
Empirical Study of Parallelism Throttling Schemes
on a Massively Parallel System

Y.M. Teo and J.C. Yan
Department of Information Systems and Computer Science

National University of Singapore
Lower Kent Ridge Road

Singapore 0511
email: teoym@iscs.nus.sg

Abstract
Exploitation of pamllelism in massively pamllel

systems is intuitively appealing and is a promising
avenue for achieving temflop performance. How-
ever, parallelism is not free; apart from overheads
in communication and synchronisation, having too
much progmm parallelism can also mise serious re-
soume management problems during progmm execu-
tion. The problem of fesource management is partic-
ularly complicated by the distributed nature of mas-
sively pamllel systems.

In this paper, we address the issue of manag-
ing pamllelism in a massively pamllel system. This
is an extension of our previous work on hardware
throttle for pamllel systems. We propose two paml-
lelism throttle schemes, and a scheme for monitoring
and measurement of system workload. Processes in
the system are initiated when runtime loading lev-
els in the system permit. The aim is to match dy-
namic program parallelism to static machine par-
allelism. Experimental study as conducted using a
simulated Multi-cluster Dataflow Machine as testbed.
Our study shows the eztent that control over runaway
progmm pamllelism is necessary, and that it is pos-
sible to have good distributed control of resource use
in a massively pamllel system.

1 Introduction
Most of today's massively parallel computers are

based on the data parallel model of computation by
which the principal data structures of a problem are
partitioned and assigned to the processors of the
machine. Large-scale parallel computation where
hundreds of processors execute distinct parts of a
problem exploiting functional parallelism is becom-
ing common. There appears to be widespread con-
sensus that general purpose parallel computer of the
future will be massively parallel architecture consist-
ing of many processing nodes connected via a high
speed and regular interconnection network. Mas-
sively parallel architectures are confronted with two
main widely discussed fundamental problems: mem-
ory latency problem and synchronisation problem [4].
Current processing node design in general employs
multithreaded parallelism to overlap communication
and synchronisation latencies with computation to
achieve better processor and network utilisation. Be-
sides these issues, there are resource management
related issues such as thread management, memory
management, traffic management, load distribution

and balancing, parallelism (or concurrency) manage-
ment, etc.

A major source of parallelism in programs is algo-
rithmic parallelism introduced by the programmer.
The potential problem of too little program paral-
lelism i s clear. If there is too much parallelism, we
are in danger of filling the entire memory of the ma-
chine with half-finished computations, none of which
can proceed due to lack of space. Control of paral-
lelism in parallel systems has been widely studied.
Control can be introduced at different levels in a
parallel system such as program annotations at the
language level, strict execution of function and loop
iteration can be enforced by the com iler, dynamic
control can be exercised using LIFO FIFO queues,
priorities, etc. at the hardware level P 81. In the MIT
Dataflow Machine, a hybrid method of control called
the K-bounded loop [3] is used. Analysis of the re-
source required to support loop execution is done
at compile-time and based on runtime workload, K-
loops are unravelled for parallel execution.

Research so far has focused on strategies for par-
allel machines with limited machine parallelism. To
the best of our knowledge, recent massively paral-
lel architectures such as Alewife [l], Tera [2 , *T

allelism management. The effectiveness and scala-
bility of parallelism throttle are important issues re-
quiring attention in massively parallel systems. This
paper addresses the parallelism management prob-
lem in massively parallel systems. The rest of this
paper is organised as follows. In section 2, we discuss
two schemes for dynamic control of program paral-
lelism in a massively parallel system. The schemes
are implemented on a Multi-cluster Dataflow Ma-
chine that exploits massive spatial and tempoml par-
allelism. The performance of these two schemes are
analysed in section 3. Section 4 describes the limita-
tions in our approach. In conclusion, we summarise
the main results and assess the importance of mem-
ory resource management in future massively paral-
lel systems.

[7] and MASA [6] do not address the issue o I par-

2 Strategies for Dynamic Parallelism
Control

The basic strategy for controlling inter-process
parallelism is to delay the execution of new pro-
cesses unless machine resource permits. There are
two main aspects in designing a throttle. Firstly, a

workload monitoring and measurement scheme is re-
quired to determine the activity level of the system.
Secondly, a strategy is required to handle process
activation request and to determine the appropriate
process to start up. We define pamllelism throttling
as the task of matching dynamic progmm pmllelism
to machine pamllelismat runtime. Static parallelism
control schemes are discussed in [8]. Our throttle de-
sign is guided by two objectives: keep all processors

overheads.

the GRM allocates processes to various clusters for
execution.
2.1.1 Cluster Local Workload Measure-

Workload is monitored and measured at the clus-
ter level similar to the scheme proposed in [8, 91.
Each PE's token queue (TQ) keep tracks Of
its own T Q size and maintains its own logical

ary is exceeded, it sends a high/low messa e token

ment

as busy as possible and introduce minimal throttle

We p r o p m two control strategies: centralised or
distributed control. In the former case a global re-
source manager is responsible for selecting and dis-

ter case no single resource manager makes global

bandS/hYSteresis. When a token queue band bound-

to its LRM. A high message token (TQHigf)
ments a counter, TCount, while a low message to-
ken (TQLow) decrements this counter. TCount is

ter. The is shown in figure 2. When the patching processes to idle In the lat- used as a measure of the activity level in a clus-

decisions for insisting new proc&es, but the pro-
cessors themselves are responsible for determining
which process to execute next. Using a Multi-cluster
Dataflow Machine as testbed, the architecture of the
two control schemes are discussed in the sections be-
low. The architecture of a cluster is similar in config-
uration to the Multi-ring Manchester Dataflow Ma-
chine 51, and consists of a number of processing ele-
ment [PE) rings and structure store (SS) rings inter-
connected by a multi-stage switch. A Multi-cluster
Dataflow Machine in turn consists of many clusters
interconnected by another multi-stage switch called
the global communication switch. The processing el-
ement and structure store have similar architecture
to the Manchester Dataflow Wachine [5].

2.1 Centralised Parallelism Throttle

The architecture of a massively parallel system
with centralised throttle control is shown in figure 1.
A global resource manager (GRM) connected to the

Scheme

I"""""'

Figure 1: Massively Parallel System with Cen-
tralised Throttle Control

global switch keeps track of process execution. The
tasks of workload monitoring, data structure man-
agement are performed by a local resource manager
(LRM) in each cluster. Before a process can execute,
a startup process request is sent to the GRM and
suspended in a global process tree (GPT) data struc-
ture. Based on runtime cluster activity measures,

Token-Queue Unit:
current-band = 1
if T Q length > (current-band * bandsize + hysteresis) then

send TQHigh to Local-Resourcemanager
current-band = current-band + 1

send T Q L w to Local-Resourcemanager
current-band = current-band - 1

if T Q length < ((current-band - 1) * bandsize - hysteresis) then

LocaLResourcemanager:
case mcssage-token of

TQHigh : TCount = TCount + 1
T Q L w : TCount = TCount - 1

TDelay = L(k * (e TCount/p - I))/p]
if (suspend-process > 0) and

(last-release-time + TDelay + 2

send TClusAvail to Global-Resourcemanager

switchdelay)
<= current-time) then

Figure 2: Parallelism Throttle - Centralised

LRM deems the cluster free enough through peri-
odic sampling of TCount and calculation of TDelay,
a TCIusAvail token is sent to GRM. TDelay is a
heuristic function that estimates the amount of time
the cluster takes to complete execution of allocated
processes. Variable k is a constant, and p denotes
the number of processing elements in a cluster. At
the global level (see figure l), the GRM maintains
a table (FreeClusTab) indicating which clusters are
free to accept additional tasks. Upon the release of a
task to a cluster, the corresponding flag would be set
to indicate that the cluster is busy. This flag will be
cleared subsequently when a TClusAvail is received
from that cluster's LRM.
2.1.2 Operation

Initially, all clusters are free and requests for pro-
cess startup are serviced immediately. Within each
cluster, token queue lengths are initialised to zero
and as such, the LRM will swiftly send TClusAvail
tokens to the GRM to initiate new processes. This
achieves our aim of rapidly starting new tasks to
exploit the processing capacity of all nodes. The la-
tency between startup request and actual startup at
this stage is at a minimum equal to the travel time
of the message tokens from LRM to GRM and back.
Therefore, in estimating the optimal moment to ini-
tiate a new process in its cluster (figure 2), the LRM
factors in the time of 2 * switchdelay to compensate
for this latency.

111

333

The GRM on receiving the TClusAvail token -
lects the leftmost-deepest process from the GPT for
execution on the requesting cluster. This strategy of
releasing processes gives priority to child proceases
belonging to processes that have already started exe-
cution. The aim is to reduce the lifetime of a process
which in turn has the effect of reducing the amount
of memory required.

2.2 Distributed Parallelism Throttle

As more clusters are added, the GRM in the cen-
tralised control scheme becomes a bottleneck. We
discard the idea of having a central body with all the
load and process execution information in favour of a
distributed approach to resource management. This
will alleviate the GRM bottleneck but our problem
becomes one of how to let each cluster, with only
local information, make effective process scheduling
decisions. The architecture of a machine with dis-
tributed throttle control is shown in figure 3. A

Scheme

e
E U r n

m

/ \

Figure 3: Massively Parallel System with Di s
tributed Throttle Control

distributed resource manager (DRM) in each cluster
performs control of parallelism within the cluster.
The global process tree (GPT) is distributed among
the DRMs. Each DRM maintains a subtree of the
GPT call distributed process tree (OPT). The work-
load monitoring scheme used in the centralised throt-
tle case is adopted.

Process startup requests are sent to the DRM
instead of the GRM. Process distribution amongst
the clusters is performed in an asynchronous round-
robin manner as discussed in section 2.2.1. The
DRM in the originating cluster determines the tar-
get cluster to execute new process. Hence, every
cluster will parcel out work (process) to every other
cluster in turn, including itself. Process startup re-
quests received from other clusters are suspended at
the DPT. Processes are released when cluster activ-
ity level permits using the same heuristic as in the
centralised case. Processes are released within ev-
ery cluster independent of each other. This allows
concurrent process release scheduling.

2.2.1 Distributed Process Scheduling
The process distribution scheme used in dis-

tributed throttle control is illustrated using a task
graph in figure 4. The graph shows the schedule of

C U I 1 ClUOIZ -3 CIUo.r4

Figure 4: Brick-laying Process Distribution

assignment of new processes in a four cluster sys-
tem from the viewpoint of cluster one (referred to
as the reference cluster). Each block represents a
new process allocated by the reference cluster. The
round-robin process distribution has a “brick-laying
effect” that distributes processes very quickly to ev-
ery cluster. The task graphs in figure 5 show the
process distribution in the system from the perspec-
tive of each cluster in turn. Each cluster spawns

-1- am- I

Figure 5: Process Distribution in a Four Cluster Sys-
tem

seven processes and brick-layers them from the adja-
cent cluster onwards. Starting process in a reference
cluster is denoted by “d‘.

We make two observations when determining the
worst load imbalance. The first is that each refer-
ence cluster will be fair in its allocation to within
one process. This is obvious from the “brick-laying”
principle. The second observation is that the most
imbalance occurs when all reference clusters penalise
the same cluster in allocating their processes. This
happens if all clusters give an additional process to
the same cluster, then that cluster will be the busiest
by n-f processes. The converse is true if all clusters
short change the same cluster and make it the freest
by n-f processes. These two worst case imbalanced
distributions are shown in figure 6. The difference
in the number of processes allocated to a cluster is
never greater than the total number of clusters. We
can also generalise that worst case distribution is al-
ways skewed diagonally with the first cluster, having
one more process than the r e t .

3 Simulation Results and Discussion
The two throttling schemes discussed were imple-

mented on a simulated Multi-cluster Dataflow Ma-

auauor.....au cw..... c w c * L w
1 1 1 I 1 n-l n-1 I

Figure 6: General Worst Case Load Imbalances

% 100-
m
e
m
0 80
r
Y

60-
d
U

40

I
0

n 20

chine. The simulator is time-driven, each operation
performed during a run is time-stamped. To gauge
the amount of memory used, the sum of tokens in all
token queues and matching stores are sampled. The
average utilisation of processors denoted by %Pi7 is
also captured. The number of additional tokens used
for throttling divided by the total number of tokens
used during a run is used to calculate the overhead
of throttling (denoted by %ou). This would include
the TQHigh and TQLow tokens.

To measure the scalability of the throttles, simu-
lations were performed using BINTEG, a recursive
area subdivision program written in SISAL which
produces 2" processes given the parameter n. By
adjustin n, we could present a constant amount of
worklod per cluster whilst the number of clusters
in the machine is varied. As figure 7 shows, on a
two-cluster machine with 4 PES and 4 SSs per clus-
ter running BINTEG(n=ll), the centralised throt-
tlin scheme reduced memory usage by more than
902. Under similar conditions, using a distributed

L

-

-
-

I . c The percentage utilisation and throttle overhead

lBINTEGl
with 1K processes/cluster

* - - - - - - * \

e

throttling scheme, a reduction of more than 60%
was achieved. When the number of clusters was in-
creased, keeping the workload per cluster constant,
the percentage memory reduction achieved with cen-
tralised throttling dropped to zero while the dis-
tributed system stays at a near constant level of
around 60%. Table 1 ives a more detailed break-
down of the amount ofmemory used (measured in
terms of number of tokens in various queues dur-
ing runs of BINTEG(n=13). Together with in 1 orma-

no. of

20548 27327
20251 28479

24 20489 30704
32 21016 34884

Table 1: BINTEG(n=13) - Total Memory Usage

tion gathered on switch occupancy and input queue
lengths at each module, it is clear that the cen-
tralised throttle is not responsive enough to keep a
large system fully occupied. Restriction of memory
use by the bottleneck at the GRM is ironically ex-
tremely effective, so much so that throttling becomes
inconsequential.

The result of simulations using BINTEG(n=13)
also showed good linearity in utilisation in relation to
the number of clusters using the distributed scheme.
This is shown in figure 8.

%
P
U

60 -

40 -
20 -

0 4 8 16 32

number of clusters (4PEs & 4SSs per cluster)

Figure 8: Average Processing Unit Utilisation

335

30

e
f
f
e
c 2 0 '
t
V
e
S

A

'

Table 2: Throttle Scalability - With Constant Work-
load per Cluster

no. of
clusters

1
2
4
8

modifying the eagerness with which we restrict re-
source use. This can be accomplished by tuning the
parameters within the throttles.
3.1 Varying Machine Configurations

NQUEENS are shown in figures 9 and 10.
Simulation results for programs BINTEG and

The

centmlised distributed
%PU t s %ov ? '

U
71.3 64183 0.51
69.3 66029 0.55 69.4 65914 1.21
61.3 74350 0.25 63.6 71700 1.13
30.0 149100 0.0 62.4 73100 1.12

f
f
e
C

5

t
V
e

P
e
e
d

P

S

U

6PU I ts I %ov 11
11 72.9 I 62861 I 1.24

20 -
distributed

centralised

10 -

- - + _ _ _ _ _ _ + _ _ _ - - _ _ _ _ _ _ _ *

-
0 4 8 16 32

number of clusters (4PEs & 4SSs per cluster)

Figure 9: Parallelism Throttle: Speedup for BIN-
TEG (n= 13)

NQUEENS program works out the solution for plac-
ing n queens on a n-by-n chess board in such a way
that no queen checks any other queens. The search
for solutions is performed using a parallel divide-
and-conquer algorithm. The program problem size
selected has sufficient program parallelism to fully
saturate the machine. Distributed throttling shows
good speedup in performance up to 32 cluster (128
PE) sized machine.

4 Limitations
There are two related aspects of scheduling; par-

allelism control and load balancing. The former has
to do with the reduction of excessive runtime pro-
gram parallelism while the latter is more concerned
with ensuring that processes are started in clusters
which are relatively free. We have focused our at-
tention on the former since the latter is more of an

//
centralised

0 4 8 16 32

number of clusters (4 P h & 4SSs per cluster)

Figure 10: Parallelism Throttle: Speedup for
NQUEENS(n=8)

efficiency consideration. A significant shortcoming
of distributed round-robin scheduling is that it does
not explicitly handle the load balancing issue. Al-
location of work to each cluster does not take into
account the current load on that cluster. Thus at
a particular moment when one cluster is free and
another is busy, a new process may be queued for
execution at the busy cluster instead. We rely on
the throttle at the busy cluster to regulate resource
use internally, but it would probably be more desir-
able to send the activation request to the free cluster.
Fortunately, this problem becomes minimal when a
sufficiently large number of processes are generated
during a run, as is usually the case with large scale
problems. Under such circumstances, having nearly
the same overall number of processes run in each
cluster (a fact assured by round-robin scheduling)
guarantees, to a certain extent, fairness in load d i s
tribution. One can draw an analogy with selecting
grains of sand (processes) and filling a number of
sacks (clusters) one by one. It matters not that the
size of each grain may differ considerably, the re-
sulting sacks would be pretty much of the same size
given a sufficiently large number of grains per sack.

5 Conclusions
Two throttling schemes implemented on a simu-

lated massively parallel machine are discussed. We
show that runaway program parallelism introduces
unnecessary communication traffic and is detrimen-
tal to system performance. It is observed that
the distributed throttle scheme is more effective
in restraining program parallelism than the cen-
tralised scheme when program parallelism is greater
than machine parallelism, and also vice-versa. Dis-
tributed control enables each cluster to respond and
to react to fluctuations in dynamic program paral-
lelism more readily. Centralisation of process control

336

increases the latency of initiatin process and intro-
duces a serious traffic bottlenect at the global re-
source manager. Experimental results indicate that
detailed measurement of machine loading level in
massively parallel systems, which can be expensive,
is not critical. The approximated load measuring
scheme used is sufficient for effective parallelism con-
trol. Simulation experiments varying the number of
clusters from four to thirty-two show good speedup
and demonstrate the scalability of the distributed
throttle scheme. Memory utilisation reduction of
more than 50%, and throttle overhead of leas than
1.5% (measured in terms of additional tokens intro-
duced divided by the total number of tokens) demon-
strate the effectiveness of the parallelism throttle.

Parallelism throttling is an important aspect of
massively parallel system design if machine perfor-
mance is to be maximised and system resources are
to be effectively utilised. In a multiprogramming en-
vironment, parallelism control can increase the num-
ber of programs executed at the same time. How-
ever, when the minimum amount of memory re-
quired to execute a program exceeds available system
memory, program execution cannot proceed. In this
instance, parallelismcontrol is of no help and virtual
memory is required [lo]. Virtual memory and paral-
lelism throttle mechanisms are essential features of
practical massively parallel systems of the future.
Acknowledgements

Special thanks go to Kee Chee Keong and Lee
Siew Leng for their contributions to the work carried
out. The work reDorted in this DaDer was suworted r r ~~ ~~~

by the National biversity of Singapore under grant
RP900629.

References
[l] A. Agarwal, et al., “The MIT Alewife Machine:

A Large-Scale DistributedMemory Multipmes-
sop”, in Scalable Shared Memory Multiproces-
sors, edited by M. Dubois and S . Thakkar, pp.
239-261, Kluwer Academic Publishers, 1992.

[2] R. Alverson., et al., “The Tem Computer Sys-
tem”, Proc. International Conference on Super-
computing, pp. 1-6, Amsterdam, 1990.

[3] Arvind and D.E. Culler, “Managing Resources
in a Pamllel Machine”, in Fifth Generation
Computer Architectures, J.V. Wood ed.), El-
sevier Science Publishers B.V. (North- L olland),

[4] Arvind and R.A. Iannucci, “Two Fundamen-
tal Issues in Multiprocessing”, Proc. DFVLR -
1987 Conference on Parallel Processing in Sci-
ence and En ineering, West Germany, Springer-
Verlag LNC! 295, June 1987.

[5] J.R. Gurd, C.C. Kirkham and I. Watson,
“The Manchester Prototype Dataflow Com-

puter”, CACM, vol. 28, no. 1, pp. 3452, Jan-
uary 1985.

[6] J r R.H. Hilstead and T. Fujita, “MASA: A
Multithreaded Processor Architecture for Par-

IFIP, pp. 103-121, 1986.

[7] R.S. Nikhil, G.M. Papadopoulos and Arvind,
“*T: A Multithreaded Massively Pamllel Archi-
tecture”, Proc. of 19th Annual Symposium on
Computer Architecture, pp. 156-167, Australia,
1992.

[8] Y.M. Teo, “Managing Pamllelism in a Pamllel
Computer”, in Frontiers in Parallel Computing,
edited by V.P. Bhatkar, Centre for Development
of Advanced Computing, India, pp. 3-20, 1991.

[9] Y.M. Teo and A.P.W. Bohm, “Resource Man-
agement and Itemtive Instructions”, in Ad-
vanced Topics in Dataflow Computing, edited
by J.L. Gaudiot ad L. Bic, Chapter 18, pp. 481-
499, Prentice-Hall, 1991.

[lo] Y.M. Teo and I.W. Chan, “Virtual Memory in a
Dataflow Computer”, in Parallel Programming
Systems, edited by C.K. Yuen and Y. Yonezawa,
pp. 137-147, World Scientific, 1993.

allel Symbolic Computing”, Proc. 15td Annual
Symposium on Computer Architecture, pp. 443-
451, USA, 1988

1

