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In the system reliability and safety assessment, the focuses are not only the risks caused by hardware or
software, but also the risks caused by ‘‘human error”. There are uncertainties in the traditional human
error risk assessment (e.g. HECA) due to the uncertainties and imprecisions in Human Error Probability
(HEP), Error-Effect Probability (EEP) and Error Consequence Severity (ECS). While fuzzy logic can deal
with uncertainty and imprecision. It is an efficient tool for solving problems where knowledge uncer-
tainty may occur. The purpose of this paper is to develop a new Fuzzy Human Error Risk Assessment
Methodology (FHERAM) for determining Human Error Risk Importance (HERI) as a function of HEP,
EEP and ECS. The modeling technique is based on the concept of fuzzy logic, which offers a convenient
way of representing the relationships between the inputs (i.e. HEP, EEP, and ECS) and outputs (i.e. HERI)
of a risk assessment system in the form of IF–THEN rules. It is implemented on fuzzy logic toolbox of
MATLAB using Mamdani techniques. A case example is presented to demonstrate the proposed approach.
Results show that the method is more realistic than the traditional ones, and it is practicable and
valuable.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The reliability and safety assessment of operational systems
should not only focus on hardware failure but also include human
error. A study by Trager (1985) showed that 50–70% of the risk at
nuclear power facilities was because of human errors. In a large-
scale and complex industrial system, human is prone to produce
various errors by the effects of error-forcing conditions. If a poten-
tial human error has a high occurrence probability or potential se-
vere effects, this error is termed critical human error. To prevent
and reduce human errors, it is important to identify these poten-
tially critical human error modes by human error risk assessment.

A variety of human error identification (HEI) techniques have
been developed for identifying critical human errors. Kirwan
(1998) outlined and reviewed 38 approaches of human error iden-
tification, categorizing them into many types of error identification
approach. These also include first generation and second-genera-
tion human reliability analysis (HRA) methods. The ‘‘first genera-
tion” method of HRA, like technique for human error rate
prediction (THERP) (Swain and Guttmann, 1983), accident se-
quence evaluation program (ASEP) (Swain, 1987), which is a sim-
plified version of the THERP, and human cognition reliability
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(HCR) (Hannaman et al., 1985), success likelihood index methodol-
ogy (SLIM) (Embrey, 1984), and the human error assessment and
reduction technique (HEART) (Williams, 1992), are based on a fact
that human has inherent deficiencies just like mechanical or elec-
trical components. In first generation human reliability analysis,
operator actions are broken into sub-tasks up to a defined degree
of resolution. Most of the basic human error probabilities (HEPs)
are given by expert judgments and then they are modified by the
factors representing the effects of the environment in the scope
of uncertainty. Those factors are called Performance Shaping Fac-
tors (PSFs) or Performance Influencing Factors (PIFs). The second-
generation method like cognitive reliability and error analysis
method (CREAM) (Hollnagel, 1998), a technique for human error
analysis (ATHEANA) (Cooper et al., 1996), SPAR-H (Gertman
et al., 2005) and MDTA (Kim et al., 2005, 2008) are based on the
cognitive model of human decisions and actions. They attempt to
identify Errors of Commission (EOC) and incorporate contextual
factors into their qualitative and quantitative analyses. All these
methods are well suited for supporting basic or generic Quantita-
tive Risk Assessment (QRA). They provide the probabilities of hu-
man errors and thus meet the primary requirement of reliability
analysis. However, all these methods focus strongly towards quan-
tification, in terms of success/failure of action performance, with
lesser attention paid to the effects of individual human error on
system. These result in limitations in the discovery of real critical
human error modes, and do not satisfy the objective of system
safety or risk assessment.
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Some researchers have studied the above issues. For instance,
Whittingham and Reed (1989) developed the Human Error Mode
Effect and Criticality Analysis (HEMECA) to identify the prioritiza-
tion of human error modes on the baisis of the principle of hard-
ware-oriented failure mode and effect analysis (FMEA). Yu et al.
(1999) also developed the Human Error Criticality Analysis (HECA)
method. It is used to identify the potentially critical human errors
and tasks in the human operation system by constructing human
error criticality matrix. Its horizontal axis and vertical axis are
respectively the criticality index number (i.e. the HEP multiplied
by the EEP) of human error modes and safety or cost severity clas-
sification. It considered not only the HEP, but also the Error-Effect
Probability (EEP) and Error Consequence Severity (ECS). These
three indices are integrated into the human error risk assessment
model to assess the risk prioritization of human errors or tasks.
However, the above methods do not take the relative weights of
the HEP, EEP and ECS into account. They cannot define the risk
importance (i.e. risk magnitude or risk criticality) of human errors
for the lack of the classification of Risk Criticality Level (RCL). In
addition, Gertman et al. (2001) and Lee et al. (2004) used Condi-
tional Core Damage Probabilities (CCDPs) to measure human error
contribution to risk in operating events by statistical analysis of
event reports. However, This kind of method do not considers
the effects of individual human error on system, and requires a
lot of event reports.

Human error risk assessment is a process to determine the risk
magnitude of each human error mode to assist decision-making.
The reliability of results of risk assessment highly relies on the cor-
rectness of the risk model, the availability and accuracy of the risk
data. However, risk assessors often face the circumstances where
the risk data are incomplete or accompanied by high uncertainty.
For example, one of the major criticisms of current HRA techniques
is the need for expert judgment to evaluate HEP (Kim, 2001; Mos-
leh and Chang, 2004). Additionally, in many circumstances, the ef-
fects of human error modes on system cannot be explicitly
evaluated because of the complex structures and functions of the
system, and the complex interactions between human and ma-
chines. Therefore, it is necessary to develop a new human error risk
assessment method which can model the uncertainty to identify
critical human errors. Under such conditions, fuzzy logic ap-
proaches are very practical. The fuzzy logic method can better sim-
ulate the complicated process and treat qualitative or imprecise or
vague knowledge and information (Klir and Yuan, 1995). When the
available information from the process is qualitative, inexact, va-
gue or uncertain, the notion of the membership function utilized
by fuzzy theory is then most adequate for depicting this knowl-
edge. Therefore, the fuzzy logic methodology provides a tool for di-
rectly working with the linguistic terms used in making the risk
factor assessment, and has currently had many applications in
safety and risk analysis field such as system reliability and risk
assessment (Bowles and Pelaez, 1995; Sii et al., 2001; Yadav
et al., 2003; Guimaraes and Lapa, 2007; Markowski et al., 2009)
and human reliability analysis (Onisawa, 1988; Cai et al., 1991; Au-
Fig. 1. The general structure of a
flick, 1999; Kim and Bishu, 2006; Kim et al., 2006; Konstandinidou,
2006; Marseguerra and Zio Enrico Librizzi, 2007; Zioa et al., 2009),
etc. The problem is that they neither consider the risks caused by
human error nor the effects of human errors on system. Thus this
paper proposes a fuzzy logic-based comprehensive framework to
assess the risk of human error and determine the risk importance
of human error.

The paper is organized as follows. Section 2 briefly introduces
the basic components of fuzzy logic system. Section 3 describes a
comprehensive methodology of assessing the risk of human error
in human operational system, which includes three stages: the
preliminary phase, the measure phase of risk indices and the fuzzy
inference phase. Section 4 presents a case example to demonstrate
the proposed approach. Section 5 presents some concluding
remarks.
2. Short description of fuzzy inference system

Fuzzy logic was originally introduced by Zadeh (1965) as a
mathematical way to represent vagueness in everyday life. In con-
trast to classical logical systems, fuzzy logic considers modes of
reasoning that are approximate rather than exact. Fuzzy logic
starts with the concept of a fuzzy set. A fuzzy set is a set without
a crisp, clearly defined boundary. The fundamental difference be-
tween fuzzy logic and conventional modeling techniques is on
the definition of sets. Traditional set theory is based on bivalent lo-
gic where a number or object is either a member of a set or it is not.
Contrary to that, fuzzy logic allows a number or object to be a
member of more than one set, and most importantly it introduces
the notion of partial membership (Klir and Yuan, 1995). The gen-
eral fuzzy inference process is shown in Fig. 1, which consists of
four components. Namely, fuzzy rule base, fuzzy inference process,
fuzzification process, and defuzzification process (Yadav et al.,
2003). The following is a brief introduction.
2.1. Fuzzy rule base

Fuzzy rule base is the most basic unit of the fuzzy logic system.
All other components of the fuzzy logic system are used to imple-
ment these rules in a reasonable and efficient manner. Fuzzy rule
base consists of a set of fuzzy IF–THEN rules and the fuzzy infer-
ence engine uses these fuzzy IF–THEN rules to determine a map-
ping from fuzzy sets in the input universe of discourse UðU 2 RnÞ
to fuzzy sets in the output universe of discourse VðV 2 RÞ based
on fuzzy logic principles (Guimaraes and Lapa, 2007). The fuzzy
IF–THEN rules are of the following form:

RðlÞ : IF x1 is Al
1 and � � � xn is Al

n; THEN is Bl ð1Þ

where Al
iði ¼ 1;2; . . . ;nÞ and Bl are fuzzy sets, x ¼ ðx1; . . . ; xnÞT 2 U

and y 2 V are input and output linguistic variables. Respectively, l
represents the number of the rules, and l ¼ 1;2; . . . M.
typical fuzzy logic system.



Fig. 2. Mamdani fuzzy inference system for two inputs and single output.
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2.2. Fuzzy inference process

The fuzzy inference process combines the rules in the fuzzy rule
base and then carries out a mapping from fuzzy set A in universe of
discourse U to fuzzy set B in universe of discourse V using fuzzy lo-
gic principle in the fuzzy inference engine. By the treatment of fuz-
zy inference engine, the output Bl can be obtained by the following
formula (Wang, 1995):

lBl ðyÞ ¼ max
M

l¼1
½sup minðlAl ðxÞ;lAl

1
ðx1Þ; . . . ;lAl

n
ðxnÞ;lBl ðyÞÞ� ð2Þ

There are many fuzzy inference methods. This paper uses the
Min–Max fuzzy inference method proposed by Mamdani. The
Mamdani fuzzy inference principle with two inputs and single out-
put is shown in Fig. 2 (Yadav et al., 2003).

2.3. Fuzzification

The inputs of fuzzy logic system are real-valued variables or lin-
guistic variables, but fuzzy inference engine can only deal with fuzzy
set signal. It cannot directly treat real-domain signal. So the real-do-
main signals must be fuzzified for the operation of fuzzy inference.
Fuzzification is the process of decomposing a system input variables
into one or more fuzzy sets, thus producing a number of fuzzy per-
ceptions of the input, and carrying out a mapping from real-domain
variables x� (x� 2 U � Rn) to the corresponding fuzzy set Al.

2.4. Defuzzification

Defuzzification is the process of weighting and averaging the
outputs from all the individual fuzzy rules into one single output
decision or signal. The output signal eventually exiting the system
is a precise, defuzzified, crisp value (Yadav et al., 2003). In general,
there are some methods of Defuzzification, but the centroid of area
is the most frequently used method. Its equation is as follows:

Z ¼
R

Z lBðZÞZ dZR
lBðZÞdZ

ð3Þ

where lBðZÞ represents the aggregated output membership func-
tion and Z crisp value of output.

3. Risk assessment model of human error

This paper constructs risk assessment model of human error on
the basis of fuzzy approximate inference as shown in Fig. 3. It in-
cludes the following stages: (1) The preliminary phase. (2) The
measurement phase of risk indices of human error. (3) Fuzzy infer-
ence phase.
3.1. Preliminary analysis phase

The preliminary analysis phase consists of the determination of
specific analysis object, collection of information, identification of
critical task, task analysis and identification of potential human er-
ror. Firstly, the determination of specific analysis object is to select
most valued object and determine the analysis boundary of object.
This paper generally selects a most unexpected occurrence acci-
dent as analysis object in a nuclear power plant. Then it collects
and analyzes information related to specific object involving the
status of the plant, the historical data, documents, the operation
procedures, the data about interviewing with experienced experts
and operators, the structure and function maps of the selected tar-
get system and so on. The identification of critical task is to dis-
criminate those tasks that possibly harm persons, making the
significant loss of property, process, system and environment. Then
task analysis is to decompose a task into task units. Hierarchical
Task Analysis (HTA) is generally used to build a sequence of events.
Finally, the most potential human error is identified according to
the collection of the above collected information.
3.2. Measurement phase of risk indices of human error

3.2.1. Identification of the risk indices of human error
The risk importance of human error is determined according to

the three risk indices, namely, the probability of human error
occurrence, human Error-Effect Probability and the consequence
criticality of human error (Yu et al., 1999). Provided that the rela-
tive weight between risk indices of human error is not considered,
the following formula is used to express the risk criticality of hu-
man error:

CHER ¼ a� b� c ð4Þ

where a represents the probability of human error occurrence, b
human Error-Effect Probability, which is the conditional probabil-
ity that the error effect will result in the identified severity classi-
fication given that certain human error mode has occurred, c
represents the consequence criticality of human error and CHER

the risk criticality of human error.



Fig. 3. Risk assessment model of human error based on fuzzy inference.
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3.2.2. Definition of fuzzy subsets or linguistic variables and
membership function for each of the risk index

To capture the uncertainty associated with both input (risk
indices) and output (risk criticality) attributes, and imprecise
knowledge about the relationship between input and output vari-
ables, fuzzy set theory provides a fundamental basis to map the
approximate relationship between fuzzy variables. The input and
output attributes are treated as fuzzy numbers (sets) and uncer-
tainty is characterized by membership function. In this study, the
membership function of each fuzzy set is assumed to be triangular.
According to CREAM (Hollnagel, 1998) and discussion of experts,
the probability of human error is described in linguistic term set:

HEP ¼ fVery Low; Low; Moderate; High; Very Highg

as shown in Table 1.
The fuzzy sets of the probability of human error (a) and mem-

bership functions are graphed in Fig. 4. It presents the above fuzzy
sets using the logarithm of the probability in the x-axes for better
output representation.

Similarly, the fuzzy sets of Error-Effect Probability (b) are as-
signed to four qualitative levels according to the MIL-STD-1629A
(MIL-STD-1629A, 1980) as shown in Table 1. The average values
of b are used to determine the fuzzy sets as cut-off points of fuzzy
set interval. For the severity classification in this study, we catego-
rize the severity classification into five levels in terms of loss de-
gree of system, which are given in Table 1. Figs. 5 and 6 present
the fuzzy sets of Error-Effect Probability and the consequence
severity of human error separately.

3.2.3. Measurement of risk indices of each human error
Analysts and experts are required to measure risk indices of

each human error on the basis of their knowledge and expertise.
The experts or analysts can provide a precise numerical value
(e.g. 0.1), a range of numerical values (e.g. 0.1–0.2), a linguistic
term (e.g. high) or a triangular fuzzy number (e.g. (0.1–0.3)). If ade-
quate information is obtained and the risk index is quantitative
measurable, an expert or analyst is likely to provide a precise
numerical value, e.g. ‘‘the occurrence probability of the ith human
error mode is 1 � 10�3. However, expert sometimes find that it is
difficult to give numerical value due to uncertainties of the risk in-
dex and insufficient knowledge and information and then a lin-
guistic term or a fuzzy number can be used. In this way, we can
treat inaccurate measurement results in order to obtain precise va-
lue to input the constructed fuzzy inference system through the
defuzzification method. The defuzzification method of triangular
center of gravity is used to calculate the crisp values. Its formula
is as follows (Zeng et al., 2006):

Fi ¼
ðui � liÞ þ ðmi � liÞ

3
þ li ð5Þ



Table 1
linguistic terms of the risk indices of human error.

Level Linguistic terms Human Error Probability Linguistic terms Error-Effect Probability Consequence criticality Cost loss level percentage

1 Very low 5� 10�6
6 a < 1� 10�3 Almost no effect 0 6 b < 0:05 Very low 0 6 c < 0:25

2 Low 1� 10�4 < a < 1� 10�2 Possible effect 0 < b < 0:55 Low 0 < c < 0:5

3 Moderate 1� 10�3 < a < 1� 10�1 Probable effect 0:05 < b < 1 Moderate 0:25 < c < 0:75

4 High 1� 10�2 < a < 0:5 Absolute effect 0:55 < b 6 1 High 0:5 < c < 1

5 Very high 1� 10�1 < a 6 1 Very high 0:75 < c 6 1

Fig. 4. Fuzzy set definition for the index of Human Error Probability.

Fig. 5. Fuzzy set definition for the index of Error-Effect Probability.

Fig. 6. Fuzzy set definition for the index of consequence severity of human error.
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where Fiði ¼ 1;2; . . .Þ is a crisp value transformed from fuzzy
membership function, li, mi, ui are respectively the lower
bound, the mean bound, and the upper bound of a fuzzy triangular
set.
For instance, if the consequence severity classification of a hu-
man error is evaluated as ‘‘very low”, and the triangular fuzzy num-
ber corresponding to the fuzzy set ‘‘very low” is (0, 0, 0.25), then the
precise value 0.083 is obtained by Eq. (5).



Fig. 7. Fuzzy set definition for the risk criticality of human error.
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3.3. Fuzzy inference phase

3.3.1. Construction of the fuzzy inference system
According to Section 2, fuzzy inference system is made up of

four basic components, namely the units of fuzzification, fuzzy rule
base, fuzzy inference engine and defuzzification, which can be con-
structed by using the fuzzy logic toolbox simulator of Matlab (Wen
et al., 2002). However, the fuzzy sets of inputs (risk indices of hu-
man error) and output (risk severity) variables and fuzzy rules for
fuzzy inference should be determined before building the fuzzy
inference system.

3.3.1.1. Determination of fuzzy sets of output variable. According to
discussion of experts and the literature (Guimaraes and Lapa,
2007), the risk criticality of human error is described in linguistic
term set:

RS ¼
Unnecessary; Minor; Very Low; Low; moderate;

Moderate High; High; Very High;N and A� n

� �

It is graphically represented in Fig. 7.

3.3.1.2. Development of fuzzy rule base of combinating the input sets
with the output sets. The membership function derived from the
experts is used to generate the fuzzy rule base. The fuzzy IF–THEN
rules are developed on the basis of the experts’ ideas and the avail-
able information derived from human error analysis. Considering
the relative weights of three risk factors (for example, the weights
of HEP, EEP and ECS separately correspond to 0.4, 0.2, 0.4) and the
multiple fuzzy sets of each input parameter and using the logical
AND operation as the building mode, 100 (5� 4� 5) rules are
developed. Some of the rules are given below:

� Rule 1. If (human_error_probability is V-L) and (error_effect_
probability is A-N-E) and (consequence_severity is V-L) then
(risk_criticality is U).
� Rule 2. If (human_error_probability is V-L) and (error_effect_

probability is possible-E) and (consequence_severity is V-L)
then (risk_criticality is U).
� Rule11. If (human_error_probability is L) and (error_effect_

probability is possible-E) and (consequence_severity is V-L)
then (risk_criticality is V-L).
� Rule 12. If (human_error_probability is L) and (error_effect_

probability is probable-E) and (consequence_severity is V-L)
then (risk_criticality is V-L).
� Rule 21. If (human_error_probability is L) and (error_effect_

probability is A-E) and (consequence_severity is V-L) then
(risk_criticality is L).
� Rule 22. If (human_error_probability is M) and (error_effect_

probability is A-N-E) and (consequence_severity is M) then
(risk_criticality is L).
� Rule 31. If (human_error_probability is L) and (error_effect_
probability is possible-E) and (consequence_severity is M) then
(risk_criticality is Mod).
� Rule 32. If (human_error_probability is L) and (error_effect_

probability is probable-E) and (consequence_severity is M) then
(risk_criticality is Mod).
� Rule 41. If (human_error_probability is V-H) and (error_effect_

probability is A-N-E) and (consequence_severity is V-L) then
(risk_criticality is Mod).
� Rule 42. If (human_error_probability is V-L) and (error_effect_

probability is possible-E) and (consequence_severity is V-H)
then (risk_criticality is M-H).
� Rule 51. If (human_error_probability is M) and (error_effect_

probability is probable-E) and (consequence_severity is M) then
(risk_criticality is M-H).
� Rule 52. If (human_error_probability is M) and (error_effect_

probability is A-E) and (consequence_severity is L) then
(risk_criticality is M-H).
� Rule 61. If (human_error_probability is L) and (error_effect_

probability is possible-E) and (consequence_severity is V-H)
then (risk_criticality is H).
� Rule 62. If (human_error_probability is L) and (error_effect_

probability is probable-E) and (consequence_severity is V-H)
then (risk_criticality is H).
� Rule 71. If (human_error_probability is V-H) and (error_effect_

probability is A-E) and (consequence_severity is L) then (risk_
criticality is H).
� Rule 72. If (human_error_probability is V-H) and (error_effect_

probability is A-N-E) and (consequence_severity is M) then
(risk_criticality is H).
� Rule 81. If (human_error_probability is H) and (error_effect_

probability is possible-E) and (consequence_severity is H) then
(risk_criticality is V-H).
� Rule 82. If (human_error_probability is H) and (error_effect_

probability is probable-E) and (consequence_severity is H) then
(risk_criticality is V-H).
� Rule 91. If (human_error_probability is H) and (error_effect_

probability is A-E) and (consequence_severity is V-H) then
(risk_criticality is N).
� Rule 92. If (human_error_probability is V-H) and (error_effect_

probability is A-N-E) and (consequence_severity is V-H) then
(risk_criticality is N).

These fuzzy IF–THEN rules build a fuzzy system that concerts
fuzzy input into fuzzy output. Fig. 8 shows fuzzy mapping or func-
tions between two inputs and output in a three-dimensional in-
put–output space. The Rule Viewer of the Matlab that opens
during the simulation can be used to access the ‘‘Membership
Function Editor” and the ‘‘Rule Editor” to edit membership func-
tions of input–output variables and fuzzy rules related inputs to



Fig. 8. Fuzzy function defined by IF–THEN rules between two inputs and output.
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output. The fuzzy inference system for human error risk assess-
ment is developed as shown in Fig. 9.

3.3.2. Identification of risk importance of human error
The output is audited by expert group on the basis of their

knowledge and experience. If they find some unreasonable results
in the output, the output modification is necessary in some situa-
tions for securing a reliable decision. For instance, system structure
has been changed and the impact of certain risk index has not been
adequately measured. Therefore, experts and analysts should gath-
er more information related to targeted object, review the risk
assessment process and reevaluate and modify the risk parameters
to simulate to reach a reliable result. According to the (modified)
output, the assessment of risk criticality must be carried out to
determine the risk importance of human error. The final result of
risk assessment provides safety management with reliable data
for risk respond decision-making.
Fig. 9. Fuzzy inference system for r
4. Case study

After an initiating event in a nuclear power plant, operators
should respond to the emergency accident and the errors might
take place because of the effects of context on human activities.
A case of steam generator tube rupture (SGTR) accident in a PWR
nuclear power plant (Zhang, 2006) is used to demonstrate the pro-
posed identification method of fuzzy logic-based risk importance
of human error.

4.1. Preliminary analysis phase

4.1.1. Determination of object and collection of relevant information
SGTR accident is defined as a kind of accident that one or two

heat transfer tube ruptures take place in a steam generator, and
it is characterized by the destruction of the integrity of pressure
boundary of the primary loop and the primary coolant leak
through the damaged steam generator to the secondary loop
(Fig. 10). Therefore, it is necessary to timely isolate the damaged
steam generator to prevent leakage of the radioactive substance.
The reactor units will be taken to the cold shutdown situation for
maintaining the damaged steam generator through a series of
operations such as cooling, depressurizing, high pressure safety
injection, feed and bleed. After determining the object of analysis,
the relevant information is collected including: the final safety
analysis reports, the flow chart of pipeline systems, electrical sys-
tem diagrams and instrument system diagrams and so on.

4.1.2. Identification of critical task and task analysis
It is the analysis object that the damaged SG is isolated success-

fully after the occurrence of the steam generator rube rupture
(SGTR) accident. The results of an Hierarchical Task Analysis
(HTA) created for the isolation of the damaged SG task are shown
in Table 2. They are on the baisis of the experts’ thoughts, the col-
lection of relevant information and principle of HTA.
isk assessment of human error.
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P.-c. Li et al. / Safety Science 48 (2010) 902–913 909
4.1.3. Identification of potential human error
Many human error identification techniques can be used to

identify the potential human error, such as THERP, CREAM, HEART
et al. CREAM is adopted to analyze the case example because of the
consideration of the effect of context on human and human cogni-
tive and action errors in CREAM. The detailed description of human
error identification procedures can be found in CREAM (Hollnagel,
1998). The results of human error analysis on the basis of CREAM
are shown in Table 2.
4.2. Measurement phase of risk indices of human error

The risk indices of human error involve the occurrence proba-
bility of human error, Error-Effect Probability and the consequence
severity, which can be measured separately for each error.
4.2.1. Measurement of Human Error Probability
The failure probability of human is determined by the detailed

following steps (Hollnagel, 1998): (1) Determining the basic or
nominal Cognitive Failure Probability (CFP) for each of the likely
cognitive function failures; (2) assessing of the effects of Common
Performance Conditions (CPCs) on the nominal CFP values; (3)
adjusting CFP to obtain adjusted CFP.

On the basis of the steps in CREAM, the analytical results are ob-
tained in Table 2. For example, the cognitive activity is ‘‘observe” in
the sub-task 1.1 named ‘‘observed abnormal state or alarm signal”
as shown in Table 2. The corresponding cognitive function is also
‘‘observe”. Its potential error mode is ‘‘O3” according to the special
context analysis and the basic error probability of ‘‘O3” is 0.007.
The value of weighting factor is 0.128 according to CPCs analysis
in special context, as shown in Table 3. Therefore, adjusted proba-
bility of ‘‘O3” is 0.000896.

4.2.2. Measurement of Error-Effect Probability
Error-Effect Probability is the conditional probability that the

error effect will result in the identified severity classification given
that the ith human error has occurred. If certain human error has
occurred, it will lead to certain degree of the loss of system with
any truth. The level of truth (or the certain level of confidence) of
the determined ranking of severity is the Error-Effect Probability,
the range of which is from 0 to 1. For example, the potential error
mode is ‘‘O3” in sub-task 1.1, which leads to the loss of system
evaluated as ‘‘very low” (V-L), the Error-Effect Probability is 1. This
means we absolutely believe the loss of system is V-L caused by
the error mode O3. Similarly other analytical results are obtained
as shown in Table 2 (i.e. the column of EEP).

4.2.3. Measurement of consequence severity of human error
Human error impacts hardware system, system function, per-

sonnel safety, environment and the like. The classification of sever-
ity can be synthetically considered from the standpoint of safety,
reliability, maintainability, quality, cost, and so forth. For the sever-
ity classification in this study, we focus our attention on cost crite-
ria. And for cost factor, we categorize the severity classification
into five levels (five fuzzy sets), which are given in Table 1. This pa-
per assumes that the effects of cognitive errors exist and is re-
flected in process, such as diagnostic errors will certainly affect
the operational errors.

Based on the system analysis and experts’ ideas, the measure-
ment results of severity index of each human error are shown in
Table 2.



Table 2
The steps in isolation of the damaged SG and the results of risk assessment.

Task Sub-tasks Cognitive
activity

Cognitive
function

Potential
error
mode

Basic error
probability

Weighting
factor

Adjusted
probability

Error effect Ranking of Error-
Effect Probability
(exact value)

Ranking of
consequence
severity (exact
value)

Risk
importance

1. Shutdown or
SI

1.1. Detect abnormal state or alarm signal Observe Observe O3 0.007 0.128 0.000896
(3.0477)

Reflected in
process

1 V-L (0.083) 0.433

1.2. Identify the parameter states, alarm
type and severity and quality

Identify Interpret I1 0.02 0.1 0.002
(�2.699)

Select the
wrong
procedure

1 V-H (0.9167) 0.798

1.3. Confirm shutdown Verify Observe/
interpret

I1 0.02 0.1 0.002
(�2.699)

Reconfirm Probable-E(0.5333) L (0.25) 0.434

1.4. Check the states of system/component
to ensure them available

Verify Observe/
interpret

O3 0.007 0.128 0.000896
(�3.0477)

Latent failure
occurred

1 H (0.75) 0.697

2. Identify and
isolate
ruptured SG

2.1. Check RCPs Observe Observe O3 0.007 0.256 0.001792
(�2.7467)

Reflected in
process

Probable-E(0.5333) M (0.5) 0.529

Evaluate Interpret/
plan

I1 0.02 0.2 0.004
(�2.3979)

Reflected in
process

Probable-E(0.5333) M (0.5) 0.558

2.2. Identify the ruptured SG Observe Observe O2 0.007 0.256 0.001792
(�2.7467)

Reflected in
process

1 V-H (0.9167) 0.793

Diagnose Interpret/
plan

I2 0.01 0.2 0.002
(�2.699)

Leakage of
radioactive
materials

1 V-H (0.9167) 0.798

2.3. Isolate the ruptured SG
2.3.1. Adjust the air relief valve of the

ruptured SG to fixed value 7.0 Mpa
Monitor Observe/

interpret
O3 0.007 0.256 0.001792

(�2.7467)
The main
system
pressure rise

1 H (0.75) 0.729

Regulate Observe/
execute

E1 0.003 0.2048 0.0006144
(�3.2115)

The main
system
pressure rise

1 H (0.75) 0.687

2.3.2. confirm the state of air relief valve
of the ruptured SG —shut

Verify Observe/
interpret

O3 0.007 0.256 0.001792
(�2.7467)

Reflected in
process

Probable-E(0.5333) H (0.75) 0.629

2.3.3. close The main steam isolation
valves and bypass valves of the ruptured SG

Execute Execute E3 0.0005 0.2048 0.0001024
(�3.9897)

Leakage of
radioactive
materials

1 V-H (0.9167) 0.658

2.3.4. Isolate the sewage from the
ruptured SG

Execute Execute E3 0.0005 0.2048 0.0001024
(�3.9897)

Leakage of
radioactive
materials

1 V-H (0.9167) 0.658

2.3.5. Close the drain valve located in front
of the main steam isolation valves of
ruptured SG

Execute Execute E3 0.0005 0.2048 0.0001024
(�3.9897)

Leakage of
radioactive
materials

1 V-H (0.9167) 0.658

2.4. Confirm the success of isolation Verify Observe/
interpret

O2 0.007 0.256 0.001792
(�2.7467)

Reconfirm Probable-E(0.5333) V-L (0.083) 0.371
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Table 3
Assessment of the effects of CPCs on cognitive function failures.

CPC name Level T 1.1 T 1.2 T1.3 T1.4
O3 O3 I1 I1

Adequacy of org. Very efficient 1 1 1 1
Working conditions Advantageous 0.8 0.8 0.8 0.8
Adequacy of MMI Adequate 1 1 1 1
Procedures/plans Appropriate 0.8 1 1 0.8
Number of goals Matching current

capacity
1 1 1 1

Available time Adequate 0.5 0.5 0.5 0.5
Time of day Day-time (adjusted) 1 1 1 1
Training and

preparation
Adequate, high
experience

0.8 0.5 0.5 0.8

Crew collaboration Very efficient 0.5 0.5 0.5 0.5
Total influence of CPC 0.128 0.1 0.1 0.128
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4.3. Fuzzy inference phase

The measurement results of risk indices of each human error
are separately input into the built fuzzy inference system. The out-
puts are shown in Table 2. For example, the risk value of sub-task
1.1 (i.e. 0.433) is obtained when the Human Error Probability
(�3.048), human Error-Effect Probability (i.e. 1.0) and consequence
severity (i.e. 0.083) are inputted into the fuzzy inference system as
shown in Fig. 11. According to Table 2, firstly, the most serious er-
ror modes are I1 in sub-task 1.2 and I2 in sub-task 2.2, their risk
values are 0.798. This is mainly because the diagnosis is a knowl-
edge-based action, the occurrence probability of diagnosis errors
is high, if such errors occurred, the consequences are very serious.
Secondly, the important error modes are O3 in the sub-task 2.3.1,
its risk values reaches 0.729. Therefore, these errors should firstly
be considered by the plant to take some measurements to prevent
the occurrence of such serious human error. Next, the risk critical-
ity or importance of human error followed by O3 in sub-task 1.4,
and E1 in sub-task 2.3.1 and E3 in sub-tasks 2.3.3–2.3.5, and so
Fig. 11. IF–THEN rules for risk inferenc
on. According to the results related above, we can identify the risk
importance of human error. Therefore, the plant can take some tar-
geted measures according to this principle (the risk importance of
human error) to reduce and prevent the occurrence of human
error.
4.4. Comparative analysis of the results by CREAM, HECA and FHERAM

Human Error Probability (HEP) is used to assess the risk of hu-
man error by ‘‘CREAM”, the traditional HECA uses the criticality in-
dex value of human error modes and safety or cost severity
classification to construct human error criticality matrix, that is
to say, it uses the product of three risk factors (i.e. a, b, c) to define
the risk importance of human error and critical human error
modes. The Fuzzy Human Error Risk Assessment Method (FHE-
RAM) is the proposed method in this paper to analyze the fuzzy
risk importance of human error. The comparative results of three
methods are shown in Table 4.

As shown in Table 4, through different methods the risk impor-
tance of human errors are different.

The most critical human error mode is I2 in the sub-task 2.1.2
according to CREAM. CREAM determines the risk importance of hu-
man errors only in terms of HEP. Its disadvantage is that it doesn’t
consider the impacts of human errors. Therefore, CREAM method
doesn’t really illustrate the risk importance of human errors.

The most critical human error mode is I2 in sub-task 2.2 accord-
ing to HECA, next to it is O3 in sub-task 2.3.1.1 according to HECA
and FHERAM as well. While the third critical human error mode
between HECA and FHERAM is different while CREAM is I1 in
sub-task 2.1.2 and FHERAM is O3 in sub-task 1.4. If both sub-task
2.1.2 and sub-task 1.4 fail, sub-task 2.1.2 (i.e. evaluate RCPs)
mainly influence the decision-making of the shutdown of main
pump, and sub-task 1.4 (i.e. Check the states of system/compo-
nent) influences the availability of the whole system because of
the potential fault in the system. Therefore, the effects of ‘‘O3” in
e by changing the values of inputs.



Table 4
Comparison of analytical results of CREAM with HECA and FHERAM.

Task step Error mode a (CREAM) b c HECA FRIHE Ranking CREAM Ranking HECA Ranking FHERAM

1.1 O3 0.000896 1 V-L (0.083) 0.0000744 0.433 4 11 10
1.2 I1 0.002 1 V-H (0.9167) 0.0018334 0.798 2 1 1
1.3 I1 0.002 Probable-E(0.5333) L (0.25) 0.0002667 0.434 2 8 9

1.4 O3 0.000896 1 H (0.75) 0.000672 0.697 4 5 3
2.1.1 O3 0.001792 Probable-E(0.5333) M (0.5) 0.0004778 0.529 3 6 8

2.1.2 I1 0.004 Probable-E(0.5333) M (0.5) 0.0010666 0.558 1 3 7

2.2 I2 0.002 1 V-H (0.9167) 0.0018334 0.798 2 1 1
2.3.1.1 O3 0.001792 1 H (0.75) 0.001344 0.729 3 2 2
2.3.1.2 E1 0.0006144 1 H (0.75) 0.0004608 0.687 5 7 4

2.3.2 O3 0.001792 Probable-E(0.5333) H (0.75) 0.0007168 0.629 3 4 6

2.3.3 E3 0.0001024 1 V-H (0.9167) 0.0000939 0.658 6 9 5
2.3.4 E3 0.0001024 1 V-H (0.9167) 0.0000939 0.658 6 9 5
2.3.5 E3 0.0001024 1 V-H (0.9167) 0.0000939 0.658 6 9 5
2.4 O2 0.001792 Probable-E(0.5333) V-L (0.083) 0.0000793 0.371 3 10 11
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sub-task 1.4 on the system are more serious than one of I1 in sub-
task 2.1.2. Although the HEP of I1 in sub-task 2.1.2 is higher than
one of O3 in sub-task 1.4, the risk importance of the former is low-
er than the latter after integrating the impacts of human error into
human error risk assessment and taking the risk-weighting factors
into account. The main disadvantage of the traditional HECA is that
it neglects the relative importance among a, b and c. The three risk
factors are assumed to have the same importance. This may not be
appropriate when considering a practical application of HECA pro-
cess. For example, considering two different human errors having
values of 1 � 10�3, 1, 0.25 and 1 � 10�3, 0.5, 0.5, for a, b and c
respectively, both of the human errors have a total value of CHER

of 2.5 � 10�4. However, the risk implication of these two human
errors may not be the same. We generally think the latter of two
human errors is critical than the former.

The proposed FHERAM in this paper addresses these shortcom-
ings. It considers the relative importance among a, b and c during
the establishment of fuzzy rule base of FHERAM according to ex-
perts’ ideas. And it can better treat the ‘‘fuzzy issues” in the process
of human error risk assessment.

5. Conclusion and discussion

Human error is the main reason that leads to accident occur-
rence. Therefore, the pressing problem is how to identify the crit-
ical human error and the risk importance of human errors for
purposely preventing the occurrence of human errors. This paper
presents a new human error risk assessment method based on fuz-
zy logic to determine risk importance of human error. The conclu-
sions are obtained as follows:

(1) In many situations, human error risk analysis is a complex
task which is of great uncertainty due to the complexity of
human behavior and environment, lack of information and
knowledge, insufficient human error data and the subjective
judgments of experts and so on.

(2) The proposed FHERAM can well model the uncertainty. The
fuzzy, qualitative or imprecise information, as well as quan-
titative data can be used in the assessment and they are han-
dled in a consistent manner.

(3) The proposed FHERAM not only considers the HEP, but also
integrates the EEP and ECS into human error risk assessment
model. From the point of the objective of probabilistic safety
assessment (PSA), it actually reflects the real risk of human
error because of the consideration of the effects of human
error.
(4) It takes the weights of the three risk factors (i.e. HEP, EEP
and ECS) of human error into account in the process of the
establishment of fuzzy rule base. It is a new attempt of
addressing the relative weight and would be in line with
the objective reality.

Although the proposed method in this paper has some advanta-
ges related above, it still has some limitations: The continuous
interval of input and output variables is artificially divided into
the discrete one, which leads to a set of discrete rules; The design
of membership functions is based on judgments from experts who
are familiar with the underlying problems; The determination of
weights of risk factors is based only on judgements of experienced
experts, while not on the data. These non-systematic designs for
dividing interval, developing membership functions, and develop-
ing fuzzy rule base are some main resources, which cause the
uncertainty. Therefore, it is necessary to obtain more data (i.e. hu-
man error data) and develop a better method (i.e. fuzzy neural net-
work model) to reduce this uncertainty.

Additionally, there are completeness uncertainty, modeling
uncertainty and parameter uncertainty in human error risk assess-
ment. For example, it does not analyze the effects of recovery fac-
tors (e.g., supervisor, alarm) on human error, which makes the
results (i.e. HEP) a little conservative. Therefore, this leads to input
parameter uncertainty, which is the major reason of the proposed
method in this paper to address this issue.
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