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Abstract—With the increasing penetration of renewable energy
systems such as plug-in hybrid electric vehicles, wind and solar
power into the power grid, the stochastic disturbances resulting
from changes in operational scenarios, uncertainties in schedules,
new demands and othermitigating factors become crucial in power
system stability studies. This paper presents a newmethod for ana-
lyzing stochastic transient stability using the structure-preserving
transient energy function. A method to integrate the transient en-
ergy function and recloser probability distribution functions is pre-
sented to provide a quantitative measure of probability of stability.
The impact of geographical distribution and signal-to-noise ratio
on stability is also presented.

Index Terms—Energy functions, stochastic differential algebraic
equations, structure-preserved power system, transient stability.

I. INTRODUCTION

E LECTRICAL power system loads are functions of a
myriad of active and reactive power demands that depend

on a variety of factors including time, weather, geography, and
economics. The result of the aggregate behavior of many thou-
sands of individual customer devices switching independently
are power system loads that are stochastic in nature. The vari-
ability of the electrical network loading has received increased
attention in recent years due to the expansion of renewable
resources and the likelihood of wide-spread adoption of plug-in
electric vehicles (PEVs) [1]. Renewable energy resources such
as wind turbines or solar power can introduce uncertainty
into the power system as a result of atmospheric variations
causing excursions in active power generation. Furthermore,
plug-in electric vehicles are a potential significant source of
disturbance on the grid due to their battery charge and discharge
characteristics. The tandem effect of renewable resources and
PEVs may create uncertainties of such significant magnitude
they impact the operation of the power system.
The study and analysis of stochastic power system dynamics

is not a new topic; it has been studied for several decades
[2]–[5], but has received renewed interest in recent years as
the amount of uncertainty in the system has increased [6]–[9].
The inclusion of stochasticity in power systems may lead to
very different stability results from a deterministic approach.
For example, even though a deterministic power system might
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be stable, small random perturbations may cause the state
trajectories to reach a critical point such that exceeding this
point may cause the system to collapse or enter an undesirable
operating state [10]. As power system loads and generation
become increasingly non-deterministic, it is essential that
analytical methods be developed to analyze the behavior of the
stochastic system to better understand the inherent risks and
provide sufficient protection against failures.
Power system transient stability is typically assessed either

through direct methods (such as Lyapunov-based energy func-
tions), or through time-domain simulation [11]–[15]. The inclu-
sion of randomness into transient stability analysis most often
requires the use of Monte Carlo methods to ascertain the be-
havior of the system over multiple trials. The basic idea for a
Monte Carlo approach to transient stability assessment using
transient energy functions was first proposed in [4], but the ap-
propriate stochastic tools did not exist at that time to frame
the stochastic energy function nor to numerically solve the sto-
chastic differential equations.
Since the stochastic behavior of the power system is typi-

cally manifested through the variance of the loads, the choices
of power system model and the particular transient stability as-
sessment method are crucial. In many Lyapunov-based transient
stability studies, the system energy function is developed for
the “classical model” in which the load impedance is absorbed
into an equivalent reduced network as viewed from the gener-
ator buses. In such a scheme, the structure of the original net-
work is lost. Although the classical model is frequently used in
transient stability direct methods, this model is known to have
several shortcomings: 1) it precludes the consideration of reac-
tive power demand and voltage variation at the load buses; and
2) the reduction of the impedance network leads to a loss of
system topology and hence precludes the study of how the tran-
sient energy varies among different components of the network
[12]–[15]. An alternative approach is to adopt the structure pre-
serving model in which the active and reactive demand at each
load bus is explicitly represented. The use of a structure pre-
serving model of the system, first proposed by Bergen and Hill
[16], aims at overcoming some of the shortcomings of the clas-
sical model, thereby allowing accurate modeling of loads. The
structure preserved model maintains the original network and
uses the unreduced admittance matrix, resulting in a model that
can be regarded as having structural integrity [17].
Since the time of [4], there has been considerable progress

made in the development of the appropriate tools necessary
to address stochastic transient stability. There have been nu-
merous recent advances in the application of Lyapunov stability
methods to stochastic differential equation systems [19]–[21].
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Furthermore, the past decade has seen significant advances in
the development of numerical integration methods to simulate
stochastic (ordinary) differential equations [22]. In this paper,
these advances in stochastic Lyapunov stability methods and
the numerical solution of systems of stochastic differential equa-
tions will be merged to present a novel approach to developing
a quantitative measure of probability of stability that is suitable
for power system risk assessment.

II. STRUCTURED PRESERVED STOCHASTIC
TRANSIENT ENERGY FUNCTIONS

The concept of transient stability is based on whether, for a
given disturbance, the trajectories of the system states during the
disturbance remain in the domain of attraction of the post-distur-
bance equilibrium when the disturbance is removed. Transient
instability in a power system is caused by a severe disturbance
which creates a substantial imbalance between the input power
supplied to the synchronous generators and their electrical out-
puts. Some of the severely disturbed generators may “swing” far
enough from their equilibrium positions to lose synchronism.
Such a severe disturbance may be due to a sudden and large
change in load, generation, or network configuration. Since
large disturbances may lead to nonlinear behavior, Lyapunov
functions are well-suited to determine power system transient
stability. Since true Lyapunov functions do not exist for lossy
power systems, so-called “transient energy functions” are fre-
quently used to assess the dynamic behavior of the system [25].
From a modeling point of view, the structure preserved model
allows a more realistic representation of power system compo-
nents including load behaviors and generator dynamic models.
To better understand how the structure preserved transient

energy function will be developed and analyzed, a brief review
of Lyapunov functions for stochastic differential equations is
first presented.
Consider the nonlinear stochastic system

(1)

whose solution can be written in the sense of Ito:

(2)

where is the state; is an -dimensional stan-
dard Wiener process defined on the complete probability space

; the functions are locally bounded and locally
Lipschitz continuous in with ,
for all ; and the matrix is nonnegative-definite for
each . These conditions ensure uniqueness and local exis-
tence of strong solutions to (1) [19], [26].
As with many nonlinear deterministic systems, Lyapunov

functions can provide guidance regarding the stability of sto-
chastic differential equation (SDE) systems. An SDE system
is said to satisfy a stochastic Lyapunov condition at the origin
if there exists a proper Lyapunov function defined in a
neighborhood of the origin in such that

(3)

for any where the differential generator is given
by

(4)

If (3) is satisfied, then the equilibrium solution of the
stochastic differential (1) is considered to be stable in proba-
bility [27].
To accurately include the effects of the loads in the system,

the so-called structure-preserved, center-of-intertia model of the
power system is used, such that [16], [18]

(5)

(6)

(7)

(8)

where

and

(9)

where

generator rotor angle;

COI bus angle;

generator angular frequency;

COI angular frequency;

inertia constant;

mechanical output;

bus voltage;

th entry of the reduced lossless admittance
matrix;
positive sensitivity coefficient representing the
load frequency dependence;
number of generators in the system;

number of total buses in the system;

synchronous speed in radians
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and and are the load demands at each bus in the
system.
The corresponding energy function is [18]

(10)

where is usually 2 and the superscript “ ” indicates the stable
equilibrium point. It is assumed that the power system frequency
deviations (see [28] for a recent example) can be represented by
an appropriately scaled Wiener process (i.e., zero mean,
finite covariance). Note that this is why the load variation is
represented by a Wiener process as opposed to a Gaussian noise
input . Therefore a frequency dependent load gives rise
to

(11)

(12)

(13)

(14)

where . Similarly (but less commonly)

(15)

where , are the mean values of the active and reactive
load at bus , respectively, and , are the magnitudes
of the active and reactive noise. Note that the variance in the
noise (i.e., standard deviation) is not explicitly represented but
is inherent in the construction of the Weiner process . The
magnitude of the scaling coefficients , depends on the
level of penetration of low-inertia renewable resources (wind
turbines, photovoltaics) and loads (such as electric vehicles).
The full set of SDAEs for the power system are given by

(16)

(17)

(18)

(19)

Fig. 1. (a) Load Gaussian noise and (b) resulting Brownian motion.

Fig. 2. Total energy versus the potential energy . The critical
clearing time is the time at which the total energy equals the maximum potential
energy.

Similar to the approach proposed in [10], the load and gen-
eration disturbances are modeled stochastically with varying
magnitudes depending on bus location in the system. In this
paper, we consider only the impact of Gaussian variation
(normal distribution), but other distributions can be incorpo-
rated. For example, wind generation is often modeled as a
Weibull distribution [23], whereas PHEV distributions have
been suggested to be Poisson distribution [24]. The load power
is assumed to vary stochastically with an expected value of
the base case loading. The loads at each bus are modeled by
a random walk (Brownian motion) derived from a Gaussian
(white) random process [ from (1)] as shown in Fig. 1(a).
The resulting load variation takes the form shown in Fig. 1(b).

III. METHODOLOGY

The closest unstable equilibrium point (UEP) and controlling
UEP method are two common direct methods used to assess the
system’s stability [25]. The controlling UEP method consists
of numerically integrating the system state and calculating the
kinetic, potential, and total energy of the fault-on system until
the point at which the potential energy reaches its maximum
value. The critical clearing time (CCT) of the system is then
calculated by finding the time at which the total energy is equal
to the maximum potential energy as shown in Fig. 2.
The total energy is the sum of the potential energy

and the kinetic energy . While it may appear as if there is
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Fig. 3. Small test system.

Fig. 4. Illustration of change in over the range of 10 runs—upper plots
show the total energy , lower plots show potential energy .

negligible impact of stochasticity on the potential energy, this is
not the case. The kinetic energy term is dominated by the gener-
ator frequencies which are directly and significantly influenced
by the random load perturbations; thus, the total energy directly
reflects this variation. The potential energy term is dominated
by the generator angles variations, which are the integral of the
frequencies. This integral relationship tends to act as a filter for
the load variations; thus, the potential energy term appears to be
smoother than the total energy.
The energy function approach for determination of transient

stability is applied to the system of stochastic differential-alge-
braic equations for a small three-bus test system (Fig. 3), and a
Monte Carlo approach has been used to construct the probability
distribution of the critical clearing time of the stochastic system.
Ten consecutive simulations with the same Gaussian noise mag-
nitude and variance but different noise sets yields the set of en-
ergies and shown in Fig. 4.
These responses demonstrate that the stability of the power

system may be significantly affected by injecting stochasticity
into the loads. Fig. 5 shows a histogram of the critical clearing
times obtained from 1000 transient stability runs. This his-
togram was generated by calculating the critical clearing time
of 1000 runs of the energy function method. This set of critical
clearing times ranges from a minimum of s
to a maximum of s with a mean value of

Fig. 5. Histogram of (1000 runs).

s. Note that the mean CCT value 0.233 s is
also the same CCT obtained from a single deterministic run
of the energy method. Note that if another 1000 runs were
performed with different Gaussian noise sets (with the same
standard deviation), this histogram would most likely look
slightly different, but would have the same general distribution
and would probably yield the same mean value. But in the cu-
mulative effect as the number of runs becomes large, the mean
results should approach the same response. Even though the
mean value of the histogram (and the probability distribution
function in the limit as the number of runs goes to infinity) is
the same as the deterministic critical clearing time, this does
not indicate that this is a redundant result. The probabilistic
approach provides additional information regarding level of
acceptable risk associated with the critical clearing time. For
example, if a recloser were set to clear the fault at 0.225 s, this
would be a fully sufficient setting in the deterministic analysis,
since 0.225 s is less than the critical clearing time. However, in
the probabilistic analysis, there is still a finite probability that
the system would be unstable with a clearing time of 0.225 s.
From the histogram in Fig. 5, the histogram indicates that the
system will be stable for 958 runs/1000 runs or 96%. This
metric provides a measure of risk associated with a particular
clearing time.
For a large sample population, the histogram of critical

clearing times predicts the shape of the probability density
function. Of significant note is that for a standard deviation and
variance of 1.0, the median value of the histogram is the same
as the deterministic critical clearing time. This implies that
half of the CCTs are greater than 0.233 s and half are smaller.
Note however that even though the expected value is the same
as the deterministic CCT, the variance is not symmetric about
the median even though the load perturbations are Gaussian
distributed.
One way to interpret these results is to combine the critical

clearing time distribution with a recloser distribution. The prob-
ability of maintaining stability is then given by

(20)
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Fig. 6. Recloser distribution function with and . (a)
Probability distribution function. (b) Cumulative distribution function.

Fig. 7. Probability of stability as a function of recloser action expected value
with varying .

where is the probability distribution of the recloser and
is the probability distribution function of the critical clearing
times [29].
For example, consider a recloser probability distribution

function shown in Fig. 6. The recloser action is a Gaussian
distribution with an actuation mean time of 0.225 s and a one
cycle standard deviation. The probability distribution of the
critical clearing times cannot be represented by a closed form
distribution, but the can be estimated by

(21)

where and are the discretized distribution functions
and is the total number of samples. Applying this to the his-
togram of critical clearing times in Fig. 5, the probability of sta-
bility as a function of mean recloser time (with a one-cycle stan-
dard deviation) is shown in Fig. 7.
As the mean recloser time decreases, the probability that the

system will be stable increases to 1.0 (100%) regardless of the
standard deviation of the recloser action. This implies that the
more quickly the fault is cleared, the more likely the system is
to be stable. However, as the standard deviation increases from
cycle to 2 cycles, the slope of the probability curve decreases.

This is intuitive since as the standard deviation increases, the
spread of recloser action from the mean increases, allowing
greater variation. As the standard deviation approaches zero, the
slope approaches infinity at s and 50% probability.

Fig. 8. Process for determining the stability of the system.

Recall that the deterministic critical clearing time is 0.233 s and
is also the expected mean of the histogram of critical clearing
times in Fig. 5. Therefore as the standard deviation approaches
0, the probability distribution curve of the recloser action ap-
proaches a Dirac delta and will sample only a single point at the
mean (which is 0.233 s). The process for determining the prob-
ability of stability is summarized in Fig. 8.
These conclusions are predicated on the assumption that the

probability of successful reclosing is 1. However, in actuality,
the probability of successful reclosing can also be represented
by a probability distribution function and can be incorporated
as a third function into (20). Thus, as the standard deviation ap-
proaches 0, the probability of stability will approach the proba-
bility of successful reclosing.

IV. NUMERICAL SOLUTION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

The determination of the power system energy requires the
numerical solution of the SDE system. The numerical solution
of SDEs is conceptually different from the numerical solution
of deterministic ordinary differential equations. At the core
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of the numerical solution of SDEs is the representation of the
standard Wiener process over the simulation interval .
The random variable satisfies the three following condi-
tions [22]:
1) (with probability 1)
2) For , the random variable given
by the increment is normally distributed
with mean zero and variance ; equivalently,

, where denotes a nor-
mally distributed random variable with zero mean and unit
variance.

3) For , the increments
and are independent.

A standard Wiener process can be numerically approx-
imated in distribution on any finite time interval by a scaled
random walk. A stepwise continuous random walk can
be constructed by taking independent, equally probable steps of
length at the end of each subinterval.
For the ordinary differential equation

the well-known Euler’s method can be applied to numerically
approximate the solution over [31]:

(22)

where and is a positive integer.
For the stochastic differential equation

a corresponding numerical integration method is the
Euler-Maruyama (EM) method [22]:

(23)

where , are points on the Brownian path. The
Euler-Maruyama method was selected since it is straightfor-
ward to implement. It is the simplest strong Taylor approxima-
tion, containing on the time andWiener integrals of multiplicity
one from the Ito-Taylor expansion and usually attains the order
of strong convergence of 0.5. The set of points on which
the discretized Brownian path is based must contain the points

at which the EM solution is computed. If the EM is applied
using a stepsize , then

(24)

(25)

V. APPLICATION

To illustrate the application of the structure preserved sto-
chastic energy function, the method is applied to the small

Fig. 9. Four-machine, six-bus test system.

Fig. 10. Deterministic test system generator frequencies.

power system shown in Fig. 9. This system was introduced in
[30] for the study of structure preserving power systems.
As a benchmark, the deterministic system is subjected to a

fault on bus 3 which is cleared at 0.46 s. The resulting generator
angular frequencies and bus voltages are shown in Figs. 10 and
11, respectively.
To illustrate the effect of the varying loads, ten different sets

of noise with the same magnitude of variation and standard
deviation are applied to the loads. The resulting noisy gener-
ator 4 frequency and bus 6 voltage are shown in Figs. 12 and
13, respectively. The mean, or expected, value of each set of
responses is shown in bold. The generator frequency is much
smoother than the voltage because of the impact of the integra-
tion of the noise. Generator frequency is a state variable
whereas voltage is an algebraic variable and changes in load are
observed instantaneously.
For the test system, the deterministic critical clearing time is

determined to be 0.74 s. To further elucidate the impact of noise
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Fig. 11. Deterministic test system voltages.

Fig. 12. Test system generator 4 frequency (ten runs).

Fig. 13. Test system bus 6 voltages (ten runs).

on the critical clearing times, the critical clearing times resulting
from 100 runs are plotted as a function of the inverse signal-to-
noise ratio (i.e., SNR ) at a single bus (bus 5) in Fig. 14. As
the level of noise in the signal decreases, the critical clearing
times approach the deterministic CCT of 0.74 s. As the noise
level increases, the spectrum of CCTs increase in both the larger

Fig. 14. Critical clearing times as a function of SNR (100 runs).

Fig. 15. Critical clearing times as a function of SNR (100 runs); load
changes at bus 2 , bus 5 , and bus 6 .

and smaller directions, but with a greater spread towards smaller
CCTs. This is an indication that as the noise level increases, the
system is more likely to become unstable.
To illustrate the impact of noise at different geographic lo-

cations, equal amounts of (expected) noise are added to the
different load buses and the critical clearing times are plotted.
Fig. 15 shows the impact of noise added at different locations
on the critical clearing time. From the figure, it can be observed
that the stability of the system is most sensitive to random load
variations at bus 2 (for a fault on bus 3) and least sensitive to
noise levels at bus 6. It is theorized that this sensitivity is due
to the proximity of the buses to the fault bus. The closer the
fault is to a bus, the more sensitive the critical clearing time is
to random changes in load. If information regarding penetration
of wind turbines, solar panels, or other randomly varying com-
ponent is available, this information can be used to scale the
noise magnitudes to provide a histogram of CCTs as a function
of geographical differences.
The critical clearing times shown in Fig. 15 can be converted

to a histogram by enumerating the number of clearing times in
a set of time intervals. This can then be used to determine the
probability of stability for this system as given in Fig. 8 and the
previous example.



ODUN-AYO AND CROW: STRUCTURE-PRESERVED POWER SYSTEM TRANSIENT STABILITY 1457

TABLE I
SYSTEM PARAMETERS FOR THE SIX-BUS TEST SYSTEM

VI. CONCLUSIONS AND FUTURE WORK

This paper develops an approach to analyze the impact of
random load and generation variations on the transient stability
of a structure preserved power system. The well-known energy
function method for power system transient stability is used as a
basis to explore the stochastic power system stability through a
stochastic Lyapunov stability analysis. Further, the method was
extended numerically using the Euler-Maruyamamethod. It was
shown that increasing the magnitude of the applied variation or
changing the geographic location can have a destabilizing effect
on the power system. This could potentially cause difficulties as
more randomness is introduced into the power system through
renewable energy sources and plug-in-hybrid vehicles.
Further work may include exploring the impact of non-

Gaussian distributions on critical clearing times. An additional
area of study would include modeling the stochastic behavior
of generation scheduling.

APPENDIX

The parameters of the four-machine, six-bus test system are
shown in Table I.
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