
modifications in firefly algorithms may affect: an element of the
firefly, the entire firefly, or the whole population.

In the early stages, FA acts as a global problem solver. That is,
for several continuous optimization problems, the algorithm found
the desired solutions. Difficulty arose, when the appropriate
solutions could not be found for some other optimization pro-
blems. This is in accordance with the No-Free-Lunch theorem [32].
To circumvent this theorem, hybridization has been applied to
optimization algorithms for solving a given set of problems. In line
with this, firefly algorithms have been hybridized with other
optimization algorithms, machine learning techniques, heuristics,
etc. Hybridization can take place in almost every component of the
firefly algorithm, for example, initialization procedure, evaluation
function, moving function, etc.

In this paper, the firefly algorithms are analyzed according to
Fig. 1, where the classical firefly algorithms are divided into
modified and hybrid. Note that the classical firefly algorithms
have been used mainly on continuous optimization problems. In
order to provide the optimal results by solving the various classes
of problems, they have been subject to several modifications and
hybridizations. The main directions of these modifications have
gone into the development of elitist and binary firefly algorithms,
Gaussian, Lévy flights and chaos based firefly algorithms, and the
parallelized firefly algorithms. On the other hand, the following
Fig. 1. Taxonomy of fi
hybridizations have been applied to the classical firefly algorithm:
Eagle strategy, genetic algorithm, differential evolution, local
search, neural network, learning automata and ant colony.

In the rest of this paper, we first present a review of papers
describing the classical firefly algorithm. Then, we review the
studies that address the modified and hybridized versions of the
firefly algorithm. Finally, an overview of papers is carried out that
deal with optimization and engineering applications.

3.1. Classical firefly algorithms

Firefly algorithm inspired by the variations of light intensity
was developed by Yang [9] in 2008. In the publication that
introduced the classical FA, other nature inspired meta-heuristics
were also described. There, it was formulated and the implemen-
tation in Matlab was discussed in detail. In order to demonstrate
its performance, the four peaks two-dimensional function
was used. The results of those experiments exposed the multi-
modal characteristics of this algorithm. That is, the classical FA is
able to discover more optimal solutions in the search space
simultaneously.

In his paper [33], Yang established that the new FA was
especially suitable for multi-modal optimization applications
[34]. This claim was derived from the fact that fireflies can
automatically subdivide themselves into a few subgroups because
neighboring attraction is stronger than long-distance attraction.
Experiments proving this claim were performed for finding the
global optima of various multi-modal test functions taken from the
literature, and compared with genetic algorithm and particle
swarm optimization. FA was superior to both the mentioned
algorithms in terms of efficiency and success rate. Therefore, the
same author speculated that FA is potentially more powerful in
solving other NP-hard problems as well.

The same author in [35] experimented with the classical FA
solving the non-linear pressure vessel design optimization pro-
blem. This problem belongs to the class of continuous optimiza-
tion problems. At first, he validated the algorithm using certain
standard test functions. The results of FA for pressure vessel design
optimization implied that this algorithm is potentially more
powerful than other existing algorithms such as particle swarm
optimization.

Yang's paper [36] provides an overview of the nature inspired
meta-heuristic algorithms, including ant colony optimization,
cuckoo search, differential evolution, firefly algorithm, harmony
search, genetic algorithm, simulated annealing, and particle
swarm optimization. On the base of the common characteristics
refly algorithms.
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of these, Yang proposed a new, generic, meta-heuristic algorithm
for optimization called the Generalized Evolutionary Walk
Algorithm (GEWA) with the following three major components:
(1) global exploration by randomization, (2) intensive local search
by random walk, and (3) the selection of the best using some
elitism. Interestingly, this algorithm tries to explicitly balance
exploration and exploitation via a new randomization control
parameter. However, the value of this parameter is problem-
dependent.

Parpinelli, in his survey ‘New inspirations in swarm intelli-
gence’ [37], explained the foundations that inspire developers of
the new nature-inspired swarm intelligence algorithms. These
foundations are bacterial foraging (BFO) [38], fireflies' biolumines-
cence [9], slime moulds life-cycle [39], cockroach infestation [40],
mosquitoes host-seeking [41], bats echolocation [42], and various
bees algorithms (BAs), i.e., inspired by bees foraging [43], and bees
mating [44]. The more important applications and the main
features of such meta-heuristics were also reported.

Zang et al. [45] systematically reviewed and analyzed the
following nature-inspired algorithms: ant colony algorithm, bees
algorithm, genetic algorithm, and the firefly algorithm. Although
the paper mainly focused on the original principles behind these
algorithms, their applications were also discussed.

The complete list of classical firefly algorithms is summarized
in Table 1.
3.2. Modified firefly algorithms

The firefly algorithms depend primarily on the variation of light
intensity and the formulation of attractiveness. Both factors allow
significant scope for algorithm improvements (Table 2). For
example, Luleseged et al. [46] modified the random movement
of the brightest firefly that in some generations, when the current
best position does not improve, may decreases its brightness. The
proposed modification tries to improve the brightest firefly posi-
tion generating the m-uniform random vectors and moves it in the
direction of the best performance. If such a direction does not
exist, the brightest firefly stays in its current position. In this case,
the brightest firefly is also an elitist solution, because it is never
replaced by a best-found solution in the current generation that
has lower fitness. Experiments that were done optimizing seven
benchmark functions showed that this modified FA outperform its
classical predecessor.
Table 1
Classical firefly algorithms.

Topic References

Introducing the firefly algorithm [9]
Multi-modal test functions [33]
Continuous and combinatorial optimization [35]
Review of nature inspired meta-heuristics [36,37,45]

Table 2
Modified firefly algorithms.

Topic References

Elitist firefly algorithm [46]
Binary represented firefly algorithm [47–49,65]
Gaussian randomized firefly algorithm [54,55]
Lévy flights randomized firefly algorithm [55,58,59]
Chaos randomized firefly algorithm [60,62]
Parallel firefly algorithm [63,64]
Interestingly, a lot of binary firefly algorithms have emerged for
solving different classes of problems, e.g., [47–49]. Palit in [47]
proposed a binary FA for cryptanalysis in order to determine the
plain text from the cipher text, using the Merkle–Hellman knap-
sack cipher algorithm [50]. Changes to almost all components of
the binary FA need to be performed because of the new repre-
sentation of fireflies. The results of this algorithm were compared
with the results of the genetic algorithm. This comparison showed
that the proposed binary FA was much more efficient than the
genetic algorithm when used for the same purpose. Next, an
implementation of the binary FA was developed by Falcon et al.
[48] that uses a binary encoding of the candidate solutions, an
adaptive light absorption coefficient for accelerating the search,
and problem-specific knowledge to handle infeasible solutions.
The empirical analysis was performed by solving the system-level
fault diagnostic that is a combinatorial optimization problem. The
results of the proposed algorithm when compared with an
artificial immune system approach (AIS) [51] and particle swarm
optimization (PSO) [52] showed that it outperforms existing
techniques in terms of convergence speed and memory require-
ments. In the paper of Chandrasekaran et al. [49], the authors
proposed a binary coded FA for solving network and reliability
constrained unit commitment (UC) problem [53], without satisfy-
ing the network security constraints. The effectiveness of the
proposed algorithm was demonstrated on 10 units of the IEEE-
RTS system. The results of the proposed algorithm were promising
when compared with the other techniques reported.

In order to stabilize fireflies' movements, Farahani in [54]
formulated a new FA that increases convergence speed using
Gaussian distribution to move all fireflies to global best in each
iteration. Despite the fixed randomization parameter α (also step
size), this parameter was modified adaptively in the proposed
algorithm. This algorithm was tested on five standard functions.
The experimental results showed better performance and more
accuracy than the classical firefly algorithm.

Yang in his paper [55] intended to provide an overview of
convergence and efficiency studies of meta-heuristics, and tried to
provide a framework for analyzing meta-heuristics in terms of
convergence and efficiency. Three well-known heuristics were
taken into account: simulated annealing [56], particle swarm
optimization [57], and the firefly algorithm. The impact of rando-
mization methods Gaussian random walk and Lévy flight on the
results of meta-heuristics was also analyzed in this paper. The
conclusion was that the most important issue for the newly
developed meta-heuristics was to provide a balanced trade-off
between local exploitation and global exploration, in order to
work better.

Yang [58] formulated a new meta-heuristic FA using the Lévy
flights move strategy. Numerical studies and results suggest that
the proposed Lévy-flight FA is superior to particle swarm optimi-
zation and genetic algorithms in regard to efficiency and success
rate. The paper [59] was dedicated to analyze the convergence and
efficiency associated with meta-heuristics like swarm intelligence,
cuckoo search, firefly algorithm, random walks, and Lévy flights.
Although the author Yang tried to discover some mathematical
foundations for meta-heuristic behavior, he concluded that despite
the fact that the newly developed nature-inspired meta-heuristics
worked well on average, mathematical understanding of these
partly remains a mystery.

Coelho et al. in their paper [60] proposed a combination of FA
with chaotic maps [61] in order to improve the convergence of the
classical firefly algorithm. Use of the chaos sequences was shown
to be especially effective by easier escape from the local optima.
The proposed firefly algorithms used these chaotic maps by tuning
the randomized parameter α and light absorption coefficient γ in
Eq. (4). A benchmark of reliability-redundancy optimization has
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been considered in order to illustrate the power of the proposed
FA using chaotic maps. The simulation results of the proposed FA
were compared with other optimization techniques presented in
literature and it was revealed that the proposed algorithm
outperformed the previously best-known solutions available. On
the other hand, Gandomi et al. in [62] introduced chaos into FA in
order to increase its global search mobility for robust global
optimization. Using chaotic maps, they tuned attractiveness β0
and light absorption coefficient γ in Eq. (4). The authors analyzed
the influence of using 12 different chaotic maps on the optimiza-
tion of benchmark functions. The results showed that some
chaotic FA can clearly outperform the classical FA.

Interestingly, Subotic et al. [63] developed the parallelized FA
for unconstrained optimization problems tested on standard
benchmark functions. Both the speed and quality of the results
were placed by the authors and as a result, the parallelized FA
obtained much better results over much less execution time.
Unfortunately, this conclusion was valid only when more than
one population was taken into account. Husselmann et al. in [64]
proposed a modified FA on a parallel graphical processing unit
(GPU) where the standard benchmark functions were taken for
comparison with the classic firefly algorithm. They revealed that
the results of this parallel algorithmwere more accurate and faster
than by the original firefly algorithm, but this was only valid for
multi-modal functions. As a matter of fact, the classical FA is well
suited to optimizing unimodal functions as very few fireflies are
required and, thus, calculation times are dramatically lower.

3.3. Hybrid firefly algorithms

According to the No-Free-Lunch theorem, any two general
problem solvers are equivalent when their average performance
is compared across all possible problems. That is, they can obtain
average results on all classes of problems. Specific heuristics are
intended to solve a given set of problems, and normally improve
the results of the problem solvers, i.e., heuristics exploit a specific-
knowledge of the given problem domains. In fact, these heuristics
can also be incorporated into a FA that is a kind of general problem
solver. Such hybridized firefly algorithm, in general, improves the
results when solving the given problem. In contrast, FA can be also
used as a heuristic for hybridizing with other general problem
solvers because of its characteristics, i.e., multi-modality and faster
convergence.

As the first hybridization of the firefly algorithm, Yang in [66]
formulated a new meta-heuristic search method, called Eagle
Strategy (ES), which combines the Lévy flight search with the firefly
algorithm. The Eagle strategy was inspired by the foraging behavior
of eagles. These eagles fly freely over their territory in a random
manner similar to Lévy flights [67]. When the prey is seen, the eagle
tries to catch it as efficiently as possible. From the algorithmic point
of view, the Eagle Strategy consists of two components: random
search by Lévy flight, and intensive local search. Interestingly, FA was
applied for the local search. This hybrid meta-heuristic algorithmwas
employed to the Ackley function with Gaussian noise. The results of
simulation showed that the Eagle strategy could significantly out-
perform the particle swarm optimization algorithm in terms of both
efficiency and success rate.

The paper of Luthra et al. [68] discussed the hybridization of FA
for cryptanalysis of the mono-alphabetic substitution cipher with
the operators of mutation and crossover commonly used in
Genetic Algorithms. Dominant gene crossover was used as the
crossover operator, while the permutation mutation was taken
into account for mutation. From the experiments, it was observed
that the algorithm worked better for large input cipher text
lengths. For smaller input cipher lengths, a larger total number
of generations would need to be used.
In [69] Abdullah et al. proposed a Hybrid Evolutionary Firefly
Algorithm (HEFA) that combined the classical Firefly Algorithm
with the evolutionary operations of the Differential Evolution (DE)
method in order to improve searching accuracy and information
sharing among the fireflies. This algorithm divided the population
of fireflies into two sub-populations according to fitness. In the
first, the classical firefly operators were applied, while in the other,
the evolutionary operators were adopted from the Differential
Evolution [70–72]. The proposed method was used to estimate the
parameters in a biological model. The experimental results
showed that the accuracy and speed performance of HEFA had
significantly outperformed the results produced by the genetic
algorithms, particle swarm optimization, evolutionary program-
ming, and the classical firefly algorithm.

In the paper of Fister Jr. et al. [73], the classical FA was
hybridized using local search heuristic and applied to graph 3-
coloring that is a well-known combinatorial optimization problem
[74]. The results of the proposed memetic FA (MFA) were com-
pared with the results of the Hybrid Evolutionary Algorithm (HEA)
[75], Tabucol [76], and the evolutionary algorithm with SAW
method (EA-SAW) [77] by coloring a suite of medium-scaled
random graphs (graphs with 500 vertices) generated using the
Culberson random graph generator. The results of FA were very
promising and showed the potential that FA could successfully be
applied to the other combinatorial optimization problems as well.

Hassanzadeh et al. [78] used FA for training the parameters of the
Structure Equivalent Fuzzy Neural Network (SEFNN) in order to
recognize the speech. FA improved the ability of generalizing fuzzy
neural networks. The results showed that this hybridized algorithm
for speech recognition had a higher recognition rate than the
classical fuzzy neural network trained by the particle swarm opti-
mization method. On the other hand, Nandy et al. [79] applied a
firefly meta-heuristic with back-propagation method to train a feed-
forward neural network. Here, the firefly algorithmwas incorporated
into a back-propagation algorithm in order to achieve a faster and
improved convergence rate when training feed-forward neural net-
work. The proposed hybrid algorithmwas tested over some standard
data sets. It was revealed that the proposed algorithm converged to
local optima within a few iterations. These results were compared
with the results of the genetic algorithm optimized the same
problems. It was observed that the proposed algorithm consumed
less time to converge and improved the convergence rate with
minimum feed-forward neural network design.

In the paper of Hassanzadeh et al. [80], cellular learning
automata were hybridized with the firefly algorithm. In this
meta-heuristic, the cellular learning automata were responsible
for making diverse solutions in the firefly population, while FA
improved these solutions in the sense of local search. The
performance of the proposed algorithm was evaluated on five
well-known benchmark functions. The experimental results
showed that it was able to find the global optima and improve
the exploration rate of the standard firefly algorithm.

Farahani [65] proposed three classes of algorithms for improv-
ing the performance of the classical firefly algorithm. In the first
class, learning automata were used for adapting the absorption
and randomization parameters in the firefly algorithm. The second
class hybridized the genetic algorithm with FA in order to balance
the exploration and exploitation properties of this proposed meta-
heuristic by time. The last class used random walk based on a
Gaussian distribution in order to move the fireflies over the search
space. Experimental results on five benchmark functions showed
that the proposed algorithms were highly competitive with the
classical firefly and the particle swarm optimization algorithm.

Aruchamy et al. [81] developed the Flexible Neural Tree (FNT)
model for micro-array data to predict cancer using the Ant Colony
Optimization (ACO). The parameters encoded in the neural tree
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were tuned using a firefly algorithm. This proposed model helped
to find the optimal solutions at a faster convergence to lower error.
In extensive experiments, a comparison was performed between
FA and exponential particle swarm optimization (EPSO). The
results showed that FA was superior to the EPSO in terms of both
efficiency and success.

A list of hybrid firefly algorithms is presented in Table 3.

3.4. Why firefly algorithms are so efficient

As the literature of firefly algorithms is rapidly expanding, a
natural question is ‘why FA is so efficient?’. There are many
reasons for its success. By analyzing the main characteristics of
the standard/classical FA, we can highlight the following three
points:
�
 FA can automatically subdivide its population into subgroups,
due to the fact that local attraction is stronger than long-
distance attraction. As a result, FA can deal with highly non-
linear, multi-modal optimization problems naturally and
efficiently.
�
 FA does not use historical individual best sni , and there is no
explicit global best gn either. This avoids any potential draw-
backs of premature convergence as those in PSO. In addition, FA
does not use velocities, and there is no problem as that
associated with velocity in PSO.
�
 FA has an ability to control its modality and adapt to problem
landscape by controlling its scaling parameter such as γ. In fact,
FA is a generalization of SA, PSO and DE, as seen clearly in the
next paragraph.

In addition, the standard firefly algorithm can be considered as
a generalization to particle swarm optimization (PSO), differential
evolution (DE), and simulated annealing (SA). From Eq. (4), we can
Table 3
Hybrid firefly algorithms.

Topic References

Eagle strategy using Lévy walk [66]
Genetic Algorithms [68,65]
Differential Evolution [69]
Memetic algorithm [73]
Neural network [78,79]
Cellular learning automata [80,65]
Ant colony [81]

Fig. 2. Taxonomy of fi
see that when β0 is zero, the updating formula becomes essentially
a version of parallel simulated annealing, and the annealing
schedule is controlled by α. On the other hand, if we set γ ¼ 0 in
Eq. (4) and set β0 ¼ 1 (or more generally, β0∈ Unif(0,1)), FA
becomes a simplified version of differential evolution without
mutation, and the crossover rate is controlled by β0. Furthermore,
if we set γ ¼ 0 and replace sj by the current global best solution gn,
then Eq. (4) becomes a variant of PSO, or accelerated particle
swarm optimization, to be more specific. Therefore, the standard
firefly algorithm includes DE, PSO and SA as its special cases. As a
result, FA can have all the advantages of these three algorithms.
Consequently, it is no surprise that FA can perform very efficiently.
4. Applications of firefly algorithms

Nowadays, FA and its variants have been applied for solving
many optimization and classification problems, as well as several
engineering problems in practice. The taxonomy of the developed
firefly algorithm applications is illustrated in Fig. 2. As can be seen
from this figure, FA has been applied to the following classes of
optimization problems: continuous, combinatorial, constrained,
multi-objective, dynamic and noisy optimization. In addition, it
has been used for classification problems in machine learning, data
mining, and neural networks. Finally, the firefly algorithms are
used in almost all branches of engineering. In this review, we
focused on the following engineering areas: image processing,
industrial optimization, wireless sensor networks, antenna design,
business optimization, robotics, semantic web, chemistry, and civil
engineering.

4.1. Optimization

Continuous optimization: Most of classical publications about
the firefly algorithm, like [35,55,36,58,59] apply to continuous
optimization problems. In most cases, the benchmarks of well-
known optimization functions were taken into account. In order to
complete the comprehensive picture of this area, the paper of
Gandomi et al. in [82] was reviewed, where FA was used for
solving mixed continuous/discrete structural optimization pro-
blems taken from the literature regarding welded beam design,
pressure vessel design, helical compression spring design, rein-
forced concrete beam designs, stepped cantilever beam design,
and car side impact design. The optimization results indicated that
FA is more efficient than other meta-heuristic algorithms such as
particle swarm optimization, genetic algorithms, simulated
refly applications.
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annealing and differential evolution. Although FA was very effi-
cient, oscillatory behavior was observed as the search process
approached the optimum design. The overall behavior of FA could
be improved by gradually reducing the randomization parameter
as the optimization progressed.

Combinatorial optimization: FA is also employed for solving
combinatorial optimization problems. Durkota in his BSc thesis
[83] adjusted FA to solve the class of discrete problems named
Quadratic Assignment Problem (QAP), where the solutions are
represented as permutations of integers. In this algorithm, the
continuous functions, like attractiveness, distance and movement,
were mapped into newly developed discrete functions. The
experimental results were obtained on 11 different QAP problems
chosen from the public QAPLIB Library. The author reported fast
convergence and success rate on the simplest problems, while the
algorithm often falls into the local optima by solving the hard
problems.

The paper of Sayadi et al. [84] presented a new discrete firefly
meta-heuristic for minimizing the makespan for the permutation
flow shop scheduling problem that is classified as a NP-hard
problem. The results of the proposed algorithm were compared
with other existing ant colony optimization technique and indi-
cated that it performs better than the ant colony for some well-
known benchmark problems.

The first approach to apply the firefly meta-heuristic to the task
graph scheduling problem (NP-hard problem) was performed by
Hönig [85]. The results on an extensive experimental benchmark
with 36,000 task graph scheduling problems showed that the
presented algorithm required less computing time than all the
other meta-heuristics used in the test, but these were not as
promising when the other performance measures were taken into
account.

Jati et al. [86] applied FA to the symmetric traveling salesman
problem that is a well-known NP-hard problem. In this evolu-
tionary discrete FA (EDFA), a permutation representation was
used, where an element of array represents a city and the index
represents the order of a tour. m-moves were generated for each
firefly using inversion mutation. The simulation results indicated
that the EDFA performed very well for some TSPLIB instances
when compared to the memetic algorithm. Unfortunately, it can
often be trapped into local optimum.

Khadwilard et al. [87] developed FA for solving the Job shop
scheduling problem (JSSP). A computational experiment was
conducted using five benchmark datasets of the JSSP instance
from the well-known OR-Library [88], for finding the lowest
makespan. The authors reported that although this FA could found
the best known solution in some cases, it was also trapped into the
local optima several times.

In [89] the authors Liu et al. proposed a path planning adaptive
firefly algorithm. Here, the random and absorption parameters
were designed to be adaptive in order to improve the solution
quality and convergence speed of the classical firefly algorithm.
The simulation tests verified the effectiveness of the improved
algorithm and the feasibility of the path-planning method based
on the firefly algorithm. In addition, Wang et al. [90] developed a
new modified FA (MFA) for solving the path planning problem for
uninhabited combat air vehicle (UCAV), where a modification is
applied for exchanging information between top fireflies during
the process of light intensity updating. This modification acceler-
ated the global convergence speed, while preserving the strong
robustness of the classical firefly algorithm. In order to prove the
performance of this algorithm, MFA was compared with classical
FA and other population-based optimization algorithms like ant
colony optimization (ACO) [4], biogeography-based optimization
(BBO) [91], differential evolution (DE) [70], evolutionary strategy
(ES) [92], genetic algorithm (GA) [93], probability-based
incremental learning (PBIL) [94], particle swarm optimization
(PSO) [6], and the stud genetic algorithm (SGA) [95]. The experi-
ment showed that the proposed algorithm was more effective and
feasible in UCAV path planning than the other algorithms.

The paper of Kwiecien et al. [96] experimented with FA for
optimization of the queuing system that also belongs to a class of
NP-hard problems. The queuing theory provides methods for
analyzing complex service systems in computer systems, commu-
nications, transportation networks and manufacturing. This algo-
rithm was tested by solving two problems found in literature. The
results of the experiments performed for selected queuing systems
were promising when comparing with the results of genetic
algorithms.

Constraint optimization: The first contribution to the domain of
constraint optimization was made by Lukasik et al. in [97] who
experimented with the classical FA for constrained continuous
optimization. The proposed algorithm was tested by solving a set
of 14 benchmark constraint problems and the obtained results
were compared with the existing particle swarm optimization
algorithm [6]. Here, FA was outperformed by particle swarm
optimization in their tests. Later, Gandomi et al. [82] studied a
set of non-linear constraint optimization problems in engineering
and showed that FA can provided better results than other
methods such as particle swarm optimization.

Gomes in [98] employed FA for optimizing a structural mass
optimization on shape and size by taking dynamic constraints into
account. This optimization problem had extreme non-linear beha-
vior with regard to the frequency constraints especially for shape
optimization, since eigenvalues are very sensitive to shape mod-
ifications. In this algorithm, the constraints were treated as
penalty functions that affected the fitness function. It was tested
by solving three examples of increasing difficulty, which were
compared with the results in the literature. From an engineering
point of view, FA performed well in all three cases.

Multi-objective optimization: The contribution of FA to multi-
objective optimization [99] is as follows. Yang in [100] formulated
a new multi-objective FA for multi-objective optimization that
extended FA for producing Pareto optimal front directly. This
algorithm was tested on a subset of multi-objective functions with
convex, non-convex, and discontinuous Pareto fronts taken from
the literature and was then applied for solving design optimization
benchmarks in industrial engineering. The results were compared
with other algorithms for multi-objective optimization like the
vector evaluated genetic algorithm (VEGA) [101], non-dominated
sorting genetic algorithm-II (NSGA-II) [102], multi-objective differ-
ential evolution (MODE) [103], differential evolution for multi-
objective optimization (DEMO) [104], multi-objective bees algo-
rithms (Bees) [105] and strength Pareto evolutionary algorithm
(SPEA) [106], and suggested that the proposed algorithm is an
efficient multi-objective optimizer.

Abedinia et al. in [107] developed a multi-objective FA for an
Environmental/Economic Power Dispatch (EED) problem. This
problem was formulated as a non-linear constrained multi-
objective problem with the conflict objectives of fuel cost, emis-
sion, and system loss. The proposed algorithm run on the IEEE 30-
and 118-bus test systems and the results were compared with
other known multi-objective algorithms from the literature. The
achieved numerical results of the proposed FA demonstrated the
feasibility of this for solving the multi-objective EED problem.

A slightly different problem was solved by Niknam et al. in
[108], where the authors proposed a multi-objective FA in order to
achieve a set of non-dominated (Pareto-optimal) solutions.
A tuning of randomization and absorption coefficients based on
the usage of chaotic maps and self-adaptive probabilistic mutation
strategies were used to improve the overall performance of the
algorithm. This algorithm solved the problem of dynamic



Table 4
Optimization applications.

Topic References

Continuous optimization [35,55,36,58,59,82]
Combinatorial optimization [83–87,89,90,96]
Constrained Optimization [97,82,98]
Multi-objective optimization [100,107,108]
Dynamic and noisy environment [109,114–116,121]
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economic emission dispatch (DEED) that incorporated combined
heat and power units in so-called CHP (Combined Heat and
Power) systems. The problem was defined as multi-objective and
the performance of the proposed algorithm was successfully
validated using numerical simulations.

Dynamic environment: Many real-world problems are mostly
time varying optimization problems. Therefore, these require
special mechanisms for detecting changes in the environment
and then respond to them. FA can be used also for this dynamic
environment. Here, a short review is made of those papers that
deal with this class of optimization.

Abshouri et al. in [109] hybridized FAwith learning automata that
were responsible for tuning the firefly parameters, i.e., randomized α,
attractiveness β0 and absorption coefficient γ. The main idea in this
algorithm was to split the population of fireflies into a set of
interacting swarms that were able to respond quicker to the
changing environment. This algorithm was tested on a variety of
instances of the multi-modal dynamic moving peaks benchmark
[110] and the obtained results were compared with other algorithms
for dynamic environments like multi-quantum swarm optimization
(mQSO) [111], fast multi-swarm optimization (FMSO) [112], and
cellular particle swarm optimization [113]. They showed that this
FA significantly outperformed other mentioned algorithms.

In [114], Chai et al. adopted two meta-heuristics: bees and firefly
algorithms, in order to find optimal solutions to various types of
noisy continuous mathematical functions, using two variables. The
results were measured with regard to mean and standard deviations
of execution time needed to find an optimal solution. According to
the obtained results, the authors concluded that FA performed better
than the bees algorithm when the noise levels increased.

Farahani et al. in [115] developed a multi-swarm based FA for
dynamic environments that splits the population of particles into
sets of interacting swarms. Each swarm interacts locally by an
exclusion parameter and globally through an anti-convergence
operator. This algorithm was tested solving the moving peaks
benchmark [110]. The results were compared according to the
performance and accuracy with other particle swarm optimization
(PSO) and evolutionary algorithms from the literature and showed
that the proposed algorithm significantly outperformed other
algorithms in experiments.

FA for dynamic environments that was proposed by Nasiri et al.
in [116] had the following characteristics: The best solution found
so far was preserved. The randomization parameter α was adapted.
The algorithm maintained only one swarm of fireflies. It was
applied to a moving peaks benchmark problem [110], which is
the most famous benchmark for assessment in dynamic environ-
ments, and compared with other algorithms for dynamic optimi-
zation, like mQSO [111], AmQSO [117], mCPSO [111], SPSO [118],
rSPSO [119] and PSO-CP [120]. The obtained results showed the
proper accuracy and convergence rate for the proposed algorithm
in comparison with the other mentioned algorithms.

Finally, Sulaiman in [121] presented an application of FA for
determining the optimal location and size of distributed genera-
tion (DG) in distribution power networks. In this paper, an IEEE
69-bus distribution test systemwas used to show the effectiveness
of the firefly algorithm. The comparison with the genetic algo-
rithm was also conducted to see the performance of FA as to
whether it was as good as the genetic algorithm in solving the
optimal allocation problem.

The detailed list of optimization algorithms can be seen in
Table 4.

4.2. Classification

Classification algorithm is a procedure for selecting a hypoth-
esis from a set of alternatives that best fits a set of observations or
data. Usually, this kind of algorithm appears in machine learning,
data mining, and neural networks. Although classifications can be
considered as optimization, Holland [122] wrote that a learning (as
component part of classification) is viewed as a process of
adaptation to a particularly unknown environment, not as an
optimization problem. In the rest of this subsection, contributed
papers from this area are reviewed.

Banati et al. in [123] hybridized FA with the Rough Set Theory
(RST) to find a subset of features and is a valuable preprocessing
techniques in machine learning. FA simulated the attraction
system of the real fireflies that guides the feature selection
procedure. Four different medical datasets from the UCI machine
learning data repository [124] were evaluated in order to obtain
the performance of the proposed algorithm. The experimental
results showed that the proposed algorithm outperformed the
other feature selection method like Genetic algorithm (GenRSAR)
[125], Ant colony Optimization (AntRSAR) [126], particle swarm
optimization (PSO-RSAR) [127] and artificial bee colony (BeeRSAR)
[128], in terms of time and optimality.

Horng et al. in [129] proposed FA for training of the radial basis
function (RBF) network that is a type of neural network using a
radial basis function as its activation function [130]. In these
algorithms, each of the fireflies represented a specific RBF network
for classification. The performance of the proposed FA was
measured according to the percent of correct classification, and
the mean square error and complexity on five data sets was taken
from the UCI machine repository [124]. The obtained result for the
firefly algorithms was compared with the gradient descent algo-
rithm (GD) [131], the genetic algorithm (GA), the particle swarm
optimization (PSO), and the artificial bee colony (ABC) algorithm.
The experimental results showed that usage of FA obtained
satisfactory results over the GD and GA algorithms, but it was
not apparently superior to the PSO and ABC algorithms.

In paper [132], Senthilnath et al. applied FA for clustering data
objects into groups according to the values of their attributes. The
performance of FA for clustering was compared with the results of
other nature-inspired algorithms like artificial bees colony (ABC)
[7] and particle swarm intelligence (PSO) [6], and other nine
methods used in the literature on the 13 test data sets from the
literature [133,134]. The performance measure used in the com-
parison was the classification error percentage (CEP) that is
defined as a ratio of the number of misclassified samples in the
test data set and total number of samples in the test data set. The
authors concluded from the obtained results that FA was the
efficient method for clustering.
4.3. Engineering applications

Firefly algorithms have become a crucial technology for solving
problems in engineering practice. Nowadays, there are applica-
tions for almost every engineering areas. Table 5 shows those
engineering areas in which FA was applied with reference to the
paper in which the algorithm is described, and the summarized
number of papers from a given area. These papers were not
analyzed explicitly because of this reviews' scope.



Table 5
Engineering applications.

Engineering area References Total

Industrial Optimization [135–148] 14
Image processing [149–156] 8
Antenna design [157–160] 4
Business optimization [161,162] 2
Civil engineering [163,164] 2
Robotics [165,166] 2
Semantic web [167] 1
Chemistry [168] 1
Meteorology [169] 1
Wireless sensor networks [170] 1
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The greatest number of papers in Table 5 belongs to industrial
optimization. Image processing is also well covered by firefly
algorithms. Antenna optimization consists of four papers. In
business optimization, robotics, and civil engineering, there are
two papers for each area. Other engineering areas in the table are
represented by one paper.

In summary, every day new papers emerge using FA within
always new engineering areas. This fact proves that the develop-
ment of engineering applications using firefly algorithms is very
diverse and rapidly expanding.
5. Discussion and further work

This section analyses the main characteristics of the firefly
algorithm. That is, the firefly algorithms are suitable for multi-
modal optimization, they have fast convergence, obtain good
results on function optimization, and are appropriate for combi-
natorial optimization. The reason for the fast convergence is
loosing the diversity of population. In order to keep using this
algorithm for large-scale optimization problems, a balancing of the
exploration and exploitation, as explained by Yang in [36], should
be established.

The results of firefly algorithms depend on the best-found
solution within a swarm. Therefore, improving the best solution
can improve the search power of the swarm. Experiments using
binary firefly algorithms show that this algorithm could success-
fully be applied to those problems where binary representation is
necessary. In some cases, the convergence speed can be improved,
when Gaussian or Lévy flight searches are taken in the move
function. Using chaotic maps is appropriate for tuning parameters.
Parallel firefly algorithms with one swarm improve the results for
solving multi-modal functions, while the results are deteriorated
on the unimodal functions. In general, parallelism is worthwhile,
when the multi-swarm population scheme is employed.

Analyses of papers hybridizing the firefly algorithms show that
these are more used as a local search for hybridizing other
algorithms, like Eagle Strategy, neural networks, learning auto-
mata and genetic algorithms. Amongst other approaches, it is
worth mentioning the hybridization of firefly algorithms with
neural network that acts as meta-heuristic for setting parameters
of firefly algorithm, and the hybridization of FA with local search
heuristics. In the latter case, FA acts as a global problem solver.
Interestingly, there also exists hybridizations that supports the co-
evolution of genetic algorithms and firefly algorithms, and opera-
tors borrowed from genetic algorithms. However, there are a lot of
possibilities for future developments.

Solving the combinatorial optimization problems illustrates the
oscillatory behavior of the firefly algorithm. That is, FA can find the
solution faster in some cases, while in other cases the solution
cannot be found. Here, the main problem to be solved is how to
balance the exploration and exploitation during firefly search. This
question also opens up new directions in the further development
of this algorithm.

Using firefly algorithms for combinatorial optimization pro-
blems demands a mapping of the discrete variables (usually
permutation of integer) in the problem space to continuous
variables in the search space, where the firefly operators (like
moving fireflies) act. Normally, firefly algorithms for solving the
constrained optimization problems consider the constraints as a
penalty function that punishes the infeasible solutions. This
violation affects the fitness function, this means that the more
the solution violates the feasibility condition the higher the value
of the penalty function.

Dynamic environment is usually solved by FA using the multi-
swarm population scheme, which can respond quicker to the
changing environment. Additionally, the adaptation for changing
environment is faster, when the control parameters of FA are taken
into account. Normally, the learning automata was employed to
hybridize FA for dynamic environments. The adaptation of control
parameters is also useful for solving the multi-objective problems,
while for classification problems, despite the adaptation of control
parameters, the hybridization of FA is applicable with other
classification heuristics like neural networks.

Despite the huge success of FA in practice, mathematical
analysis of the algorithm has a very limited literature. In real
applications, firefly algorithms often converge quickly, however,
there is no theoretical analysis how quickly it can indeed converge.
It will be very useful to use theories of dynamical systems, and/or
Markov chains as well as complexity to analyze the convergence
and stability of all major variants of firefly algorithm. In fact, there
are a few important open problems concerning all meta-heuristic
algorithms [55].

Another important area is parameter tuning, which is impor-
tant for all meta-heuristic algorithms. In firefly algorithms, more
studies are needed to identify optimal setting for algorithm-
dependent parameters so that they can solve a wider range of
problems with minimal adjustments of parameter values. This
itself is a tough optimization problem. It is possible to even design
automatic schemes to tune parameters in an adaptive and intel-
ligent manner, but how to achieve such goals is still an open
question.

Applications of firefly algorithms are very diverse, as we have
seen from this review. It would be more fruitful to apply to new
areas such as bioinformatics, data mining, telecommunications,
and large-scale real-world applications [171]. There is no doubt
that more applications of firefly algorithms will emerge in the near
future.
6. Conclusions

FA algorithm has widely expanded its application domains
since its establishment in 2008. Nowadays, there is practically no
domain where FA had not been applied. Moreover, the develop-
ment areas of this algorithm are very dynamic, because new
applications appear almost every day.

This paper performs a comprehensive review of the firefly
algorithm. It has shown that this algorithm:
�
 possesses multi-modal characteristics,

�
 can handle multi-modal problems efficiently,

�
 has a fast convergence rate,

�
 can be used as a general, global problem solver as well as a local

search heuristic,

�
 is applicable to every problem domain.
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FA solves problems from the following domains: continuous
optimization, combinatorial optimization, constraint optimization,
multi-objective optimization, as well as dynamic and noisy envir-
onments, and even classification. The important domain of its
applicability is represented by engineering application.

The objective of this review was twofold. Firstly, it has
summarized the status of applications within various application
areas. This review has proved that FA can be practically applied
within every problem domain. Secondly, this review has shown
that FA is simple, flexible and versatile, which is very efficient in
solving a wide range of diverse real-world problems. At the same,
we have provided some open questions and challenges that can
inspire further research in these areas in the near future, like
ensemble of parameters in [172].

References

[1] C. Blum, X. Li, Swarm intelligence in optimization, in: C. Blum, D. Merkle
(Eds.), Swarm Intelligence: Introduction and Applications, Springer Verlag,
Berlin, 2008, pp. 43–86.

[2] M. Beekman, G. Sword, S. Simpson, Biological foundations of swarm
intelligence, in: C. Blum, D. Merkle (Eds.), Swarm Intelligence: Introduction
and Applications, Springer Verlag, Berlin, 2008, pp. 3–41.

[3] G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in:
Proceedings of NATO Advanced Workshop on Robots and Biological Systems,
Tuscany, Italy, 1989, pp. 26–30.

[4] M. Dorigo, G. Di Caro, The ant colony optimization meta-heuristic, in:
D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in Optimization, McGraw
Hill, London, UK, 1999, pp. 11–32.

[5] P. Korošec, J. Šilc, B. Filipič, The differential ant-stigmergy algorithm,
Information Sciences 192 (2012) 82–97, http://dx.doi.org/10.1016/j.
ins.2010.05.002.

[6] J. Kennedy, R. Eberhart, The particle swarm optimization: social adaptation
in information processing, in: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas
in Optimization, McGraw Hill, London, UK, 1999, pp. 379–387.

[7] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, Journal of Global
Optimization 39 (3) (2007) 459–471.

[8] I. Fister, I. Fister Jr., J. Brest, V. Žumer, Memetic artificial bee colony algorithm
for large-scale global optimization, in: IEEE Congress on Evolutionary
Computation, 2012, pp. 1–8.

[9] X.S. Yang, Firefly algorithm, Nature-Inspired Metaheuristic Algorithms 20
(2008) 79–90.

[10] A. Gandomi, X.-S. Yang, S. Talatahari, A. Alavi, Metaheuristic in modeling and
optimization, in: A. Gandomi, X.-S. Yang, S. Talatahari, A. Alavi (Eds.),
Metaheuristic Application in Structures and Infrastructures, Elsevier, Wal-
tham, 2013, pp. 1–24.

[11] X.-S. Yang, Optimization and metaheuristic algorithms in engineering, in:
X.-S. Yang et al. (Ed.), Metaheuristic in Water Geotechnical and Transport
Engineering, Elsevier, Waltham, 2013, pp. 1–23.

[12] M. Sahab, V. Toropov, A. Gandomi, Traditional and modern optimization
techniques – theory and application, in: A.H. Gandomi et al. (Ed.), Metaheur-
istic Applications in Structures and Infrastructures, Elsevier, Waltham, 2013,
pp. 26–47.

[13] X.S. Yang, S. Deb, Cuckoo search via levy flights, in: World Congress on
Nature & Biologically Inspired Computing (NaBIC 2009), IEEE Publications,
2009, pp. 210–214.

[14] X.S. Yang, A new metaheuristic bat-inspired algorithm, in: C. Cruz, J. Gonzlez,
G.T.N. Krasnogor, D.A. Pelta (Eds.), Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), Studies in Computational Intelligence, vol. 284,
Springer Verlag, Berlin, 2010, pp. 65–74.

[15] A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization
algorithm, Communications in Nonlinear Science and Numerical Simulation
17 (12) (2012) 4831–4845, http://dx.doi.org/10.1016/j.cnsns.2012.05.010.

[16] A. Hatamlou, S. Abdullah, H. Nezamabadi-pour, A combined approach for
clustering based on k-means and gravitational search algorithms, Swarm and
Evolutionary Computation 6 (2012) 47–52.

[17] A. Hatamlou, Black hole: a new heuristic optimization approach for data
clustering, Information Sciences 222 (2013) 175–184.

[18] M. Črepinšek, M. Mernik, S. Liu, Analysis of exploration and exploitation in
evolutionary algorithms by ancestry trees, International Journal of Innovative
Computing and Applications 3 (1) (2011) 11–19.

[19] K. Tashkova, J. Šilc, N. Atanasova, S. Džeroski, Parameter estimation in a
nonlinear dynamic model of an aquatic ecosystem with meta-heuristic
optimization, Ecological Modelling 226 (2012) 36–61, http://dx.doi.org/
10.1016/j.ecolmodel.2011.11.029.

[20] A. Prügel-Bennett, Benefits of a population: five mechanisms that advantage
population-based algorithms, IEEE Transactions on Evolutionary Computa-
tion 14 (4) (2010) 500–517.

[21] S.A. Lee, k-phase oscillator synchronization for graph coloring, Mathematics
in Computer Science 3 (1) (2010) 61–72.
[22] H. Hernández, C. Blum, Distributed graph coloring: an approach based on the
calling behavior of japanese tree frogs, Swarm Intelligence 6 (2) (2012)
117–150.

[23] S.M. Lewis, C.K. Cratsley, Flash signal evolution, mate choice, and predation
in fireflies, Annual Revision in Entomology 53 (2008) 293–321.

[24] J.R. De Wet, K. Wood, M. DeLuca, D. Helinski, S. Subramani, Firefly luciferase
gene: structure and expression in mammalian cells, Molecular and Cellular
Biology 7 (2) (1987) 725–737.

[25] A. Brasier, J. Tate, J. Habener, et al., Optimized use of the firefly luciferase
assay as a reporter gene in mammalian cell lines, BioTechniques 7 (10)
(1989) 11–16.

[26] B.L. Strehler, J.R. Totter, Firefly luminescence in the study of energy transfer
mechanisms. I. Substrate and enzyme determination, Archives of Biochem-
istry and Biophysics 40 (1) (1952) 28–41.

[27] M. Deluca, Firefly luciferase, Advances in Enzymology and Related Areas of
Molecular Biology 40 (2006) 37–68.

[28] H. Seliger, W. McElroy, Spectral emission and quantum yield of firefly biolumi-
nescence, Archives of Biochemistry and Biophysics 88 (1) (1960) 136–141.

[29] C. Darwin, The Origin of Species, P.F. Collier, New York, 1859.
[30] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer-Verlag,

Berlin, 2003.
[31] A. Eiben, S. Smit, Parameter tuning for configuring and analysing evolu-

tionary algorithms, Swarm and Evolutionary Computation 1 (1) (2011)
19–31.

[32] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

[33] X.S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic
Algorithms: Foundations and Applications, Springer, 2009, pp. 169–178.

[34] S. Das, S. Maity, B.-Y. Qu, P.N. Suganthan, Real-parameter evolutionary
multimodal optimization – a survey of the state-of-the-art, Swarm and
Evolutionary Computation 1 (2) (2011) 71–88.

[35] X.S. Yang, Firefly algorithm, stochastic test functions and design optimisa-
tion, International Journal of Bio-Inspired Computation 2 (2) (2010) 78–84.

[36] X.S. Yang, Review of meta-heuristics and generalised evolutionary walk
algorithm, International Journal of Bio-Inspired Computation 3 (2) (2011)
77–84.

[37] R. Parpinelli, H. Lopes, New inspirations in swarm intelligence: a survey,
International Journal of Bio-Inspired Computation 3 (1) (2011) 1–16.

[38] K. Passino, Biomimicry of bacterial foraging for distributed optimization and
control, IEEE Control Systems Magazine (2002) 52–67.

[39] D. Monismith, B. Mayfield, Slime mold as a model for numerical optimiza-
tion, in: IEEE Swarm Intelligence Symposium, 2008, pp. 1–8.

[40] T. Havens, G. Alexander, C. Abbott, J. Keller, M. Skubic, M. Rantz, Contour
tracking of human exercises, in: IEEE Workshop on Computational Intelli-
gence for Visual Intelligence, 2009, pp. 22–28.

[41] X. Feng, F. Lau, D. Gao, A new bio-inspired approach to the traveling
salesman problem, in: Complex Sciences, Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering,
vol. 5, Springer Verlag, Berlin, 2009, pp. 1310–1321.

[42] X.S. Yang, A new metaheuristic bat-inspired algorithm, in: Nature Inspired
Cooperative Strategies for Optimization (NISCO 2010), Studies in Computa-
tional Intelligence, vol. 284, Springer Verlag, Berlin, 2010, pp. 65–74.

[43] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimiza-
tion, Technical Report, Erciyes University, Engineering Faculty, Computer
Engineering Department, 2005.

[44] O. Haddad, A. Afshar, MBO algorithm, a new heuristic approach in hydro-
systems design and operation, in: The First International Conference on
Managing Rivers in the 21st Century, 2004, pp. 499–504.

[45] H. Zang, S. Zhang, K. Hapeshi, A review of nature-inspired algorithms,
Journal of Bionic Engineering 7 (2010) 232–237.

[46] Surafel Luleseged Tilahun, Hong Choon Ong, Modified firefly algorithm,
Journal of Applied Mathematics 2012 (2012), doi: http://dx.doi.org/10.1155/
2012/467631.

[47] S. Palit, S. Sinha, M. Molla, A. Khanra, M. Kule, A cryptanalytic attack on the
knapsack cryptosystem using binary firefly algorithm, in: The Second
International Conference on Computer and Communication Technology
(ICCCT-2011), IEEE, 2011, pp. 428–432.

[48] R. Falcon, M. Almeida, A. Nayak, Fault identification with binary adaptive
fireflies in parallel and distributed systems, in: IEEE Congress on Evolu-
tionary Computation (CEC-2011), IEEE, 2011, pp. 1359–1366.

[49] K. Chandrasekaran, S. Simon, Network and reliability constrained unit
commitment problem using binary real coded firefly algorithm, Interna-
tional Journal of Electrical Power & Energy Systems 43 (1) (2012) 921–932.

[50] A. Behrouz, Cryptography and Network Security, Tata McGraw Hill, New
York, 2007.

[51] H. Yang, M. Elhadef, A. Nayak, X. Yang, Network fault diagnosis: an artificial
immune system approach, in: Proceedings of the 14th IEEE International
Conference on Parallel and Distributed Systems, Melbourne, Australia, 2008,
pp. 463–469.

[52] R. Falcon, M. Almeida, A. Nayak, A binary particle swarm optimization
approach to fault diagnosis in parallel and distributed systems, in: Proceed-
ings of IEEE Congress on Evolutionary Computation (CEC), Barcelona, Spain,
2010, pp. 41–48.

[53] M. Carrion, J.M. Arroyo, A computationally efficient mixed-integer linear
formulation for the thermal unit commitment problem, IEEE Transactions on
Power Systems 21 (2006) 1371–1378.

http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref1
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref1
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref1
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref2
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref2
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref2
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0005
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0005
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0005
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref4
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref4
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref4
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref6
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref6
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref6
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref7
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref7
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref7
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0010
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0010
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0010
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref9
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref9
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref10
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref10
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref10
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref10
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0015
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0015
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0015
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0020
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0020
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0020
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0020
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0025
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0025
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0025
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0025
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref14
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref14
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref14
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref14
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://dx.doi.org/10.1016/j.cnsns.2012.05.010
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref16
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref16
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref16
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0030
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0030
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref18
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref18
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref18
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref20
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref20
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref20
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref21
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref21
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref22
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref22
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref22
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref23
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref23
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref24
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref24
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref24
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref25
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref25
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref25
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref26
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref26
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref26
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref27
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref27
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref28
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref28
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref29
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref30
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref30
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref31
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref31
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref31
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref32
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref32
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0035
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0035
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref34
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref34
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref34
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref35
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref35
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref36
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref36
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref36
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref37
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref37
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref38
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref38
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0040
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0040
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0045
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0045
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0045
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0050
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0050
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0050
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0050
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0055
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0055
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0055
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0060
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0060
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0060
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0065
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0065
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0065
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref45
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref45
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref46
dx.doi.org/http://dx.doi.org/10.1155/2012/467631
dx.doi.org/http://dx.doi.org/10.1155/2012/467631
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0070
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0070
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0070
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0070
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0075
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0075
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0075
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref49
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref49
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref49
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref49
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref50
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref50
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0080
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0080
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0080
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0080
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0085
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0085
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0085
http://refhub.elsevier.com/S2210-6502(13)00046-1/othref0085
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref53
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref53
http://refhub.elsevier.com/S2210-6502(13)00046-1/sbref53


I. Fister et al. / Swarm and Evolutionary Computation 13 (2013) 34–46 45
[54] S.M. Farahani, A. Abshouri, B. Nasiri, M. Meybodi, A gaussian firefly
algorithm, International Journal of Machine Learning and Computing 1 (5)
(2011) 448–454.

[55] X.S. Yang, Metaheuristic optimization: algorithm analysis and open problems, in:
P. Pardalos, S. Rebennack (Eds.), Experimental Algorithms, Lecture notes in
Computer Science, vol. 6630, Springer Verlag, Berlin, 2011, pp. 21–32.

[56] D. Bertsimas, J. Tsitsiklis, Simulated annealing, Statistical Science 8 (1993) 10–15.
[57] J. Kennedy, R.C. Eberhart, Swarm intelligence in cellular robotic systems, in:

Proceedings of IEEE International Conference on Neural Networks, Piscat-
away, NJ, 1995, pp. 1942–1948.

[58] X.S. Yang, Firefly algorithm, levy flights and global optimization, in: M.
Bramer, R. Ellis, M. Petridis (Eds.), Research and Development in Intelligent
Systems XXVI, Springer, 2010, pp. 209–218.

[59] X.S. Yang, Efficiency analysis of swarm intelligence and randomization
techniques, Journal of Computational and Theoretical Nanoscience 9 (2)
(2012) 189–198.

[60] L. dos Santos Coelho, D.L. de Andrade Bernert, V.C. Mariani, A chaotic firefly
algorithm applied to reliability-redundancy optimization, in: IEEE Congress
on Evolutionary Computation (CEC 2011), vol. 18, IEEE, 2013, pp. 89–98.

[61] S. Strogatz, Nonlinear Dynamics and Chaos, Perseus Publishing, Massachu-
sett, 2000.

[62] A. Gandomi, X.-S. Yang, S. Talatahari, A. Alavi, Firefly algorithm with chaos,
Communications in Nonlinear Science and Numerical Simulation 18 (1)
(2013) 89–98, http://dx.doi.org/10.1016/j.cnsns.2012.06.009.

[63] M. Subutic, M. Tuba, N. Stanarevic, Parallelization of the firefly algorithm for
unconstrained optimization problems, in: Latest Advances in Information
Science and Applications, 2012, pp. 264–269.

[64] A. Husselmann, K. Hawick, Parallel Parametric Optimisation with Firefly
Algorithms on Graphical Processing Units, Technical Report CSTN-141, 2012.

[65] S. Farahani, A. Abshouri, B. Nasiri, M. Meybodi, Some hybrid models to
improve firefly algorithm performance, International Journal of Artificial
Intelligence 8 (12) (2012) 97–117.

[66] X.S. Yang, S. Deb, Eagle strategy using levy walk and firefly algorithms for
stochastic optimization, in: Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), 2010, pp. 101–111.

[67] C. Brown, L.S. Liebovitch, R. Glendon, Lévy flights in dobe ju/hoansi foraging
patterns, Human Ecology 35 (2007) 129–138.

[68] J. Luthra, S. Pal, A hybrid firefly algorithm using genetic operators for the
cryptanalysis of a monoalphabetic substitution cipher, in: World Congress on
Information and Communication Technologies (WICT 2011), IEEE, 2011,
pp. 202–206.

[69] A. Abdullah, S. Deris, M. Mohamad, S. Hashim, A new hybrid firefly algorithm
for complex and nonlinear problem, Distributed Computing and Artificial
Intelligence (2012) 673–680.

[70] R. Storn, K. Price, Differential evolution a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization
11 (1997) 341–359.

[71] J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Žumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Transactions on Evolutionary Computation 10
(6) (2006) 646–657.

[72] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Transactions on Evolutionary Computation 15 (1) (2011) 4–31.

[73] I. FisterJr., X.S. Yang, I. Fister, J. Brest, Memetic firefly algorithm for
combinatorial optimization, in: B. Filipič, J. Šilc (Eds.), Bioinspired Optimiza-
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