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The paper presents a method for determination of the maximum throw of flyrock fragments and the

estimation of safe distances. The method is based upon formulation and solution of differential

equations of ballistic flight of the flyrock fragments. The equations are formulated according to

Newton’s law of motion. Two possible solutions are presented, an approximate numerical solution and

the application of the Runge–Kutta algorithm of the fourth order. As an illustration of the presented

method a post-accidental forensic analysis case study is given describing the procedure for determina-

tion of the input parameters (especially the launch velocity).

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Despite the advance in blasting and explosives technologies,
adverse effects of blasting still remain an issue in both surface and
underground blasting operations. While seismic effects of blasting
affect only the surrounding structures and can cause material
damage, flyrock affects machinery, structures and people. Since
flyrock can cause severe injuries to people, even fatal, it is the
biggest blasting safety concern.

Flyrock is commonly a result of a mismatch between the
energy applied and the energy needed for rock fragmentation and
casting. This mismatch is the result of technical and natural
factors such as blasthole deviation, insufficient burden, insuffi-
cient stemming, existence of faulted or weakened zones in the
rock, etc. While technical factors can be controlled through
precision drilling and control of blasting pattern and geometry,
natural factors usually cannot be influenced.

There are generally three flyrock mechanisms, cratering, rifling
and face burst, which are defined upon the origin of the flyrock
fragments. Cratering is the result of insufficient stemming height
so that flyrock comes from the crater formed around the blasthole
collar. Rifling is a result of insufficient or absent stemming so that
stemming material or rock fragments are propelled through the
ll rights reserved.
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blasthole upwards. Face burst is a result of weakened and faulted
zones in the bench face. The detonation products follow the line
of the least resistance i.e. weakened zone, propelling the rock
fragments from the bench face.

Safety concerns regarding flyrock result in the establishment
of safe distances for machinery and people determined by the
maximum throw of the flyrock fragments multiplied by some
safety factor.

A number of studies [1–3] suggest the scaled burden approach
for the flyrock range prediction and hence the safe distance
definition. All this applies to ‘‘normal’’ flyrock. In some rare cases,
due to a combination of various factors or an error in the blast
design a ‘‘wild’’ flyrock, flyrock traveling distances far beyond the
safe distance, can occur. These excess cases require forensic
analysis of the event in order to determine the cause of flyrock
and usually result in the redefinition of the safe distances.

Various approaches can be used to redefine the safe distance
but this paper suggests the formulation and solution of differ-
ential equations of ballistic flight of the flyrock fragments.
2. Physics of the flyrock fragment flight

The first step in the overall solution is the analysis of the forces
acting upon the flyrock fragment and the application of the
second Newton’s law of motion. The basic forces acting upon
the flyrock fragment following the trajectory or the path s, at any
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Fig. 1. Basic forces acting upon the flyrock fragment.

Fig. 2. Horizontal and vertical projections of the velocity and the drag.
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moment of flight, are the gravity force (G), the resistance force or
drag (D) and the force of lift (L) (Fig. 1).

In some cases, the ballistic flight equations could include
additional forces such as wind influence or the Coriolis effect
(inertial force as a result of the Earth’s rotation) [4–6] but in the
case of flyrock these influence can be neglected. The influence of
wind should be considered if the flyrock fragment has a small
mass and the Coriolis effect can be expected at altitudes that
flyrock fragments cannot reach.

During flight, at any moment of time, according to the second
Newton’s law of motion, an equilibrium condition can be defined
by the vector equation

F ¼ma¼GþD, ð1Þ

or

ma¼GþDþL, ð2Þ

where a is the acceleration of the system. Gravitational force, drag
and lift are defined as follows:

G¼mg, ð3Þ

D¼
1

2
rACDv2 ¼ C1v2, ð4Þ

L¼
1

2
rACDv2

f ¼ C2v2
f , ð5Þ

where m is the mass of the flyrock fragment (kg), g is the
gravitational acceleration (m/s2), r is the density of air (kg/m3),
A is the cross-sectional area of the flyrock fragment, along a plane
perpendicular to the direction of flight (m2), CD is the dimension-
less drag coefficient, v is the flyrock fragment velocity (m/s), CL is
the dimensionless lift coefficient and vf is the free-stream velocity
(m/s). Due to its small, value the lift force can be neglected.

Eq. (2) is the starting point for the formulation of the
differential equations of ballistic flight of the flyrock fragments.
The final solution is the set of data pairs (x, y) defining the
trajectory and hence the throw of a flyrock fragment. This paper
suggests two possible approaches for the formulation and solu-
tion of the differential equations, an approximate numerical
solution and the Runge–Kutta algorithm solution.
3. Formulation and solution of differential equations

3.1. An approximate numerical solution

If projected to horizontal (x) and vertical (y) axis (Fig. 2),
Eq. (2) can be written as a system of two differential equations

m €x ¼�Dx ¼�C1v2 cosy

m €y ¼�mg�Dy ¼�mg�C1v2 siny, ð6Þ

where €x is the horizontal component of the system acceleration
(m/s2), €y is the vertical component of the system acceleration
(m/s2) and y is the angle between the velocity vector (tangent)
and the horizontal axis (degree). Since the angle y is time
dependent, the sine and cosine functions are defined as

vy ¼ vsiny) siny¼
vy

v

vx ¼ vcosy) cosy¼
vx

v
, ð7Þ

where vx and vy are horizontal and vertical component of the
velocity, respectively.

For the initial conditions t¼0-x¼x0, y¼y0, v¼v0 and y¼y0

(where v0, y0 are the launch velocity and angle, respectively) the
system of Eq. (6) can be written as

€x0 ¼�
1

m
C1v2

0

vx0

v0

€y0 ¼�g�
1

m
C1v2

0

vy0

v0
, ð8Þ

At any moment of the flyrock fragment flight the parameters
of flight can be calculated as

vxðiþ1Þ ¼ vxðiÞ þ €xðiÞ Dt

vyðiþ1Þ ¼ vyðiÞ þ €yðiÞDt, ð9Þ

Vðiþ1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xðiÞ þv2
yðiÞ

q
, ð10Þ

€xðiþ1Þ ¼ �
1

m
C1v2

ðiÞ

vxðiÞ

vðiÞ

€yðiþ1Þ ¼ �g�
1

m
C1v2

ðiÞ

vyðiÞ

vðiÞ
, ð11Þ

and finally,

xðiþ1Þ ¼ xðiÞ þvxðiÞDtþ
€xðiÞDt2

2
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yðiþ1Þ ¼ yðiÞ þvyðiÞDtþ
€yðiÞDt2

2
, ð12Þ

where Dt is the timestep.
The set of Eq. (12) gives the coordinates of the flyrock

fragment at discrete moments of flight (x, y). The graphical
representation of these data pairs is the trajectory of the flyrock
fragment. The maximum flyrock throw xmax is determined from
the condition y¼0 (fragment hits the ground).

3.2. Application of the Runge–Kutta algorithm

In this case Eq. (2) is projected on the directions of normal and
tangent to the trajectory (Fig. 3) and can be written as

mat ¼�Gt�D¼�mg siny�C1v2

man ¼�Gn ¼�mg cosy, ð13Þ

where at and an are tangential and normal component of the
acceleration, respectively.

At any moment of flight the flyrock fragment follows the path
s. The path s can be considered as a curve that consists of a series
of circular arcs with corresponding radii RC. The property of the
curved path s is the curvature k. From the differential geometry
the curvature can be expressed as [7,8]

k¼
dy
ds

, ð14Þ

But also as

k¼
1

RC
, ð15Þ

Hence

1

RC
¼

dy
ds
: ð16Þ

According to the definition of the velocity as the first deriva-
tive of the path over time the velocity can be expressed as

v¼
ds

dt
: ð17Þ

From the basic dynamics, tangential and normal (radial)
acceleration are

at ¼
dv

dt
and an ¼

v2

Rc
: ð18Þ

With velocity vector projected to horizontal and vertical axis,
using the relations at ¼ dv=dt and an ¼ v2=Rc , where 1=Rc ¼ dy=ds,
Fig. 3. Tangential and normal components of the forces acting upon the flyrock

fragment.
and with v¼ ds=dt, the set of Eq. (13) can be rewritten as

dv

dt
¼�g siny�

C1

m
v2 ¼�g siny�Cv2

dy
dt
¼�

g cosy
v

dx

dt
¼ vcosy

dy

dt
¼ vsiny: ð19Þ

The set of Eq. (19) is the system of differential equations,
which can be solved using the Runge–Kutta algorithm of the
fourth order (RK 4) in the form [9,10]

viþ1 ¼ viþ
h

6
ðf1þ2f2þ2f3þ f4Þ

yiþ1 ¼ yiþ
h

6
ðg1þ2g2þ2g3þg4Þ, ð20Þ

where h is the timestep and

dv
dt ¼ f ðti,vi,yiÞ

dy
dt ¼ gðti,vi,yiÞ

f1 ¼ f ðti,vi,yiÞ g1 ¼ gðti,vi,yiÞ

f2 ¼ f tiþ
h
2 ,viþ

h
2 f1,yiþ

h
2 g1

� �
g2 ¼ g tiþ

h
2 ,viþ

h
2 f1,yiþ

h
2 g1

� �
f3 ¼ f tiþ

h
2 ,viþ

h
2 f2,yiþ

h
2 g2

� �
g3 ¼ g tiþ

h
2 ,viþ

h
2 f2,yiþ

h
2 g2

� �
f4 ¼ f ðtiþh,viþhf3,yiþhg3Þ g4 ¼ gðtiþh,viþhf3,yiþhg3Þ

,

ð21Þ

and

xiþ1 ¼ xiþ
h

6
ðp1þ2p2þ2p3þp4Þ

yiþ1 ¼ yiþ
h

6
ðq1þ2q2þ2q3þq4Þ, ð22Þ

where

dx
dt ¼ pðti,vi,yiÞ

dy
dt ¼ qðti,vi,yiÞ

p1 ¼ f ðti,vi,yiÞ q1 ¼ f ðti,vi,yiÞ

p2 ¼ f tiþ
h
2 ,viþ

h
2 f1,yiþ

h
2 g1

� �
q2 ¼ f tiþ

h
2 ,viþ

h
2 f1,yiþ

h
2 g1

� �
p3 ¼ f tiþ

h
2 ,viþ

h
2 f2,yiþ

h
2 g2

� �
q3 ¼ f tiþ

h
2 ,viþ

h
2 f2,yiþ

h
2 g2

� �
p4 ¼ f ðtiþh,viþhf3,yiþhg3Þ q4 ¼ f ðtiþh,viþhf3,yiþhg3Þ

:

ð23Þ

The set of Eq. (22) gives the coordinates of the flyrock
fragment at discrete moments of flight and hence the trajectory.
4. A case study

Kamenica quarry is located some 13 km south of Kraljevo,
central Serbia. On May 5th 2007, blasting operations at the quarry
resulted in massive wild flyrock. Fortunately, no one was injured
but several surrounding structures were hit by the flyrock frag-
ments and severely damaged. The authors of this paper
were engaged in conducting a forensic investigation in order to
determine the causes of the flyrock. The procedure of the
numerical solution to the flyrock differential equations of motion
and trajectory prediction is given by an example of the Kamenica
andesite quarry.

4.1. The analysis of the flyrock event

The Kamenica andesite quarry has an elevated position in
relation to the main stone processing platform and the surround-
ing area. It is located near the top of a hill at an elevation of 430 m
above sea level. The material from the quarry is gravitationally
transported to the main platform down a 100 m high cliff (Fig. 4).
The blasting site on May 5th consisted of five individual blasting
series (Fig. 4) with a total of 122 76-mm-diameter blastholes.
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The drilling pattern was staggered with designed burden
B¼2.8 m and spacing S¼3.0 m and blastholes were parallel to
the bench face. The bench height was 14 m and the angle was 701.
The blasthole length varied from 3 m (series I) to 15.5 m (series
II). Two types of cartridged explosives were used, Emulgit 82GP
60/2000 and Emex AN 65/2500 with a total amount of 4467 kg.
The characteristics of the used explosives are given in Table 1. 130
Fig. 4. Topography of the quarry and the position of the blasting series I–V.

Table 1
The characteristics of the applied explosives.

Characteristic Symbol Unit Value

Emulgit 82GP Emex AN

Density qE g/cm3 1.2 1.2

Volume of products V dm3/kg 868 1011

Specific energy q kJ/kg 911 861

Detonation velocity D m/s 4100 4700

Oxygen balance O2 % �1.4 �3.5

Heat of explosion Q kJ/kg 4058 3040

Cartridge diameter dC mm 60 65

Cartridge mass mC kg 2.0 2.5

Cartridge length lC m 0.59 0.63

Fig. 5. Intact stemming zones indicati
non-electric detonators with 17/500 surface/blastohole delay
were used for the initiation of the blasting series. The maximum
charge per delay was 63.5 kg [11].

The investigation revealed that face burst was the basic
mechanism of flyrock in this case. This was supported by the fact
that there were blastholes with intact or almost intact stemming
zone (Fig. 5).

The flyrock came from the whole blasting field but the main
bursting zone was the central part of the blasting series II and
series V.

The final conclusion of the analysis was that the cause of the
flyrock was an unfortunate combination of natural and technical
factors. The rock mass in the bursting zone was highly faulted and
hence weakened. The presence of alternate zones of firm (com-
pact) and altered (weak) andesite additionally complicated the
conditions. The faulting and the alterations (different shades of
gray) of the rock mass can be noticed in Fig. 5. Although the
designed burden should have been 2.8 m, the actual burden in
some parts of the blasting series II was only 0.7�1.2 m (Fig. 6).
Drillhole deviation was not monitored and it probably contrib-
uted to the flyrock occurrence.

Since several surrounding structures were hit by the flyrock
fragments and damaged, it was necessary to inspect the
surrounding area. The main reasons for the inspection were to
ng face burst flyrock mechanism.

Fig. 6. Cross-section through the blasting series II showing causes of flyrock.



Fig. 7. Flyrock fragments found in the area from Fig. 8 (measuring tape in cm). Various sizes position d (a), crater in the soft soil position c (b), position f (c) and position a (d).

Fig. 8. Panoramic view of the affected structures and the impact area (Photos taken from the quarry bench and photomerged) Family house (a), saw mill (b), fragment

crater (c), family house (d), family house (e), tavern (f), fish pond (g) and primary school (h).
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determine the size of the flyrock fragments, their number, the
severity of damage to structures and determine the affected area
in order to redefine the safe distance. The inspection revealed that
flyrock fragments had sizes varying from 3–50 cm and more in
diameter and that, on average, there was one fragment per 16 m2

(Fig. 7)
The most severely damaged structure was a two story family

house with several flyrock fragments penetrating trough the roof
and walls (Fig. 8 position d and Fig. 9).

However, it was impossible to inspect the whole area and
determine the affected zone in that way. Consequently, an
attempt was made to formulate the differential equations of
ballistic flight of the flyrock fragments. The basic idea was that
solutions of these equations would give the trajectories and
maximum throw of the flyrock fragments and hence determine
the affected area and define the safe distance.

4.2. Formulation and solution to differential equations

The differential equations were formulated as described
previously (Eqs. (1–5)) and solved using an approximate numer-
ical solution and the RK 4 method. The differential equations were
formulated and solved for flyrock fragments of sizes 5, 10, 15, 20,
25, 30, 35, 40, 45 and 50 cm in diameter. The basic input
parameters to the differential equations were the mass of the
flyrock fragments, the launch angle and the launch velocities. The
flyrock fragments were approximated as spheres with the dia-
meter corresponding to an average dimension of the fragment.

The mass of the fragment was calculated as

m¼
4

3

d

2

� �3

prR, ð24Þ

where d is the fragment size (m), and rr density of the rock
(2600 kg/m3). The launch angle was assumed to be 451 and this
decision was supported by the fault dip of approximately the same
value (Fig. 5) and the fact that 451 angle should give maximum
throw. The launch velocity, as one of the main parameters, was
difficult to estimate. Some literature sources [3] suggest the estima-
tion of the launch velocity using an impulse approach

v0 ¼
3rED2Dt

32drR

, ð25Þ

where Dt is the length of impulse time (1.8�10�6 s) [3].



Table 2
The initial parameters of flyrock fragments.

Particle
size (m)

Launch
velocity (m/s)

Mass (kg) Cross-section
area (m2)

0.05 150 0.2 0.002

0.10 140 1.4 0.008

0.15 130 4.6 0.018

0.20 120 10.9 0.031

0.25 105 21.3 0.049

0.30 90 36.7 0.071

0.35 80 58.3 0.096

0.40 70 87.1 0.126

0.45 60 124.0 0.159

0.50 55 170.1 0.196

Fig. 9. The damage to structure (50 cm flyrock fragment at 320 m distance).
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If applied, this equation results in the launch velocity of less
than 3.5 m/s for a 50 cm fragment and gives the maximum throw
of less than 10 m. On the other hand, fragments of this size were
found at distances of 300 m and more. This indicated that, if
applicable, Eq. (25) would give the launch velocities for ‘‘normal’’
flyrock or was highly case specific and that different approach
was needed.

The solution which was not case specific was ballistic
approach. With the known actual throw and mass of the flyrock
fragments, it was possible to formulate and analytically solve the
differential equations of ballistic flight neglecting the drag and
lift. With the ‘‘no atmosphere’’ condition the vector Eq. (2)
becomes

ma¼G, ð26Þ

and the set of Eq. (6) becomes

m €x ¼m
d2x

dt2
¼ 0

m €y ¼m
d2y

dt2
¼�mg ð27Þ

Integration of these differential equations gives the expres-
sions for x and y coordinates of flyrock fragment at any moment
of time as

x¼ x0þv0tcosy, ð28Þ

y¼ y0þv0t siny�
gt2

2
: ð29Þ

If t is expressed from Eq. (28), for the initial condition that
x0¼0,

t¼
x

v0 cosy
, ð30Þ

and replaced in Eq. (29) (for the condition that for t¼tmaxy¼0),
the launch velocity can be expressed as

v0 ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2y0 cos2yþ2xsinycosy

r
: ð31Þ

If Eq. (25) is analyzed, a conclusion can be made that the
largest fragments have the lowest launch velocities. Since the
largest flyrock fragments were 50 cm, and were not found at
distances larger than 320 m, this fragment size was used to
calculate the minimal launch velocity. For the initial conditions
x0¼0, y0 ¼100 m, x¼320 m, according to Eq. (31) the launch
velocity of the 50 cm fragments was 47 m/s. Since the drag force
was neglected during these calculations the actual launch velocity
should be estimated by increasing the calculated velocity by 15–
20%. This way the launch velocity of the largest flyrock fragments
was set to 55 m/s. Considering the conclusion that smaller
fragments have higher launch velocities, an attempt was made
to estimate the launch velocity of the smallest fragment by
modifying Eq. (25) into

v0 ¼ Cf
3rED2Dt

32drR

, ð32Þ

where Cf would be a correction factor, which should adjust Eq.
(25) to specific conditions of the study. The first step in the
estimation of the launch velocity of the smallest fragments was
the calculation of Cf. Since launch velocity of the largest fragment
was estimated using ballistic approach, Cf was calculated from the
data for the largest fragment by transformation of Eq. (32)

Cf ¼ v0
32drR

3rED2Dt
: ð33Þ

For the values of detonation velocity and density of Emex AN
(Table 1, Section 4) and 50 cm fragment launch velocity of 55 m/s,
Eq. (33) yields the correction factor Cf¼16. Applying this value to
calculate the velocity of the smallest fragment, Eq. (32) gives the
launch velocity of the 5 cm fragment v0¼550 m/s. This was an
extremely high value and it became obvious that this approach
was erroneous. This confirmed the first conclusion that Eq. (25) is
case specific and should be used with caution and reserve.

On the other hand, there was no data solid enough to base the
calculations upon. In the case of the 50 cm fragments, the fact was
that fragments did not fall at distances larger than 320 m. The
majority of the 5 cm fragments fell at distances below 300 m but
it was not possible to claim with certainty that this was their
maximum throw. Because of that, the launch velocity of the 5 cm
fragment was also estimated using ballistic approach. Since the
recorded throw of the smallest fragments was 300–350 m, the
launch velocity of the 5 cm fragments was estimated using
ballistic equations (no drag) and set to 150 m/s, which corre-
sponds to the recorded throw. The launch velocities for the other
fragment sizes were considered to be between these two values
(55 and 150 m/s) and were estimated and set as shown in Table 2.
It must be mentioned that estimation of the velocities for the
fragments between 5 and 50 cm was not supported by any
calculations. The reason for that was the fact that it was
impossible to inspect the whole area affected by flyrock to
determine the maximum throw for each fragment size and the
purpose of the formulation of ballistic equations was to estimate
the unknown throws.

In the current work, fragments have been approximated to
spheres. The drag coefficient CD for spheres is in the range of
0.07–0.5 [12]. However, in this case the drag coefficient was
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chosen to be 0.8 to compensate for the irregularity and the
surface roughness of the fragments.

4.3. The trajectories of the flyrock fragments

The trajectories of the flyrock fragments were calculated and
plotted according to the approximate numerical solution and RK
4 algorithm. The input parameters for calculations were as
follows. Fragment size d¼5–50 cm, launch velocity (see
Table 2), launch angle y¼451, Fragment mass (see Table 2),
fragment cross-sectional area (see Table 2), Drag coefficient
CD¼0.8, air density r¼1.2044 kg/m3 and timestep Dt¼0.2 s.

The trajectories of the flyrock fragments are given in Figs. 10
and 11 and the impact zone (the area affected by flyrock) is given
Fig. 10. Trajectories plotted according to

Fig. 11. Trajectories plotted ac
in Fig. 12. The impact zone was defined by the maximum throws
and the topography of the terrain.

It is interesting to notice that the largest throw was not
recorded for the smallest fragments, which were assumed to
have the highest launch velocity. The largest throw was recorded
for the mid-sized fragments. Any attempt of explanation of these,
to some extent illogical, results must consider the initial forces,
which are propelling the fragments as well as the forces acting
upon fragments during flight.

In order to discuss the initial propelling forces several assump-
tions must be made. The first assumption is that the fragments
are propelled by the pressure of gaseous products of detonation.
Further, it is assumed that the gaseous products of detonation
take the form of an ellipsoidal bubble and the pressure is equal in
an approximate numerical solution.

cording to RK 4 solution.



Fig. 12. Maximal throw of the flyrock fragments and the impact zone (positions

the same as in Fig. 8).
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nearby points of the bubble surface. This leads to the conclusion
that nearby fragments, regardless of their size, are affected by the
same pressure. The force acting upon a fragment depends on the
amount of pressure and the area of the fragment. The smaller the
area of the fragment the smaller the force and hence the velocity
of the fragment is lower. On the other hand, the force resisting the
movement is the inertia of the fragment. Inertial force is directly
dependent on the mass of the fragment. Again, a smaller fragment
has smaller mass resulting in a smaller inertial force and hence
higher velocity. The conclusion is that the launch velocity
depends on the ratio of the propelling and inertial forces. Now,
looking at Table 2 and comparing the 5 and 50 cm fragments it
can be seen that the 50 cm fragment has a 100 times larger
cross-sectional area than the 5 cm fragment (resulting in a 100
times larger propelling force). The 50 cm fragment, however, has
a 1000 times larger mass than the 5 cm fragment (resulting in
1000 times larger inertial forces). The overall ratio of propelling
and inertial forces for the 5 and 50 cm fragments is 10 times in
favor of the 5 cm fragment confirming the assumption that
smaller fragments have higher launch velocities.

Once airborne the fragments maximum throw is affected by
the horizontal component of the resistance forces. Looking at
Eqs. (4) and (6) it is obvious that the acceleration of the fragment
depends upon the drag force and mass of the fragment. Drag force
is dependent upon the cross-sectional area of the fragment and
the velocity squared. The acceleration, however, is inversely
dependent upon mass again due to the inertia of the fragment.
Now, comparing the two fragments of different sizes (5 and
50 cm) the following can be concluded.

Although the smaller fragment has smaller cross-sectional
area the higher launch and flight velocities result in larger drag
forces. Unlike the larger fragment, the small fragment has a small
mass (inertia), which is insufficient to overcome the drag forces.
The drag forces are therefore dominant preventing the fragment
to reach large throws. However, the inertia of the larger fragment
is large enough to be a dominant force since, despite larger cross-
sectional area, low launch and flight velocities result in a smaller
drag force. The inertia is then the governing force allowing the
larger fragments to reach some larger throws.
The differences in throws of various fragment sizes presented
in Figs. 10 and 11 are the result of a balance in drag forces and
inertia of the flying fragments. The propelling and resistance
forces acting upon the midsize fragments are balanced in a way
that allows them to reach maximum throws. As can be seen from
the figures, the maximum throw of flyrock fragments during
blasting at Kamenica quarry on May 5th 2007 was 650 m for the
20 and 25 cm fragments. This corresponds to the statements of
some eye witnesses that flyrock fragments were falling into a
nearby fish pond at the distance of more than 500 m.

These results led to the conclusion that it was necessary to set
the safe distance for residents at distances larger than 700 m.
However, considering the fact that this was an excess case, the
probability of reappearance is low but existent. Considering that,
efforts should be made to calculate the risk of flyrock of this
magnitude and define the risk zones (zones with specific probabil-
ity/risk of flyrock impact) within the recorded zone of impact. It is
obvious that during each new blast at the quarry, the residents from
the nearest structures should be evacuated and that the residents
from the other structures (within the 700 m distance) should be
alerted. The proximity of the school (within the 400 m distance)
should be taken into account and the blasts, without exceptions,
must be performed on a no school day or after school hours.
Considering the low frequency of the blasts (up to two blasts a
month) this solution (evacuation and no school limitation) is
feasible. An alternative is relocation of several closest structures
but having in mind the frequency of the blasts and the probability of
incident reappearance this alternative is not cost-effective.
5. Conclusions

The basic conclusion of this paper is that it is possible to
formulate the differential equations of ballistic flight of flyrock
fragment and use these equations to calculate/determine/esti-
mate the maximum throw. The solution of the differential
equations can be obtained using an approximate numerical
approach or the Runge–Kutta algorithm of the fourth order.
However, a remark must be made that this solution requires input

data (throw and mass for velocity back calculations) that are

available only after the incident. This means that this approach is
more suitable for post-accidental analysis of the flyrock event and
redefinition of the safe distances since enough data exists to
support the calculations. It can be certainly used to estimate the
safe distances at a new site upon similar experiences but only in
early phases of operation and with high reserve.

This approach is also suitable for urban blasting where flyrock
presents a serious threat to the surrounding structures. A remark
must be made on the absence of proper method for launch
velocity calculations for ‘‘wild’’ flyrock since the launch velocity
is one of the most important input parameters. The establishment
of the valid and non-site-specific method for flyrock launch
velocity prediction would allow wider use of the ballistic
approach and our further research is developing in that direction.

The calculated distances of maximum throw are in fact the
boundary of the impact zone and safe distance should be set at a
larger distance according to the factor of safety. However, if the
blast is conducted according to regulations and as designed, the
‘‘wild’’ flyrock has low probability of appearance, and the sugges-
tion is to perform a risk assessment in order to define the risk
zones within the impact zone. In the specific case of Kamenica
quarry, the solution is to evacuate the residents of the nearest
structures at every future blast and alert the residents of other
surrounding structures. Also, considering the proximity of the
primary school, the future blasts should be conducted on no
school days or after school hours.
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