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Landsat and Shuttle Radar TopographyMission (SRTM) imagery have recently been used to identify broad-scale
floristic units in Neotropical rain forests, corresponding to geological formations and their edaphic properties.
Little is known about the structural and functional variation between these floristic units, however, and Landsat
and SRTMdata lack the spectral and spatial resolution needed to provide this information. Imaging spectroscopy
and LiDAR (LightDetection andRanging)havebeenused tomeasure canopy structure and function in a variety of
ecosystems, but the ability of these technologies to measure differences between compositionally-distinct but
otherwise uniform tropical forest types remains unknown. We combined 16 tree inventories from central
Panama with imaging spectroscopy and LiDAR elevation data from the Carnegie Airborne Observatory to
test our ability to identify patterns in plant species composition, and to measure the spectral and structural
differences between adjacent closed-canopy tropical forest types. We found that variations in spectroscopic
imagery and LiDAR data were strong predictors of spatial turnover in plant species composition. We also found
that these compositional, chemical, and structural patterns corresponded to underlying geological formations
and their geomorphological properties. We conclude that imaging spectroscopy and LiDAR data can be used to
interpret patterns identified in lower resolution sensors, to provide new information on forest function and
structure, and to identify underlying determinants of these patterns.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Imaging spectroscopy and LiDAR (Light Detection and Ranging)
have become powerful tools in the study of ecosystems. Unlike multi-
spectral sensors such as Landsat or the Moderate Resolution Imaging
Spectroradiometer (MODIS), which integrate reflectance in visible to
shortwave wavelengths over a relatively small number of broad-
bandwidth spectral channels, imaging spectroscopy measures reflected
electromagnetic radiation on a continuous narrow-band (e.g. 10 nm)
basis. This provides spectra for detailed analysis of remotely-sensed fea-
tures and hence diagnosis of their chemical properties (Kokaly, Asner,
Ollinger, Martin, & Wessman, 2009; Ustin et al., 2009). From airborne
data, these features may resolve forest plots or individual tree crowns.
LiDAR data are equally useful for studying ecosystems. LiDAR is an
active sensing system in which return times for laser emissions are
used to calculate the elevation of both terrain and aboveground
ology, Carnegie Institution for
: +1 805 350 1141.
).
features. In forested ecosystems, LiDAR returns can penetrate the cano-
py and provide information from both the ground and multiple points
within the forest canopy (Dubayah et al., 2010). These data can then
be used to generate high-resolution images of forest structure, allowing
estimates of forest properties such as canopy height and biomass
(Drake, Dubayah, Knox, Clark, & Blair, 2002; Lefsky, Cohen, Parker, &
Harding, 2002).

Imaging spectroscopy and LiDAR data have been used in a variety of
ecosystems to study vegetation composition, structure, and dynamics.
Both spectroscopy and LiDAR data have individually been used to
predict species richness in temperate forests (Leutner et al., 2012), trop-
ical forests (Carlson, Asner, Hughes, Ostertag, & Martin, 2007; Kalacska
et al., 2007; Wolf et al., 2012), savannas (Cho et al., 2012), and tropical
mangrove ecosystems (Held, Ticehurst, Lymburner, & Williams, 2003).
In addition, imaging spectroscopy has been used to identify changes in
species composition in savanna (Baldeck & Asner, 2013), temperate
grassland (Schmidtlein & Sassin, 2004; Schmidtlein, Zimmermann,
Schupferling, & Weiss, 2007), and mixed forest/non-forest ecosystems
(Leutner et al., 2012); and imaging spectroscopy has been used to
map the distributions of individual species in tropical forests and
savannas (Asner & Vitousek, 2005; Clark, Roberts, & Clark, 2005; Feret
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& Asner, 2012). LiDAR data are particularly suited to studying forest
structure and dynamics, and has been used to identify patterns in
biomass (Asner, Hughes, Varga, Knapp, & Kennedy-Bowdoin, 2009;
Clark, Roberts, Ewel, & Clark, 2011; Drake et al., 2002), ecosystem devel-
opment (Kellner et al., 2011), and successional dynamics (Castillo,
Rivard, Sanchez-Azofeifa, Calvo-Alvarado, & Dubayah, 2012; Dubayah
et al., 2010) in tropical forests. Most promisingly, LiDAR and imaging
spectroscopy data have been fused to yield improved estimates of
species richness, species distributions, and forest biomass in savanna
and forest ecosystems (Asner et al., 2008; Cho et al., 2012; Colgan,
Baldeck, Feret, & Asner, 2012; Lucas, Lee, & Bunting, 2008).

We have recently shown that medium-resolution data from Landsat
and the Shuttle Radar Topography Mission (SRTM) can be used to infer
floristic discontinuities in northwestern Amazonia, corresponding to
geological formations and their edaphic properties (Higgins et al.,
2011, 2012). Similar relationships between soils and forest composition
in Central America and Asia also suggest that these patterns might be
widespread (Jones et al., 2013; Palmiotto et al., 2004). Due to the limited
spatial and spectral resolution of Landsat and SRTM data, however, we
have been unable to determine whether these compositional disconti-
nuities are translated into patterns in forest structure and functional
properties.

Here we propose that imaging spectroscopy and LiDARmay be used
both to identify changes in plant species composition, and to provide
detailed information about the functional and structural differences be-
tween compositionally-defined forest types. To evaluate this possibility,
we combined field inventories of plant species composition from a trop-
ical forest in central Panama with spectral and LiDAR data from the
Carnegie Airborne Observatory Airborne Taxonomic Mapping System
(CAO-AToMS) (Asner, Knapp, et al., 2012). CAO-AToMS incorporates a
dual-channel waveform LiDARwith a 428-channel Visible to Shortwave
Infrared (VSWIR) imaging spectrometer, providing orthorectified 1 m
and 2 m resolution data, respectively, when flown at 2000 m above
ground level (a.g.l.).

We concentrated our study on a boundary between two geological
formations. Our objectives were (1) to test the ability of imaging spec-
troscopy and LiDAR to detect changes in plant species composition
Fig. 1. Location of study area relative to geological map of Panama. Red cross-hatching indicat
Formations. Study area is superimposed on the national geological map of Panama (MICI, 1990
between these formations; (2) to compare these formations on the
basis of forest canopy structure and spectra as identified from LiDAR
and VSWIR data; and (3) to examine the relationship between geology
or geomorphology and patterns in canopy reflectance and structure. To
our knowledge, this is the first time that imaging spectroscopy or LiDAR
data have been tested for its ability to detect and study compositionally-
defined types in tropical forests.

2. Materials and methods

2.1. Study area

We focused our data collection on a boundary between the Ocú and
Gatuncillo geological formations in central Panama (Fig. 1), at a site
characterized by unbroken, tropical broadleaf rainforest. The Ocú
Formation dates approximately to the Paleocene and consists of uplifted
limestone and volcanic tuff extending north and east into the
Panamanian cordillera (MICI, 1990). The younger Gatuncillo Formation
dates to themiddle to late Eocene, and consists of younger sedimentary
material deposited at the base of the Ocú Formation, including mud-
stone, shale, quartz sandstone, and algal and foraminiferal limestone
(MICI, 1990). We did not collect soil data for our study sites, but previ-
ous soil sampling suggests that cation exchange capacity and base
cation concentrations are higher on the Alfisols of the Gatuncillo Forma-
tion than the Oxisols of the Ocú Formation (Ben Turner, personal com-
munication). Elevation in our study area ranges from 45 m to 261 m,
and is not considered sufficient to create biologically-significant
variations in climate over the area studied here. We collected airborne
imaging spectroscopy and LiDAR data for the study area, and sampled
it in the field for plant species composition.

2.2. CAO-AToMS data

We used CAO-AToMS to acquire co-aligned VSWIR and LiDAR data
for the study area in February 2012. The landscape was imaged by 20
parallel and overlapping flight lines, approximately 1 km wide and 22
km long, running from the northwest to the southeast, and overlapping
es extent of study area, divided into two halves corresponding to the Gatuncillo and Ocú
); inset indicates location of map relative to Panama country boundaries.
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by 50%. LiDAR data were available for all flight lines, but cloud-free
VSWIR data were available only for six flight lines in the center and
the east of our study area. As such, cloud-free VSWIR data were not
available for the southwestern corner of our study area. Prior to analysis,
we subset both the LiDAR and VSWIR datasets to the extent of the study
area (Figs. 2, 3).

The VSWIR data consisted of 2m resolution canopy reflectancemea-
surements covering the 380 nm to 2512 nm wavelength range in 428
channels of 5 nm sampling (full-width, half-maximum). These data
were then resampled to 214 bands of 10 nm bandwidth to reduce
Fig. 2. VSWIR imagery for study area, superimposed with results of clustering analysis. (a) Orig
(b) Principal component transformation of VSWIR data, with PCs 1, 2, and 3 set to red, green, a
their classification into two groups by clustering analysis (red and blue). Insets in the lower le
indicate the extent of the study area shown in Fig. 1. Dark patches within images are areas wh
data volume and facilitate spectroscopic analysis. Prior to analysis, the
VSWIR datawere corrected for atmospheric distortions and bidirection-
al reflectance distribution function (BRDF) effects (Colgan et al., 2012).
For visualization and analysis of the VSWIR data, we omitted bands co-
inciding to regions of high absorption bywater vapor (1320 to 1500 nm,
and 1770 to 2010 nm), and removed pixels corresponding to clouds and
shaded canopy. Clouds were masked manually and shaded pixels were
identified by an algorithm that considered both sun location and height
of neighboring pixels derived from the LiDAR data, resulting in the
removal of about 50% of pixels for the study area (Asner et al., 2007).
inal VSWIR imagery, with 830, 1650, and 2220 nm set to red, green, and blue, respectively.
nd blue, respectively. Superimposed on (a) are the locations of the 16 tree inventories and
ft of both panels are magnifications of the areas in the green boxes, and the yellow lines
ere clouds have been removed.
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Fig. 3. LiDAR data for study area, superimposed with results of clustering analysis. (a) Terrain elevation data for study area, where lighter tones indicate higher elevations. (b) Slope for
study area, where lighter tones indicate steeper slopes. (c) Mean canopy height for study area, where warmer tones indicate higher canopy. (d) LiDAR returns in the 37–38 m height
class, where green indicates the presence of vegetation of any density in this class. Superimposed on (a) are the locations of the 16 tree inventories and their classification into two groups
by clustering analysis (red and blue). Yellow or black lines indicate the extent of the study area shown in Fig. 1.

361M.A. Higgins et al. / Remote Sensing of Environment 154 (2014) 358–367
For this study,we used the discrete-return portion of the LiDAR data,
providing a maximum of four returns per laser shot, to calculate both
ground elevation at 1 m resolution, and mean canopy height (MCH) at
5 m resolution. Because the data were collected by flying adjacent
flightlines with 50% overlap, the LiDAR data density was two laser
shots per square meter on the ground. To calculate ground elevation,
the flight area was divided into 100 m kernels and within each kernel
the lowest elevation return was classified as ground. Neighboring
returns were classified iteratively, such that if the nearest unclassified
return was b5.5° and 1.5 m higher in elevation, it was classified as
ground (Asner et al., 2013). This process was repeated until all points
within the kernel were classified, after which all ground returns were
used to generate a triangulated irregular network (TIN) which was
converted to a raster surface at 1 m resolution, with a height accuracy
of 10 cm. To calculate mean canopy height, the flight area was divided
into 5m by 5m pixels, and all returns greater than 50 cm above ground
within each pixel were averaged, so as to eliminate possible ground
returns. Last, we used ground elevation data to calculate degrees slope
at 1 m resolution (calculated in ArcGIS v10; ESRI, Redlands, California,
USA).
2.3. Tree inventory data

We collected data on tree species composition along 16 linear tran-
sects, organized along two east–west lines that crossed the boundary
between the Ocú and Gatuncillo Formations. These lines were labeled
“A” and “C” and transects were numbered from 0 to 7, west to east
along these lines (Figs. 2, 3). These transects were divided equally
between the geological formations, such that eight transects were sam-
pled in each formation (Figs. 2, 3). Along each transect we identified all
trees ≥10 cm diameter at breast height (dbh) to species and produced
species lists for each site. The transects were either 6 m × 400 m (14
transects) or 5 m × 500m (2 transects, “C3” and “C4”), with an average
area of 0.24 ha. This area was selected to sample approximately 100
stems per transect, the minimum number identified by Higgins and
Ruokolainen, (2004) for identifying compositional patterns in Neotrop-
ical forests.We collected aminimum of five GPS points per transect and
used these to geolocate the transects for comparison to the VSWIR and
LiDAR imagery.

2.4. CAO data analysis

Principal component analysis (PCA) was used to reduce the 214
bands of VSWIR data to three synthetic axes for comparison to the com-
positional and LiDAR data (analysis performed with ENVI Version 4.8,
Excelis Visual Information Solutions, Virginia, USA). We also selected
three VSWIR channels—830 nm, 1650 nm, and 2220 nm—for compari-
son to the compositional and LiDAR data. These channels were chosen
because they are at the center of the near infrared (NIR), shortwave
infrared 1 (SWIR 1), and shortwave infrared 2 (SWIR 2) bands of the
Landsat sensor (bands 4, 5, and 7, respectively). These bands are interest-
ing because they have previously been used in Landsat data to identify
patterns in plant species composition (Higgins et al., 2011, 2012;
Tuomisto, Poulsen, et al., 2003; Tuomisto, Ruokolainen, Aguilar, &
Sarmiento, 2003). In addition, to compare the full reflectance spectra of
the transects, we calculated the mean spectrum for each transect for
each of the 214 channels using the transect outlines described below
(Section 2.6).

2.5. Tree inventory data analysis

Weused clustering analysis to visualize patterns in plant species com-
position relative to the geological formations and CAO AToMS imagery.
For this purpose we calculated floristic dissimilarities between sites
using the Jaccard index (Jones et al., 2013), and thendivided the tree tran-
sects into twogroups using the unweighted pair-groupmethod (UPGMA;
Legendre & Legendre, 1998; Tuomisto, Ruokolainen, et al., 2003). We ad-
ditionally used nonmetric multidimensional scaling (NMDS) to reduce

image of Fig.�3
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the pattern of compositional similarities and differences between sites, as
measure by the Jaccard index, to a single ordination axis for comparison to
individual VSWIR bands; individual VSWIR PCA axes; or terrain variables
generated from the LiDAR data. Clustering and NMDS analyses were per-
formed with PC-ORD v. 4.41 (MjM Software, Gleneden Beach, OR, USA).
2.6. Relationships between tree species composition, VSWIR variables, and
LiDAR variables

First, to test the ability of VSWIR and LiDAR data to predict variations
in tree species composition, we calculated the correlation between
NMDS values, as the dependent variable; and mean values of either
elevation, MCH, the three individual VSWIR bands noted above, or the
three VSWIR PCA axes (Section 2.4), as independent variables. To calcu-
late mean values for each transect for LiDAR and VSWIR variables, we
delineated outlines for the transects and then calculated the mean
value for all pixelswithin this area, excluding shaded and clouded pixels
for the VSWIR data. In addition, VSWIR data were not available for two
transects, A0 and C0, and these transects were omitted from analyses
that included VSWIR data.

Second, to verify the ability of VSWIR and LiDAR data tomeasure dif-
ferences in forest chemistry and structure between compositionally-
defined forest types, we compared spectra for the two groups defined
by our clustering analysis for all 16 transects.We additionally calculated
the mean MCH for each clustering group, based on the data for the 16
transects, and tested the difference between the mean values for the
two groups.

Third, to identify possible determinants of canopy composition,
structure, and chemistry, we calculated the correlations between
NMDS values, VSWIR values (bands and PCA axes), andMCH, as depen-
dent variables; and elevation and slope, as measured by the LiDAR data,
as independent variables. We conducted these analyses both using
values for the tree transect areas; and for the full extents of the Ocú
and Gatuncillo Formations in our study area, for LiDAR variables only.
For analyses including the full study area, we resampled elevation,
Fig. 4. Summary of floristic, LiDAR, and VSWIR data for tree inventories. Color of boxes indicates
2220 nm; and PC 1, 2, and 3) variables for inventory areas along line “A” or “C”. Green tones in
green tones indicate higher values. Broken gray line indicates boundary between Ocú and Gatu
slope, and MCH data to 100 m resolution, and computed the relation-
ships amongst these variables for all 100 m pixels across the full study
area.

As a result of these analyses we effectively calculated all possible
correlations between three sets of variables: tree species composition,
represented by a single NMDS axis; VSWIR variables, consisting of
three bands and three principal components; and LiDAR variables,
consisting of elevation, slope, and mean canopy height. All correlations
were reported as the coefficient of determination (r2).
3. Results

3.1. Patterns in CAO-AToMS data

Weobserved clear discontinuities in the VSWIR and LiDAR data, cor-
responding to the boundary between the Ocú and Gatuncillo Forma-
tions (Figs. 2–4). Using VSWIR bands 830 nm, 1650 nm, and 2220 nm
set to red, green, and blue, the Gatuncillo Formation was characterized
by blue tones and theOcú Formation by red tones (Fig. 2a). These differ-
ences were pronounced after a principal component transformation of
the VSWIR data (Fig. 2b). Setting PCA axes one, two, and three to red,
green, and blue, the Gatuncillo Formation was characterized by neon
green and yellow tones, and the Ocú Formation was characterized by
bright magenta tones. In both untransformed and transformed images,
these changes in tone aligned precisely with the north–south boundary
between the two geological formations.

We also observed abrupt differences between the two formations in
the LiDAR elevation data. Using the areas delineated in Fig. 1, and re-
sampling the LiDAR data to 100 m, we found that the mean elevation
of the Ocú Formation was 143 m, an average of 80 m greater than the
Gatuncillo Formation (mean elevation 63m; Fig. 3a). In addition, slopes
at the Ocú Formation were twice as steep as that in the Gatuncillo For-
mation, averaging 25.5 and 11.4° respectively (Fig. 3b). These differ-
ences in landscape position and slope corresponded to a 20% (3.75 m)
difference in mean canopy height between the taller Ocú Formation
values of floristic (NMDS), LiDAR (elevation, slope, andMCH), and VSWIR (830, 1650, and
dicate lower values, with the exception of the LiDAR variables and VSWIR PC 3 for which
ncillo Formations.

image of Fig.�4


Table 2
Correlations (r2) amongst LiDAR variables and NMDS scores. All correlations significant at
P b 0.05.

NMDS MCH Slope

Elevation 0.75 0.75 a 0.88 a

Slope 0.80 0.59
MCH 0.40

a Indicates that correlation was calculated using a second-order polynomial, where el-
evation was the independent variable.
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(22.12 m) and the Gatuncillo Formation (18.37 m; Fig. 3c). On average
the Ocú Formation was higher, steeper, and supported taller forests
than the Gatuncillo Formation.

3.2. Patterns in tree inventory data

We inventoried tree species at 16 sites, for a total of 1860 individuals
and 147 species. On average we encountered 116 individuals and 37
species per site, with a range of 96 to 176 individuals per transect and
31 to 44 species. Three transects had less than 100 individuals: A1, C0,
and C6; with 96, 96, and 97 species, respectively.

Clustering analysis of our tree inventory data divided the tree tran-
sects into two groups corresponding exactly to the geological forma-
tions (Figs. 2, 3). The average difference in species between transects
from different groupswas 79% (Jaccard index), but the species turnover
between transects within the same geological formation was also high
(66% for the Ocú Formation and 72% for the Gatuncillo Formation).
NMDS ordination of our tree inventories yielded a single axis that
explained 68% of the variation in the original dataset (Fig. 4).We consid-
ered this axis representative of the dominant compositional pattern in
the data, and used it for comparison to the VSWIR and LiDAR data.

3.3. Relationships between tree species composition, VSWIR variables, and
LiDAR variables

Individual VSWIR bands or principal components, respectively,
predicted up to 47% and 67% of the floristic variation in the study area
(1650 nm and PC2, respectively; Table 1), as measured by the NMDS
axis. These bands and components varied substantially in their ability
to predict compositional patterns, however, such that variations in
the 830nmbandand PC1were not correlatedwith variations in compo-
sition, while the remaining bands and componentswere strongly corre-
lated with composition (Table 1; Fig. 4). LiDAR terrain and structural
variables also predicted variations in plant species composition
(Table 2), such that slope and elevation explained 80% and 75% of
NMDS scores in the study area, respectively, indicating strong environ-
mental control of species composition as discussed below.

Furthermore, though transect C5 was similar in species composition
to other transects in the Ocú Formation, it differed substantially in re-
flectance (Figs. 4, 5). Reflectance values for C5 at 1650 nm, 2220 nm,
and PC1 were greater than all other transects, including transects in
the Gatuncillo Formation. This difference was clear when comparing
spectra for all 16 transects, such that C5 demonstrated anomalously
high reflectance in visible wavelengths, SWIR1, and SWIR 2 (Fig. 5,
dashed lines). The range of values for C5 for 1650 nm, 2220 nm, and
PC1, furthermore, was substantially greater than for any other transect.
These results suggested that C5 was an outlier due to mixed or unusual
conditions, andwe thus additionally calculated all correlations between
theVSWIR data and other variables in the absence of C5. After excluding
C5, individual bands and principal components were able to predict up
to 76% of the variation in plant species composition (2220 nm and PC2)
as measured by NMDS values.

The VSWIR and LiDAR sensors also detected clear differences in
canopy spectral and structural characteristics between the two floristic
groups identified in the clustering analysis. With the exception of tran-
sect C5, spectra for the two forest types were completely separated in
Table 1
Correlations (r2) between VSWIR variables and NMDS scores or LiDAR variables. All correlation
lation in absence of transect C5.

830 nm 1650 nm 2220 nm

NMDS 0.00 (0.00) 0.47 (0.65) 0.46 (0.7
Elevation 0.06 (0.07) 0.59 (0.74) 0.54 (0.7
Slope 0.02 (0.07) 0.46 (0.87) 0.37 (0.8
MCH 0.01 (0.02) 0.41 (0.59) 0.38 (0.6
SWIR1 andSWIR2 spectral regions, and strongly separated in the visible
wavelengths, consistent with the correlations observed above between
the compositional and spectral data (Table 1). We also observed clear
differences between the two forest types in canopy structure, such
that forests growing on the Ocú Formation were 22% taller on average
than forests on the Gatuncillo Formation (MCH of 22.6 and 18.6 m,
respectively; P b 0.01). These findings were consistent with the
differences observed above using 100 m data for the full study area
(Section 3.1).

These compositional and chemical patterns correlatedwith underly-
ing variations in geomorphology. Elevation and slope explained 75% and
80%, respectively, of the variation in NMDS values amongst the 16 tran-
sects. Elevation also explained up to 59% and 63% of the variation in in-
dividual VSWIR bands or principal components, respectively, and slope
explained up to 46% and 75% (1650 nm and PC 3 in both cases; Table 1).
Individual bands and PCs varied in their correlations with terrain, how-
ever, such that reflectance at 830 nm and PC 1 were poorly correlated
with elevation and slope, while reflectance in other bands or PCs was
strongly correlated.

Elevation and slope also explained variations in canopy structure.
Using 100 m data for the area delineated in Fig. 1, elevation explained
40% of the variation in MCH, but this relationship was nonlinear, such
that the tallest trees were found at intermediate elevations in the Ocú
Formation (second-order polynomial; Fig. 6a). These positions in the
Ocú Formation corresponded to the areas of highest slope, such that
we observed a strong linear relationship between slope and mean
canopy height, and a non-linear relationship between elevation and
slope (Fig. 6b, c). Generally, the tallest trees in our study area were
found neither on flat lowlands or high ridgetops, but rather on the
steep slopes of the Ocú Formation (Fig. 3d). These findings indicate
both differences in canopy height between the two formations, and
variations within the Ocú Formation due to topographic position.

Stronger relationships were observed when considering only the 16
transects, using the original 1 and 5 m resolution LiDAR data. Based on
the transect areas, elevation and slope explained 75% and 59% of the
variation in MCH, and elevation and slope were strongly correlated
(r2 = 0.88, second-order polynomial). To complete our analyses, we
calculated the relationship between MCH and individual VSWIR bands
or principal components, and found that forest structure and reflec-
tance were strongly correlated, with the exception of 830 nm and PC
1 (Table 2).

4. Discussion

Using 16 sites in central Panama, we found that imaging spectrosco-
py and LiDAR data from the CAO-AToMS system were able to detect
s significant at P b 0.05 unless indicated with italics. Value in parentheses indicates corre-

PC1 PC2 PC3

6) 0.07 (0.11) 0.67 (0.76) 0.55 (0.55)
7) 0.22 (0.26) 0.54 (0.57) 0.63 (0.63)
8) 0.14 (0.31) 0.50 (0.70) 0.75 (0.77)
6) 0.1 (0.16) 0.47 (0.55) 0.54 (0.54)



Fig. 5.Mean spectra for 16 tree inventories, colored by clustering group. (a) Full spectra for the 16 plant transects. (b) to (e) Magnifications of visible, near infrared (NIR) and shortwave
infrared (SWIR 1 and 2) portions of the full spectra, as indicated in (a). Spectra are colored according to the two clustering groups (red and blue), consistent with Figs. 2 and 3. Broken line
indicates the outlying transect C5.
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turnover in plant species composition in otherwise uniform closed-
canopy and tall tropical forest. Variations in VSWIR imagery predicted
up to 67% of the variation in tree species composition in the study
area, as measured by a single NMDS axis, and this rose to 76% after the
removal of an outlying site. Variations in LiDAR data, furthermore, pre-
dicted up to 80% of this variation in composition. In addition, we found
that imaging spectroscopy and LiDAR could be used to measure differ-
ences in canopy spectral properties and structure between composi-
tionally distinct forest types. Based on VSWIR data we found nearly
complete spectral separation between two geologically-defined forest
types in the shortwave infrared, strongly suggestive of differences in
canopy chemical properties (Asner et al., 2011). We also observed a
22% change inmean canopy height, indicating differences in both forest
structure and likely biomass (Asner, Mascaro, et al., 2012; Clark et al.,
2011; Drake et al., 2002). These findings demonstrate the ability of
imaging spectroscopy and LiDAR data both to map variations in plant
species composition, and to measure chemical and structural differ-
ences between forest types.

Ourfindings also illustrate the ability of LiDAR and imaging spectros-
copy to identify possible determinants of these compositional, spectral,

image of Fig.�5


Fig. 6. Relationships between elevation, slope, and mean canopy height (MCH) for
study area. Points represent values for individual 100 m pixels for full study area and
colors indicate the geological formation in which the pixel is located (blue corresponds
to Gatuncillo Formation, and red corresponds to Ocú Formation), consistent with Figs. 2
and 3. Black lines indicate linear (a, b) or second-order polynomial (c) regressions. Coeffi-
cients of determination (r2) for regressions are (a) 0.40, (b) 0.36, and (c) 0.69.
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and structural patterns. Elevation predicted 75% of the variation in plant
species composition as represented by NMDS scores, consistent with
the 73% reported byHiggins et al. (2012) for SRTMdata in northwestern
Amazonia. In addition, elevation also explained 75% of the variation in
mean canopy height, consistent with earlier findings in Colombia
(Asner, Clark, et al., 2012), and up to two-thirds of variation in canopy
reflectance. As in Amazonia, we do not believe that elevation is directly
responsible for these patterns, through for example changes in air tem-
perature or climate. Instead, elevation is a strongpredictor of underlying
geology (r2 = 0.71, p b 0.001), and these patterns may be due to a
change in soil properties between vertically stratified geological forma-
tions, consistent with recent findings for both Panama and Peru (Asner
et al., 2010; Higgins et al., 2011; Jones et al., 2013).
In addition, our data suggest that geomorphological variationwithin
geological formations may also be important to regulating forest prop-
erties. Slope explained 80% of the change in plant species composition
(i.e. NMDS scores) and 59% of the variation in mean canopy height in
our study area, and up to three-quarters of the variation in canopy re-
flectance. Both mean canopy height and slope peaked at intermediate
elevations, corresponding to the steep slopes of drainages in the Ocú
Formation. This relationship between slope and forest structure is
consistent with previous studies in Panama, and suggests that factors
influenced by slope—including soil texture, regions of nutrient accumu-
lation, or soil drainage—may also be important in controlling forest
properties (Condit, Engelbrecht, Pino, Perez, & Turner, 2013; John
et al., 2007; Mascaro et al., 2011). It should be noted, however, that at
greater slopes than observed in our study area, we might expect
reduced canopy heights due to increased mortality from mudslides
and treefall (Ren, Leslie, & Duan, 2012).

Based on the data reported here, however, we are not able to
conclude whether geology or slope plays a larger role in regulating
forest properties in the study area, or whether these properties are in-
stead due to unmeasured variables such as land-use history. Elevation
and geology are both strongly correlated with slope (r2 = 0.88 for
both, p b 0.001), making it impossible to separate the relative impor-
tance of these variables to regulating canopy composition, structure,
or reflectance. In practical terms, thismeans that we have few examples
of low slope in theOcú Formation or high slope in the Gatuncillo Forma-
tion. To disentangle the relative importance of geology and slope to
forest properties, we recommend a larger study area incorporating
more variation in slope within these two formations.

In addition, it is possible that the patterns observed here reflect dif-
ferences in land-use history rather than geology or slope. The Panama
Canal area has a long history of human use, and old growth forest is
scarce in the region (Ibanez et al., 2002). Though no reliable land-use re-
cords are available for our study area, human habitation or clearing for
agriculture may have been concentrated on the lower-elevation and
lower-slope areas in the west of our study area. It is thus possible that
the patterns in forest structure and composition reflect recovery from
past disturbance rather than direct control by geology and geomorphol-
ogy. This would explain elevated abundances of young-forest species in
the Gatuncillo Formation, such asGustavia superba (64%more abundant
than expected), Attalea butyracea (81%), and Terminalia amazonia
(73%); and old-forest species in the Ocú Formation, such as Heisteria
concinna (86%), Socratea exorrhiza (100%), and Trichilia tuberculata
(25%).

This said, the close association of patterns in species composition,
canopy reflectance, and forest structure to geology and geomorphology
suggests that these are important underlying drivers of these patterns.
Deep within the Ocú Formation we consistently see variation in these
variables along slope gradients that are unlikely due to human interven-
tion. In addition, we observe clear changes in plant species composition
and VSWIR imagery across the Ocu–Gatuncillo border, both in the east
and north, which are difficult to explain strictly on the basis of human
disturbance. Whatever the case, sensor systems such as CAO-AToMS
can be used to identify these patterns, guide sampling in the field, and
provide data to test the importance of possible determinants.

The findings from the VSWIR sensor comewith one important cave-
at. Due to the number of species sampled, and the time and expense of
collecting and processing leaf samples for chemistry, we could not
calibrate the spectral signatures for our plant inventories to chemical
properties. In light of the consistent differences between the two
geological formations, however, and previous studies in tropical
forests, we are confident that these spectral differences reflect
changes in canopy chemistry (Asner & Martin, 2011; Asner et al.,
2011; Sanchez-Azofeifa et al., 2009). Transects from the two geological
formations were indistinguishable in the near-infrared, suggesting
that forests on these formations do not differ substantially in total leaf
area volume or LAI (Myneni, Nemani, & Running, 1997). However,
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these formations did clearly differ in reflectance in the SWIR1 and
SWIR2 regions, such that the Gatuncillo Formation exhibited consis-
tently higher reflectance values than the Ocú Formation. This difference
suggests lower leaf mass per area (LMA) and lower defense compound
chemical investment on theGatuncillo Formation (Asner et al., 2011). In
addition, transects from the two formations were largely separable in
the visible wavelengths, such that the Gatuncillo Formation again had
higher reflectance, indicating greater investment in chlorophyll and
nitrogen concentrations in foliage (Kokaly et al., 2009; Ustin et al.,
2009). These differences are consistent with a growth-defense tradeoff
scenario in which forests on the nutrient-poor Ocú Formation allocate
to nutrient acquisition and leaf defenses, while forests on the more
nutrient-rich Gatuncillo Formation are free to allocate to light acquisi-
tion and growth. This hypothesis can be tested by soil sampling across
these two geological formations.

Last, a comparison of our findings with earlier studies of medium-
resolution sensors such as Landsat and SRTM reveals the complementa-
ry nature of these high and medium-resolution systems, and suggests
an efficient strategy for deploying airborne sensors. Variations in
Landsat imagery and SRTM elevation data have previously been found
to be correlated with variations in plant species composition at sites in
northwestern Amazonia (Higgins et al., 2012; Salovaara, Thessler,
Malik, & Tuomisto, 2005; Tuomisto, Poulsen, et al., 2003; Tuomisto,
Ruokolainen, et al., 2003), consistentwith our findings for VSWIR imag-
ery and LiDAR elevation data. This indicates that both medium and
high-resolution sensors can be used to identify patterns in plant species
composition in tropical forests. The sensors described here, however,
also allow the measurement of forest properties such as canopy struc-
ture and chemistry, but at the cost of higher expense and smaller foot-
prints. This suggests that airborne sensors could be most efficiently
used by first using lower-resolution sensors such as Landsat and SRTM
to identify broad-scale patterns; and then targeting high-resolution
sensors to areas of rapid turnover. This combination of sensing systems
could provide the information on forest structure and chemistry needed
to understand the dynamics, functioning, and resilience of tropical
forests.
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