
EE 389 Electronic Design Project

DDS Based Signal Generator

04D07017 Raghavendra Bhushan Karn
04D07018 Sharayu Arun Moharir
04D10023 Namrata Bandekar

1 Objective

To design a Direct Digital Synthesizer (DDS) based Function Generator which can
generate sine waves of frequencies up to 1GHz using a micro-controller based interface
to the DDS Chip AD9953 along with two frequency multipliers for generation of user
desired frequencies up to 1GHz.

2 Goals Accomplished

• A DDS based signal generator with an LCD Keypad interface using AT89C51 has
been designed.

• Frequency Multipliers have been designed to take the output of the DDS as input
and give a sine wave of three times the frequency of the input wave as output.
Two such multipliers have been cascaded to obtain frequencies that are nine times
the input frequency.

• A Variable Gain Amplifier has been designed to vary the power output as per user
requirements.

• A power supply has been designed for the whole system to work off a single
230V AC supply.

3 Key Limitations of the Project

• Any frequency multiplier will always produce higher order harmonics along with
the desired harmonic.

4 Future Enhancements Possible

• A similar set of mutipliers using bandpass filter which have different passbands
compared to the first design can be constructed. Using RF switches at the input
and output of these multiplier-filter banks, the same DDS can be used to double
the frequency range.

 We made an attempt to realize this design and succeeded in doing so, but due to
 lack of time could not integrate it with the rest of the setup. We are in a position
 to demonstrate this design as a stand alone module.

Figure 1: Future Enhancements

• Higher frequencies or a broader range of frequencies can be obtained from this

setup by using more switches and more multiplier in parallel as shown in Figure
1.

5 Description of the Project

5.1 Introduction

Direct digital synthesis (DDS) is a method of producing an analog waveform—usually a
sine wave—by generating a time-varying signal in digital form and then performing a
digital-to-analog conversion. As the operations within a DDS device are primarily digital,
therefore it can offer fast switching between output frequencies, fine frequency
resolution, and operation over a broad spectrum of frequencies. With advances in design
an
d process technology, DDS devices are very compact and draw little power. For example,
the AD9953, a DDS-based programmable waveform generator, operating at 1.8 V with a
20 MHz clock, consumes a maximum power of 171 mW.

Many possibilities for frequency generation are open to a designer, ranging from phase-
locked-loop (PLL)-based techniques for very high-frequency synthesis, to dynamic
programming of digital-to-analog converter (DAC) outputs to generate arbitrary
waveforms at lower frequencies. But the DDS technique is rapidly gaining acceptance for
solving frequency- (or waveform) generation requirements in both communications and
industrial applications because single-chip IC devices can generate programmable analog
output waveforms simply and with high resolution and accuracy.

5.2 Design Principles and Methodology

5.2.1 Hardware

Block Diagram

DDS
Signal

Generator

Multiplier 1
360-630 MHz

Multiplier 2
630-900 MHz

RF
Switch Output

Multiplier 3
900-1800 MHz

RF
Switch

Microcontroller Microcontroller

http://www.analog.com/en/prod/0,2877,AD9833,00.html�

Figure 2: Basic Design Blocks
5.2.1.1 Power Supply

Figure 3: Power Supply Block Diagram

5.2.1.2 LCD

A 16x2 LCD is used to display the frequency of the signal that is generated by the DDS.

230 V to 12 V
Step Down

Transformer
Bridge

Rectifier
Capacitor

LM 7806
Voltage

Regulator

LM 7805
Voltage

Regulator

Multiplier
board

μC
board

AT89C51
Micro-

Controller

Keypad

LCD

DDS
AD9953

LPF Multiplier
Circuit

 Variable

gain
Amplifier

Figure 3: LCD

5.2.1.3 Keypad

A 4x4 matrix keypad has been used for taking user input, for entering the desired
frequency and amplitude of the signal. The LCD is used in conjunction with the keypad.
Both the LCD and the keypad have been put exclusively for this purpose.

The keypad is attached to one of the ports of the microcontroller. The Micro-controller
polls for a key press. Once a key press and key release is detected it calculates the key
code from the port value to determine which key is pressed.

Figure 4: Keypad

5.2.1.4 DDS

The AD9953 is a direct digital synthesizer (DDS) featuring a 14-bit DAC operating up to
400 MSPS. The AD9953 uses advanced DDS technology, coupled with an internal high
speed, high performance DAC to form a digitally programmable, complete high
frequency synthesizer capable of generating a frequency-agile analog output sinusoidal
waveform at up to 100 MHz. The AD9953 is designed to provide fast frequency hopping
and fine tuning resolution (32-bit frequency tuning word). The frequency tuning and
control words are loaded into the AD9953 via a serial I/O port. The AD9953 is specified
to operate over the extended industrial temperature range of –40°C to +105°C.

5.2.1.5 Multiplier circuit

Figure 5: Multiplier circuit Block Diagram

5.2.1.5.1 Multiplier

A frequency multiplier design proposed by Charles Wenzel for the range of 10-30 MHz
was adopted and used for higher frequencies by changing the value of an inductor used in
the circuit. The original design is given in Appendix 2.
The frequency multipliers were designed for 2 frequency ranges. The first one to multiply
frequencies of 60-90 MHz to obtain 180-270 MHz, the second one to multiply 180-270
MHz to get 540-810 MHz. The purpose of the inductor is to present high impedance
across the diodes. Inductors of values 1 µH and 10 µH have been used for the two desired
multipliers respectively.

5.2.1.5.2 RF Amplifier (MMG3001)
The multiplier needs a minimum of 5 dBm input power to give the desired output.
Therefore, amplifiers are needed before the first multiplier as the DDS output is -10 dBm.
They are also needed between the first and the second stage multipliers as the output of
the first amplifier does not have sufficient power for the input power for the second
multiplier.
RF Amplifier MMG3001 has been used for this purpose. The circuit shown in Fig 6 has
been used for the 180-300 MHz range to give a gain of 20 dB. Fig 7 shows the circuit for
the 540-900 MHz Range.

Amplifier Multiplier
Filter-I

(Band pass)

Amplifier Multiplier Filter-II
(High pass)

Output

Fig. 6 Amplifier for 180-300 MHz range

Fig.7 Amplifier for 540-900 MHz range

2.1.6 Variable Gain Amplifier (MMG3001)
The user can vary the output amplitude. The gain of the MMG3001 amplifier can be
varied by changing the value of R1. This has been tested. We used a trim potentiometer
to achieve amplitude variation of 10 dBm at the output according the table shown in Fig.
7.

5.2.1.6 Filter Design
5.2.1.6.1 Low Pass Filter (LPF)

The DDS chip generates high frequency noise due to the DAC clock. The output
therefore needs to be passed through a low pass filter with bend frequency of 200 MHz.
Various filters were simulated using RFSim and a four pole Butterworth filter was found
to have a desired frequency response. The filter is shown below.

The simulated response on RFSim and the response of the filter as seen on a network
analyzer have been added in Appendix II.

5.2.1.6.2 Filter-I (BPF)

The multiplier gives the fundamental frequency and all its odd harmonics as the output,
i.e., it gives a square wave output. Since we intended to design a multiply by 3 circuit, the
fundamental frequency and all its higher harmonics except the third harmonic have to be
filtered. This has been achieved using a bandpass filter.

A 3rd order Chebyshev bandpass filter as shown in Figure 8 was designed using RfSim to
filter out the primary frequency as well as higher order harmonics.

The bandwidth and center frequency of the filter was decided upon based on the
following calculations:

Max I/P Frequency = 100 MHz
Max desired O/P Frequency = 300 MHz

Therefore it is necessary that 300 MHz lies in the pass band of the filter. For I/P
frequencies below 60 MHz, the 5th

 harmonic lies in the <300 MHz range, therefore the
input frequency has to be >60 MHz.

5.2.1.6.2 Filter-II (HPF)

(why HP explain karma padega I think)

A 3rd order Chebyshev highpass filter was designed using RfSim to filter out the third
harmonic of the primary frequency. It is shown in Fig. 9.

The response of all the filters was verified using a network analyzer in the Antenna Lab.
Explain Q-factor fundae and low power higher order harmonics, lack of inds of desired
values

5.2.1.7 PCB design for the DDS and Multiplier circuit

The PCB needed a 50 ohms impedance for the high frequency output. A software called
Line Gauge was used to determine the appropriate dimensions. According to the

manufacturer’s specifications, 1.50 mm is the appropriate width needed to create a 50
ohms track. Glass epoxy (FR4) is used as the substrate.

All the supply pins have been bypassed with a large capacitor (10 μF) to provide a low
impedance path for AC and 2 10 nF capacitors to avoid any RF signal to reach the
voltage input pins of the DDS. Similar design for MMG cap values??

The circuit takes in 5V as the input voltage. Two TPS772218s have been used to obtain
digital and analog voltages of 1.8V. The analog and digital grounds have been isolated
using an inductor.

There are no low frequency lines of thickness less than twice the thickness of the board
away from the line carrying the high frequency signal to avoid any kind of interference
due to the high frequency signal.

A (??) dB attenuator is used at the output of the DDS to protect the oscillator in the DDS
from open circuit or short circuit at the output. Thus, in the case of open circuit or short
circuit, the reflected waveform gets attenuated by (??) dB. The attenuator was designed
using RFSim.

 Circuit Diagrams
Place with block diag??

Fig Circuit Diagram for the Microcontroller board

Fig Circuit Diagram for Power Supply

Fig Circuit Diagram for DDS

Circuit diagrams for MMG, multiplier and filters are shown in section 2.

6 Software

6.1 DDS

There are two phases to a communication cycle with the AD9953. Phase 1 is the
instruction cycle, which is the writing of an instruction byte into the AD9953, coincident
with the first eight SCLK rising edges. The instruction byte provides the AD9953 serial
port controller with information regarding the data transfer cycle, which is Phase 2 of the
communication cycle.
The Phase 1 instruction byte defines whether the upcoming data transfer is read or write
and the serial address of the register being accessed. The first eight SCLK rising edges of
each communication cycle are used to write the instruction byte into the AD9953. The
remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual
data transfer between the AD9953 and the system controller. The number of bytes

transferred during Phase 2 of the communication cycle is a function of the register being
accessed.
After transferring all data bytes per the instruction, the communication cycle is
completed. At the completion of any communication cycle, the AD9953 serial port
controller expects the next eight rising SCLK edges to be the instruction byte of the next
communication cycle. All data input to the AD9953 is registered on the rising edge of
SCLK when the I/O update pin is high.

4 Port pins were used to communicate with the DDS. The four lines being SCLK, SDIO,
Reset and I/O update.

Algorithm to send a bit to the DDS

1. Put data on SDIO.
2. Hold data on SDIO, make SCLK high.
3. Make SDIO and SCLK low.

Algorithm to write to a control register of the DDS

1. Send the instruction byte in the following format

R/Wb—Bit 7 of the instruction byte determines whether a read or write data transfer
will occur after the instruction byte write. Logic High indicates read operation. Logic
0 indicates a write operation.
X, X—Bits 6 and 5 of the instruction byte are Don’t Care.
A4, A3, A2, A1, A0—Bits 4, 3, 2, 1, 0 of the instruction byte determine which
register is accessed during the data transfer portion of the communication cycle.

2. Send the appropriate number of bytes of data.

3. Make I/O update high for this data to get transferred into the registers from the I/O

buffers.

6.1.1 Initialization of the DDS

The DDS is initialized for the following specifications

a) Cos wave output
b) MSB first mode of data transfer
c) Crystal Frequency (20 MHz) multiplied by a factor of 20 to get the system

clock frequency (400 MHz)

Calculation for the Frequency Tuning Word of the DDS

Where

fo
f

 = Output frequency of the DDS
s

FTW = Frequency Tuning Word
 = Frequency of the system clock (400 MHz in this case)

6.2 Microcontroller code
Code to be modified
#include <AT89X51.H>
#include <stdio.h>

double pow(a,b)
{
 int j=0;
 double result=1;
 if(b==0)
 return 1;
 else{
 for(j=0;j<b;j++)
 result=result*a;

 }
 return result;
}

//DDS functions
void byte_out(unsigned char byte);
void one();
void tuning_word_out(unsigned int tuning_word);
void zero();

/* output byte, MSB first */

/* output a '1' to DDS */
void one()
{
 P2=9;

 P2=0x0B;
 P2=8;

}

/* output a '0' to DDS */
void zero()
{
 P2=8;
 P2=0x0A;
 P2=8;
}

void byte_out(unsigned char byte)
{

 int i=0;
 for (i = 0; i < 8; i++)
 {
 if ((byte & 128) == 128)
 one();
 else
 zero();
 byte = byte << 1;
 }
}

//LCD functions
void delay (int a)small
{
 TR0=0;
 TF0=0;
 TMOD=0x01;
 while(a!=0)
 {
 TL0=0x00;
 TH0=0xFF;
 TR0=1;
 while(TF0==0)
 {
 }
 TR0=0;
 TF0=0;
 a=a-1;
 }
 return ;
}

void initdis (char a)small
{
 P1=a;

 P0=0x00;
 P0_2=1;
 P0_2=0;
 delay(10);
}
void dtdis (int a)small
{
 P1=a;
 P1_5=1;
 P1_4=1;
 P0=0x01;
 P0_2=1;
 P0_2=0;
 P0_0=0;
 delay(10);
 return ;
}

void chrdis (char a)small
{
 P1=a;
 P0=0x01;
 P0_2=1;
 P0_2=0;
 P0_0=0;
 delay(10);
 return ;
}

void strdis (char *str)small{
while (*str != '\0')
 {
 chrdis(*str);
 ++str;
 }
}

int test0(unsigned char *x) small
{
 *x=P3;
 if (P3==0xF0)
 return 0;
 return 1;
}

int ky (unsigned char y)small
{
 unsigned char
k[]={0xBB,0xE7,0xEB,0xED,0xEE,0xD7,0xDB,0xDD,0xDE,0xB7,0xBD,0x7E,0x7D,0
x7B,0x77,0xBE};
 int z;
 for(z=0;z<16;z++)
 {
 if(y==k[z])
 return z;

 }
}

void main(void)
{
 float unit=1;//default unit Hz
 float freq=0;//default frequency (0 Hz)

//LCD variables
 unsigned char a0,a1,a2,a3,a;
 unsigned char* x0= &a0;
 unsigned char* x1= &a1;
 unsigned char* x2= &a2;
 unsigned char* x3= &a3;
 int number[6];
 int state=0;
 int p;
 int count=0;
 int key[]={0,1,2,3,4,5,6,7,8,9};

//DDS variables
 unsigned int delta_phase1;
 unsigned int delta_phase2;
 unsigned int delta_phase3;
 unsigned int delta_phase4;
 int j=0;
 float clock_in=400000000;
 double delta_phase;
 unsigned char b;

//LCD initialization
 P0=0x00;
 P1=0x00;
 TR0=0,TF0=0;
 TR1=0,TF1=0;
 EA=0;
 delay(200);
 initdis(0x38);
 initdis(0x0F);
 initdis(0x01);
 initdis(0x06);
 P3=0x00;
 P3=0xF0;
 strdis("ENTER UNIT");

//DDS initialization
 b=0x00;
 /* set all pins low */
 P2=0;
 clock_in=400000000;

 /* main program loop */

 byte_out(0x00);
 byte_out(0x02);
 byte_out(0x00);
 byte_out(0x02);
 byte_out(0x42);
 P2=0x0C;
 delay(1);
 P2=8;

 byte_out(0x01);
 byte_out(0x00);
 byte_out(0x00);
 byte_out(0xA0);
 P2=0x0C;
 delay(1);
 P2=8;

 while(1) {
 delay(100);
 if (state==0){

 if(test0(x0)==1){
 state=1;
 delay(100);
 }
 else{
 state=0;
 delay(100);

 }
 }

 if(state==1){

 if(test0(x1)==1){
 if(a0==a1){
 state=2;
 a=a1;
 a=a|0x0F;
 P3=a;
 a=P3;
 P3=0xF0;
 delay(100);
 }
 else{
 state=0;
 delay (1);
 }
 }
 else{
 state=0;
 delay (1);
 }
 }

 if (state==2){
 if(test0(x2)==1){

 if(a2==a1){
 state=2;
 delay (1);
 }
 }
 else{
 state=3;
 delay(1);
 }
 }

 if(state==3){
 if(test0(x3)==1){
 if(a2==a3){
 state=2;
 delay (1);
 }
 }
 else{
 p=ky(a);
 if(count!=6 && p<11){
 count++;
 number[count-1]=p;
 }

 if(p==0){
 dtdis('0');
 freq=freq*10;
 }

 if(p==1){
 dtdis('1');
 freq=freq*10+1;
 }

 if(p==2){
 dtdis('2');
 freq=freq*10+2;
 }

 if(p==3){
 dtdis('3');
 freq=freq*10+3;
 }

 if(p==4){
 dtdis('4');
 freq=freq*10+4;}

 if(p==5){
 dtdis('5');
 freq=freq*10+5;
 }

 if(p==6){
 dtdis('6');

 freq=freq*10+6;
 }

 if(p==7){
 dtdis('7');
 freq=freq*10+7;
 }

 if(p==8){
 dtdis('8');
 freq=freq*10+8;
 }

 if(p==9){
 dtdis('9');
 freq=freq*10+9;
 }

 if(p==10)
 chrdis('.');

 if(p==11){
 byte_out(0x00);
 byte_out(0x00);
 byte_out(0x00);
 byte_out(0x02);
 byte_out(0x42);

 P2=0x0C;
 delay(1);
 P2=8;

 byte_out(0x01);
 byte_out(0x00);
 byte_out(0x00);
 byte_out(0xA0);

 P2=0x0C;
 delay(1);
 P2=8;

 byte_out(0x04);

 freq=freq*unit;
 if(freq>160000000){
 freq=0;
 }
 delta_phase = (freq * pow(2, 32)) / clock_in;
 delta_phase1 = delta_phase/pow(2,24);
 b=(unsigned char)delta_phase1;
 byte_out(b);
 delta_phase2 = (delta_phase-
delta_phase1*pow(2,24))/pow(2,16);
 b=(unsigned char)delta_phase2;
 byte_out(b);
 delta_phase3 = (delta_phase-
delta_phase1*pow(2,24)-delta_phase2*pow(2,16))/pow(2,8);

 b=(unsigned char)delta_phase3;
 byte_out(b);
 delta_phase4 = delta_phase-
delta_phase1*pow(2,24)-delta_phase2*pow(2,16)-delta_phase3*pow(2,8);
 b=(unsigned char)delta_phase4;
 byte_out(b);

 P2=0x0C;
 delay(1);
 P2=8;

 freq=0;
 count=0;
 }

 if(p==12){
 initdis(0x01);//clr display
 initdis(0x8E);
 strdis("Hz");
 initdis(0x80);
 unit=1;
 }

 if(p==13){
 initdis(0x01);//clr display
 initdis(0x8D);
 strdis("KHz");
 initdis(0x80);
 unit=1000;
 }

 if(p==14){
 initdis(0x01);//clr display
 initdis(0x8D);
 strdis("MHz");
 initdis(0x80);
 unit=1000000;
 }
 if(p==15){
 chrdis('a');
 }

 state=0;
 delay(1);
 }
 }

 }
}

6.3 State diagram

7 Working of the Board and Results

The output of the circuit was observed on a Spectrum analyzer. The results for
frequencies from 630 MHz to 850 MHz are shown in Appendix I.

 Discussion of the results

User’s Manual

1) On power on, the screen displays “Enter Freq(MHz)”.
2) Enter any frequency between 630 MHz to 850 MHz by using the keys marked with the
digits ‘0’ to ‘9’ on the keypad. The unit is automatically chosen to be MHz.
3) Press enter to see the output.
4) The output amplitude can be varied using the red knob.

Poll for Key
press

Key press
detected

Key release
detected

Poll for Key
release

Note: If any frequency outside the specified range is entered an error message is
displayed and the user is asked to press the ‘#’ key on the keypad. After this the user can
enter a new frequency as mentioned in point 2.

Resources Consumed:

• Should include man hours spent in the project
• Division of Work between the group members
• Key Resource Limitation : PCB manufacturing, delay in getting switches,

unavailability of components..ind values etc for filters

References:

