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SUMMARY

The balance between cellular proliferation and differ-
entiation is a key aspect of development in multicel-
lular organisms. Using high-resolution expression
data from the Arabidopsis root, we identified a tran-
scription factor, UPBEAT1 (UPB1), that regulates
this balance. Genomewide expression profiling
coupled with ChIP-chip analysis revealed that UPB1
directly regulates the expression of a set of peroxi-
dases that modulate the balance of reactive oxygen
species (ROS) between the zones of cell proliferation
and the zone of cell elongation where differentiation
begins. Disruption of UPB1 activity alters this ROS
balance, leading to a delay in the onset of differentia-
tion. Modulation of either ROS balance or peroxidase
activity through chemical reagents affects the onset
of differentiation in a manner consistent with the
postulated UPB1 function. This pathway functions
independently of auxin and cytokinin plant hormonal
signaling. Comparison to ROS-regulated growth
control in animals suggests that a similar mechanism
is used in plants and animals.

INTRODUCTION

Growth in multicellular organisms depends on maintaining the

proper balance between cell division and differentiation. Disrup-

tion of this balance in animals can lead to disease states such as

cancer. In plants, because organs are continuously formed from

stem cells, disruption of this balance leads to premature cessa-

tion of growth or abnormal organogenesis. In the root of Arabi-

dopsis, cells originate from a stem cell center at the tip. Progeny

of these stem cells rapidly divide in a transit-amplifying zone

know as the meristem, after which they undergo massive

increases in cell volume in the elongation zone. The transition

from cellular proliferation to elongation marks the initial stage

of differentiation and occurs at a slightly different point for

each cell type, producing a somewhat jagged boundary of this

transition zone (TZ). Once fully elongated, cells enter the matura-

tion zone in which they differentiate into various cell types.

Previous work has shown that root growth is determined by
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the rate of cell division in the meristematic zone and the extent

of cell expansion in the elongation zone (Beemster and Baskin,

1998). Acceleration of root growth in Arabidopsis is correlated

with increasing root meristem size as a result of increased rates

of cell division and the delay of the onset of cell expansion

(Ubeda-Tomas et al., 2009).

Several factors have been identified that are involved in the

regulation of the transition from cellular proliferation to differen-

tiation. The PLETHORA (PLT) proteins have been shown to

determine the position of the stem cell niche and are required

to maintain stem cell activity (Aida et al., 2004). There is also

evidence that the balance between the hormones cytokinin

and auxin in the TZ plays an important role in defining the size

of the meristem (Dello Ioio et al., 2008). External applications of

these hormones can change the position of the TZ. The under-

lying mechanism involves a cytokinin-dependent transcription

factor, ARR1, which regulates the expression of another tran-

scription factor, SHY2, which acts in auxin signaling (Dello Ioio

et al., 2008). It is unclear whether this hormonal signaling interac-

tion is the only means of controlling the transition from prolifera-

tion to differentiation.

Evidence for another pathway acting to maintain meristem

function came from studies of the ROOT MERISTEMLESS1

(RML1) gene. Mutations in this gene result in plants that are

not able to establish an active root meristem. RML1 encodes

a glutathione biosynthetic enzyme, which has been shown to

be important for regulating cellular redox states. Furthermore,

it was shown that the G1-to-S cell-cycle transition in synchro-

nized tobacco cell suspension culture required an adequate level

of glutathione (Vernoux et al., 2000). These results suggested

that redox regulation plays an important role in maintaining

root meristem activity. Moreover, this is supported by the finding

that differences in superoxide and hydrogen peroxide accumula-

tion in the root tip significantly affect root growth and differenti-

ation (Dunand et al., 2007). In animals, there are numerous

studies indicating that reactive oxygen species (ROS) distribu-

tion plays an important role in regulating cell state decisions

(Owusu-Ansah and Banerjee, 2009; Sarsour et al., 2008).

However, no molecular link between ROS distribution and cell

status has been previously established at the transcriptional

level in either plants or animals.

Here, we show that a bHLH transcription factor, UPBEAT1

(UPB1), modulates the balance between cell proliferation and

differentiation by directly regulating the expression of a set of
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Figure 1. Features of the upbeat1 (upb1)

Mutant

(A) Wild-type Col-0, upb1-1, and 35S::UPB1-3YFP

seedlings 5 days after imbibition (dai).

(B) Average root length (y axis) of 50 individuals of

Col-0 (blue), upb1-1 (red), and 3 independent

35S::UPB1-3YFP (green, purple, and light blue)

lines. Measurements were taken over several

days (x axis). Error bars depict standard deviation

(SD).

(C) Genomic structure of At2g47270 and position

of the T-DNA insertion of upb1-1 and upb1-2

mutants. The predicted protein is depicted below.

Gray shaded box shows basic helix-loop-helix

domain (bHLH).

(D) Root tip morphology of 6 dai Col-0, upb1-1,

and 35S::UPB1-3YFP (line #2) plants. Blue arrow-

heads mark quiescent center (QC) cells, whereas

white arrowheads indicate cortex transition zones.

Scale bar, 50 mm.

(E) Average number of cells in the root meristems

(y axis) of Col-0, upb1-1, and 3 independent

35S::UPB1-3YFP lines at 6 dai (n > 50, ± SD);

** p < 0.001, as determined by a Student’s t test.

See also Figure S1.
peroxidases. Peroxidases are known to regulate the levels of

certain ROS, particularly hydrogen peroxide and superoxide.

Staining for the presence of these ROS in the root and altering

their concentrations using chemical reagents showed a clear

correlation between growth rate, location of the TZ, and the rela-

tive distribution of different ROS species in the meristematic and

elongation zones. Interestingly, differences in the localization of

UPB1 in transcriptional and translational reporter lines suggest

that this transcriptional regulator might also function as an inter-

cellular signaling molecule. We show evidence that UPB1

provides a direct transcriptional link between ROS distribution

and the proliferation status of the cells in the root tip.

RESULTS

UPBEAT1 Controls the Transition from Cellular
Proliferation to Differentiation
To identify transcription factors (TFs) that regulate the first stages

of the transition from cellular proliferation to differentiation, we
Cell 143, 606–616, N
analyzed the RootMap gene expression

data (Brady et al., 2007a) and identified

approximately 100 TFs with increased

expression at the boundary between the

meristematic and elongation zone, which

marks the onset of differentiation. We

screened T-DNA insertional mutant lines

available for 96 of these genes, looking

for alterations in primary root growth

rates. One line (SALK_115536) developed

a longer root than wild-type and con-

tained an insertion in At2g47270 (Figures

1A and 1B). This gene showed a particu-

larly prominent expression peak at the
boundary between the meristematic and elongation zone (Fig-

ure S1A available online). By qRT-PCR, we confirmed that the

T-DNA insertion caused a strong reduction in expression of

At2g47270, which encodes an uncharacterized protein with

a bHLH domain (Figures S1B and S1C). The bHLH domain

occupies 70% of the 102–amino acid protein, which we named

UPBEAT1 (UPB1) (Figure 1C). The Arabidopsis genome contains

147 genes that are predicted to encode proteins with a bHLH

domain. UPB1 belongs to the bHLH-subfamily 14, but it is only

distantly related to the other members of that subfamily

(Toledo-Ortiz et al., 2003). Apart from the bHLH domain, no other

functional domains were predicted in UPB1.

To determine the effects of the insertional mutation (upb1-1)

on root growth, we counted the number of cortex cells in a cell

file extending from the quiescent center (QC) to the first elon-

gated cell, as a measurement of meristem size (Dello Ioio

et al., 2007). We found a significant increase in cortex cell

number in the upb1-1 mutant, indicating enlargement of the

meristem (Figures 1D and 1E). No difference was detected in
ovember 12, 2010 ª2010 Elsevier Inc. 607



Figure 2. UPB1 Gene and Protein Expression Patterns in the Root

(A–C) Expression of pUPB1::GFP (transcriptional fusion) in wild-type.

(D–F) Localization of pUPB1::UPB1-GFP (translational fusion) in upb1-1 back-

ground.

(G–I) Localization of pUPB1::UPB1-3YFP in upb1-1 background.

The three zones with GFP signal are depicted: meristematic zone (A, D, andG),

transition zone (B, E, and H), and the lateral root cap (C, F, and I). Note that the

lateral root cap images are of the surface of the root, whereas themeristematic

and transition zone images are of median longitudinal optical sections. Scale

bars, 50 mm. See also Figure S2.
the radial pattern of root cell layers between upb1-1 and wild-

type, suggesting that UPB1 functions primarily in regulating

root growth as opposed to patterning. The only other available

T-DNA insertion was located at the end of the 30 UTR of UPB1.

We were unable to detect any phenotypic effects or significant

UPB1 expression level changes in this line. To further explore

the function of UPB1, we created ectopic expression lines with

the constitutive 35S promoter and a fluorescent reporter

(35S::UPB1-3YFP). Three independent lines showed reduced

root length and a decrease in cortex cell number in the meriste-

matic zone. (Figure 1). To determine whether cell size was also

regulated by UPB1, we measured the length of the first cell in

thematuration zone in upb1-1 and in the 35S::UPB1-3YFP trans-

formants. In upb1-1, cells were longer than in wild-type, whereas

in the 35S::UPB1-3YFP lines, cells were shorter than in wild-type

(Figure S1D). Taken together, these results suggest that UPB1

acts as a regulator of root growth throughmodulation of the tran-

sition from cell proliferation to elongation as well as playing a role

in controlling cell size.

The UPB1 Protein Appears to Move from the Lateral
Root Cap to the Elongation Zone
A correlation exists between the position of the lateral root cap

(LRC) furthest from the root tip and the TZ (Willemsen et al.,
608 Cell 143, 606–616, November 12, 2010 ª2010 Elsevier Inc.
2008), but the underlying mechanism is unknown. The tissue-

specific expression data indicate that UPB1mRNA is expressed

in the vascular tissue as well as in the COBRA-like 9 (COBL9)

expression domain, which includes root hair and LRC (Brady

et al., 2007a, 2007b). To begin to determine whether UPB1might

play a role in the signaling process between the LRC and the TZ,

we constructed transcriptional and translational fusions and

transformed them into plants. For the transcriptional reporter,

we used 3002 bp upstream of the putative start codon fused

to GFP (pUPB1::GFP). Five independent lines exhibited strong

fluorescence in cells of the LRC close to the TZ. Outside of the

LRC, fluorescence was detected in the vascular tissue of the

elongation and maturation zones (Figures 2A–2C). For the trans-

lational reporter, we used the same promoter upstream of the

UPB1-coding region fused to GFP (pUPB1::UPB1-GFP). Inter-

estingly, in plants containing this construct, we detected low

GFP fluorescence in the LRC and the meristematic zone. Fluo-

rescence was primarily localized to the nuclei of all cell types in

the elongation zone (Figures 2D–2F). We also detected weak

fluorescence in the maturation zone. Expression of the transla-

tional fusion in the upb1-1 line rescued the mutant phenotype

(Figures S2A–S2C), indicating that the fusion protein functions

in a manner similar to the native UPB1 protein. The difference

between mRNA and protein localization suggests that the

UPB1 protein might move from the LRC or vascular tissue to

function in all cell files in the elongation zone. To test this, we

used the same promoter but fused the UPB1-coding region to

a triple yellow fluorescent protein (3YFP) tag, because this tag

has a highmolecular weight and has been used to reduce protein

movement (Kurata et al., 2005). In pUPB1::UPB1-3YFP plants,

YFP fluorescence was detected primarily in the nucleus of the

LRC, in addition to all cells in the elongation zone (Figures 2G–

2I). We conclude from this localization pattern that movement

was reduced in these lines but not eliminated. Consistent with

this observation, the mutant phenotype was partially rescued

(Figure S2D).

Identification of Genes Regulated by UPB1
The spatial distribution of the UPB1 protein suggested that it

might exert a different effect on gene expression in the meriste-

matic and elongation zones. Therefore, we isolated the meriste-

matic and elongation zones by microdissection and extracted

RNA from each section independently. In the meristematic

zone of upb1-1mutants, expression of only 55 genes was signif-

icantly altered in comparison to wild-type (2-fold change,

p < 0.05), whereas expression of 738 genes was affected in

the elongation zone of the mutant roots (Figure 3A). This finding

was consistent with the hypothesis that UPB1 is primarily active

in the elongation zone. Further support came from microarray

analysis of ectopic expression of UPB1 in the upb1-1 mutant.

Stronger transcriptional effects were observed in the meriste-

matic zone (1809 genes) than in the elongation zone (812 genes).

If UPB1 normally acts in the elongation zone, then ectopic

expression in the meristematic zone would be expected to

have a greater effect there than in the elongation zone where it

normally functions. Because of the minimal effects of the

upb1-1 mutation on gene expression in the meristematic zone,

we did not include these data in our subsequent analyses.



Figure 3. Expression and Function of UPB1 Response Genes

(A) Transcriptome changes upon alteration of UPB1 expression levels. The

heat map includes all genes that were differentially expressed in at least one

of the microarray experiments. Green indicates an increase in expression,

red indicates a decrease in expression; color intensity indicates the magnitude

of the effect.

(B and C) Enriched Gene Ontology (GO) categories within gene lists consisting

of genes that are negatively (B) or positively (C) regulated by UPB1.

See also Figure S3 and Table S1.
Meta-analysis approaches to integrate diverse and inherently

noisy data have proven useful to identify transcription factor

target genes (Busch et al., 2010; Levesque et al., 2006). We per-

formed a meta-analysis of the three datasets in which significant

changes occurred. Analogous to Busch et al. (2010), we ob-

tained a cumulative Z score (cZS) for each gene and empirically

determined a significance threshold for the cZS by random

sampling (see Supplemental Information for details). Using the

significance threshold of p < 0.01, we identified 2375 UPB1-

responsive genes that exhibited consistent expression changes

upon modulation of UPB1 expression (Table S1). To investigate

the biological function of these genes, we identified significantly

enriched Gene Ontology (GO) categories (Figures 3B and 3C).

GO enrichment analysis associates each gene of a list with

distinct biological processes and then evaluates whether the

list contains more genes than expected by chance for a certain

biological process. The most significantly enriched GO category

of genes negatively regulated by UPB1 was ‘‘peroxidase
activity’’ (p < 10�11). Another highly enriched category was

‘‘response to reactive oxygen species’’ (p < 10�4). We found

these to be particularly interesting because recent reports indi-

cated that peroxidases and ROS play an important role in

controlling root growth (Dunand et al., 2007; Passardi et al.,

2006). The ROS produced by peroxidases is essential in the

peroxidase-mediated formation of lignin (Ros Barcelo, 1997),

which is required for the formation of primary cell walls. We

also found that ‘‘lignin biosynthetic process’’ (p < 10�3) and ‘‘li-

gnan biosynthetic process’’ (p < 10�6) GO categories were over-

represented within derepressed genes in upb1-1. Further indica-

tion that UPB1 regulates cell wall remodeling is found in other

enriched GO categories: ‘‘cellular glucan metabolic pathway’’

(p < 10�6), ‘‘cell wall’’ (p < 10�4), ‘‘phenylpropanoid biosynthesis’’

(p < 10�5), and ‘‘secondary cell wall biogenesis’’ (p < 10�3).

These findings raise the possibility that UPB1 controls growth

by regulating ROS activity, which in turn regulates cell wall

remodeling.

Among genes that were positively regulated by UPB1, the en-

riched GO categories were ‘‘tRNA processing’’ (p < 10�6), ‘‘ATP-

dependent helicase activity’’ (p < 10�6), ‘‘DNA-directed RNA

polymerase activity’’ (p < 10�5), ‘‘maintenance of DNA methyla-

tion’’ (p < 10�4), and ‘‘regulation of cell cycle’’ (p < 10�3). These

would also appear to be involved in growth and replication

processes although we think it is likely that these are indirect

responses. In particular, the genes in the cell cycle GO category

contained both S-phase and M-phase activated genes, indi-

cating that there is no specificity for a particular phase of the

cell cycle. We note that we did not find enrichment for genes

involved in plant hormone homeostasis or signaling.

Identification of UPB1 Direct Targets
To identify UPB1 direct targets, we performed chromatin immu-

noprecipitation of UPB1 followed by hybridization to a custom

oligonucleotide microarray (ChIP-chip). We reasoned that

a subset of the genes found by microarray expression analysis

should be overrepresented in the ChIP-chip binding data. On

the basis of this assumption, we systematically explored the

parameter space to optimize our detection settings for enriched

regions in the ChIP-chip experiments (for details, see Extended

Experimental Procedures). By using highly stringent conditions

in which transcriptionally regulated genes were enriched, we

identified 166 putative UPB1 direct target genes (Table S2).

These included genes of various annotated functions, including

quite a few transcription factors indicating that UPB1might regu-

late a cascade of transcription factors. Of particular interest were

three peroxidase genes (Figure 4A) that are expressed highly at

the boundary of the meristematic and elongation zone in the

RootMap datasets (Figure S3). All three (At4g11290; Per39,

At4g16270; Per40, At5g17820; Per57) are up-regulated in the

upb1-1mutant and down-regulated in the UPB1 ectopic expres-

sor (Figure 4B). Consistent with these results, the phenotype of

an overexpressor of another peroxidase gene (Per34) had longer

roots than wild-type, whereas the double knockdown line of

Per33 and Per34 had shorter roots (Passardi et al., 2006). To

investigate whether the UPB1 target peroxidases also play

a role in root growth, we ectopically expressed Per57 by driving

its cDNA with the 35S promoter. Three independent lines
Cell 143, 606–616, November 12, 2010 ª2010 Elsevier Inc. 609



Figure 4. UPB1 Binding of Upstream Regu-

latory Regions and Resulting Transcrip-

tional Effects

(A) Binding profile of UPB1 to upstream regulatory

regions of At4g11290, At4g16270, and

At5g17820. UPB1-bound chromosomal regions

are shown by average Z scores of enrichments in

the 4 ChIP-chip experiments (y axis). Genomic

positions (x axis) are given relative to the anno-

tated transcription start of the indicated primary

RNA. Shaded areas indicate genomic regions

that were detected as enriched.

(B) Expression profiles of UPB1 direct targets,

At4g11290, At4g16270, and At5g17820 from

microarray data.

(C) Root tip morphology of 6 dai Col-0, upb1-1,

and 35S::Per57-GFP (line #1 to #3) plants. Blue

arrowheadsmark QC cells; white arrowheads indi-

cate cortex transition zones. Scale bar, 50 mm.

(D) Average number of cells in root meristems of

Col-0, upb1-1 and 3 independent lines of 35S::

Per57-GFP (line #1 to #3) plants (n > 20, ± SD;

**p < 0.001, Student’s t test; *p < 0.05).

See also Table S2 and Figure S7.
displayed a significantly larger meristem than wild-type. The

phenotype was not as pronounced as in upb1-1 mutants

(Figures 4C and 4D), suggesting that the peroxidases directly

controlled by UPB1 play additive roles in regulating root growth.

Redox Processes Are Important for Regulating Root
Growth
Upon treatment with H2O2 for 24 hr, the root meristem in wild-

type became significantly shorter (Figures 5A and 5C) and root

length was reduced. In contrast, H2O2 treatment of the upb1-1

mutant andUPB1 ectopic expressor did not result in a significant

change ofmeristem size (Figures 5A, 5F, and 5I) or growth. Scav-

enging H2O2 by treating with potassium iodide (KI) in wild-type

resulted in a longer root, which contained a larger root meristem

(Figures 5A and 5D). The same treatment had no effect on the

meristem size in the upb1-1 mutant but significantly increased
610 Cell 143, 606–616, November 12, 2010 ª2010 Elsevier Inc.
the meristem size of the UPB1 ectopic

expressor (Figures 5A, 5G, and 5J). The

insensitivity of the upb1-1 mutant to

H2O2 scavenging is consistent with the

up-regulation of peroxidase genes and

a decrease in H2O2 levels (Figure S4).

Moreover, subjecting the mutant to addi-

tional H2O2 has no effect on meristem

size (Figure 5), consistent with the idea

that the upregulated peroxidases are

able to continually scavenge even an

excess of H2O2.

To directly investigate the role of

peroxidases in root growth, we treated

plants with salicylhydroxamic acid

(SHAM), an inhibitor of peroxidase

activity (Brouwer et al., 1986). Wild-type

meristems treated with SHAM became
significantly smaller than those of untreated roots. The same

treatment led to a decreased size of the meristem in upb1-1

plants, to the extent that they were similar to untreated wild-

type roots (Figure 5K). Conversely, the inhibitor had almost no

effect on root meristem size in the UPB1 ectopic expressor

(Figure 5K).

Using a different peroxidase inhibitor, KCN (Bestwick et al.,

1997), which inhibits a broader spectrum of peroxidases (Chen

and Asada, 1989), even stronger effects could be observed.

These included a decrease of meristem size in the UPB1 ectopic

expressor (Figure 5K).

These results indicated that H2O2 content and the regulation of

H2O2 by UPB1-controlled peroxidase is important for root

growth. To investigate the spatial aspect of this regulation, we

determined the distribution of H2O2 by applying 30-(p-hydroxy-
phenyl) fluorescein (HPF) to roots. HPF is known to stain



Figure 5. Effects of ROS Level Changes

(A) Average number of cells in root meristems of Col-0, upb1-1, and

35S::UPB1-3YFP #2 plants (n > 30, ± SD; **p < 0.001, Student’s t test;

*p < 0.05).

(B–J) Root meristems of 6 dai plants upon various treatments for 24 hr. Scale

bars, 50 mm. Panels show untreated Col-0 plant (B), 100 mM hydrogen

peroxide (H2O2) (C), 1 mM potassium iodide (KI) treated Col-0 plants (D),

untreated upb1-1 mutant (E), 100 mM H2O2 (F), 1 mM KI treated upb1-1

mutants (G), untreated 35S::UPB1-3YFP #2 (H), 100 mM H2O2 (I), and 1 mM

KI treated 35S::UPB1-3YFP #2 plants (J); blue arrowheads indicate cells of

the QC and white arrowheads indicate the cortex transition zone.

(K) Average number of cells in root meristems of Col-0, upb1-1 and

35S::UPB1-3YFP plants after 24 hr treatment with 100 mM SHAM, 100 mM

KCN, and 100 mM DPI (n > 30, ± SD; **p < 0.001, Student’s t test; *p < 0.05).

See also Figure S4.
hydrogen peroxide (Dunand et al., 2007). The intensity of HPF

fluorescence changed according to our expectations after

different treatments that modified ROS levels in roots (Figures

S4A–S4M). In wild-type, strong HPF fluorescence was detected

in the columella, the LRC, in the vasculature, and the epidermis

of the elongation zone. Fluorescencewas substantially weaker in

the meristematic zone than in the elongation zone (Figures 6B

and 6D). In the upb1-1 mutant, less HPF fluorescence in the

entire root was observed (Figures 6A and 6D). Conversely, in

the UPB1 ectopic expressor, HPF fluorescence was increased

(Figures 6C and 6D). We also used the highly specific H2O2 indi-
cator, BES-H2O2-Ac (Maeda, 2008; Maeda et al., 2004), with

results similar to those of HPF staining (Figures 6E–6H). These

two independent assays provide strong support for our hypoth-

esis that increased peroxidase activity in upb1-1 results in lower

H2O2 levels, whereas repression of peroxidases in the meristem

in the ectopic expression lines results in an increase in H2O2

levels.

Another aspect of ROS growth regulation involves superoxide

(O2
,�), which is thought to be produced by the activity of NADPH

oxidases and has been shown to affect root growth and root hair

development (Foreman et al., 2003). To investigate the role of

O2
,� in UPB1-regulated root growth, we treated plants with di-

phenylene iodonium (DPI), which primarily inhibits NADPH

oxidase activities. In both wild-type and upb1-1, treatment with

DPI resulted in a reduction in meristem size but there was no

effect on the meristem of the UPB1 ectopic expressor (Fig-

ure 5K). Furthermore, to determine the distribution of O2
,� in

the root, we stained roots with nitroblue tetrazolium (NBT), which

is widely used as an indicator of O2
,� levels (Bielski et al., 1980).

In wild-type, strong staining appeared in all cell types in themeri-

stematic zone, whereas only the vascular tissue in the elongation

zone showed staining, indicating that O2
,� preferentially accu-

mulates in the root meristematic zone (Figure 6J). In upb1-1,

staining of the meristematic and elongation zones was more

intense compared to wild-type plants (Figures 6I and 6L). Inter-

estingly, the O2
,� level in wild-type roots treated with KI ap-

peared similar to that of upb1-1 roots (Figures S4N–S4Z). In

contrast, in the UPB1 ectopic expressor, staining of the meriste-

matic and elongation zones appeared weaker than in wild-type

(Figures 6K and 6L). We also used dihydroethidium (DHE) as

a second indicator for O2
,� (Owusu-Ansah et al., 2008). DHE

fluorescence was similar to the NBT staining (Figures 6M–6P).

These results are consistent with UPB1 functioning as a regulator

of ROS production through repression of peroxidase gene

expression. Finally, we performed simultaneous staining for

H2O2 and O2
,� by using BES-H2O2-Ac and DHE on the same

roots (Figures 6Q–6S). The simultaneous staining results suggest

that there are opposing gradients of H2O2 and O2
,�. The

crossing point of these gradients is altered in plants with modi-

fied UPB1 expression and coincides in each case with the onset

of differentiation. This raises the possibility that the crossing

point of the two gradients might determine the position of the

TZ in the Arabidopsis root tip.

To determine whether ROS also influences the process of cell

expansion, we measured the size of the first mature cells in

upb1-1, the UPB1 ectopic expressor and the Per57 overexpres-

sor, aswell as after different ROS treatments.We found apositive

correlation between cell length and meristem size (Figure S5C).

Finally, we examined UPB1 expression after treatment with

H2O2 and KI. H2O2 treatment caused up-regulation of UPB1

expression, whereas KI treatment reduced UPB1 expression

(Figure S5A). This indicates that H2O2 levels regulate UPB1

expression creating a feed back loop in ROS signaling.

Taken together, our results are consistent with a model in

which UPB1 acts to repress peroxidase expression in the elon-

gation zone. In the upb1-1 mutant, this results in an increase in

O2
,� and a decrease in H2O2 in this region of the root (Fig-

ure S5B). The balance of these ROS molecules appears to be
Cell 143, 606–616, November 12, 2010 ª2010 Elsevier Inc. 611



Figure 6. ROS Distribution and Proliferation/Differentiation

(A–S) Six dai roots stainedwith 30-(p-hydroxyphenyl) fluorescein (HPF) (A–C), BES-H2O2-Ac (E–G), nitroblue tetrazolium (NBT) (I–K), dihydroethidium (DHE) (M–O),

and both DHE and BES-H2O2-Ac (Q–S). Panels show upb1-1 (A, E, I, M, and Q), Col-0 (B, F, J, N, and R), 35S::UPB1-3YFP #2 (C, G, K, O, and S). Scale bars,

50 mm. Quantification of HPF (D), BES-H2O2-Ac (H), and DHE fluorescent intensity (P) are shown (n = 20, ± SD). Quantification of NBT staining intensity is seen (L)

(n = 20, ± SD; **p < 0.001, Student’s t test; *p < 0.05).

(T) Model of UPB1-dependent regulation of meristem size. In Col-0 root tips (center panel), superoxide (O2
,�) accumulates in the meristem (blue area), whereas

hydrogen peroxide (H2O2) accumulates in the elongation zone (green area). UPB1 represses expression of peroxidases (pink circles) in the elongation zone. In the

upb1-1 mutant (left panel) peroxidases are derepressed and higher abundance of peroxidases leads to increased content of O2
,�. On the other hand, UPB1

ectopic expressor (right panel) represses peroxidases and leads to increased levels of H2O2.

See also Figure S5.
important for making the transition from cell proliferation to

differentiation (Figure 6T).

UPB1 Does Not Appear to Act through Cytokinin
and Auxin Signaling
Our data strongly implicate ROS as being central to UPB1 func-

tion in regulating root growth. It is known that the ratio of cyto-

kinin to auxin is important in controlling the balance of cell divi-

sion and differentiation in the root, and that two key

transcription factors, SHY2/IAA3 and ARR1, control this process

(Dello Ioio et al., 2008). The arr1 mutant has a large meristem
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phenotype similar to that of upb1-1. A first indication that

UPB1 is not involved in the same signaling pathway as ARR1

and SHY2 came from examination of our microarray datasets

in which neither gene appears to be responsive to UPB1 (Table

S1). We confirmed this by qRT-PCR (Figure S6).

Exogenous cytokinin application decreased the meristem size

of upb1-1 in a similar fashion to that of wild-type, whereas exog-

enous auxin increased the meristem cell number in upb1-1 and

in the UPB1 ectopic expressor in a manner similar to wild-type

(Figure 7). Furthermore, exogenous application of auxin and

cytokinin had almost no effect on UPB1 expression in either



Figure 7. Effects of Cytokinin and Auxin on

Developmental Zones of the Root

(A) Average number of cells in root meristems of

Col-0, upb1-1, and 35S::UPB1-3YFP #2 plants

(n>30,±SD; **p<0.001,Student’s t test; *p<0.05).

(B–J) Rootmeristems of 6 dai plants after hormonal

treatment for 24 hr (scale bars, 50 mm): untreated

Col-0 plant (B), 0.5 nM IAA (C), 5 mM transzeatin

(Zt) treated Col-0 plants (D), untreated upb1-1

mutant (E), 0.5 nM IAA (F), 5 mM Zt treated upb1-1

mutants (G), untreated 35S::UPB1-3YFP #2 (H),

0.5 nM IAA (I), and 5 mM Zt treated 35S::UPB1-

3YFP #2 plants (J). Blue arrowheads indicate cells

of theQCandwhite arrowheads indicate the cortex

transition zone.

See also Figure S6.
the wild-type meristem or elongation zone (Figure S6). These

results indicate that UPB1-mediated regulation of meristem

size is likely to be independent of auxin and cytokinin signaling.

DISCUSSION

UPB1 Regulates ROS Signaling to Control the Transition
from Proliferation to Differentiation
Our microarray expression analysis coupled with UPB1 ChIP-

chip analysis indicated that UPB1 directly represses a set of

peroxidases as cells begin to differentiate. The use of chemical

inhibitors and the ectopic expression of one of the target perox-

idase genes (Per57), as well as chemical indicators for ROS

provided strong evidence that these peroxidases control ROS

distribution, which in turn governs the transition from prolifera-

tion to differentiation. Further support for this hypothesis comes

from treatment with peroxidase inhibitors, which cause a reduc-

tion in the size of the root meristem, indicating an earlier onset of

differentiation (Figure 5K).

These genetic and chemical studies reveal the importance of

peroxidase activity in the root tip and are consistent with our

interpretation of the upb1-1 phenotype as being directly related

to UPB1 regulation of at least three Class III peroxidases. In Ara-

bidopsis, there are 73 Class III peroxidase genes (Tognolli et al.,

2002) of which 60 are represented on the ATH1 array, and 21 of

these were affected by UPB1. All 21 genes are expressed

primarily in the elongation zone (Figure S3). We obtained T-DNA

insertion lines for many of the peroxidases that are UPB1 targets,

but the single mutants did not show obvious phenotypes (data

not shown), probably because of functional redundancy.

Peroxidases have two opposite functions: one is the reduction

of H2O2 by moving electrons to various donor molecules and the

second is to catalyze the hydroxylic cycle, which results in the
Cell 143, 606–616, N
formation of ROS, particularly O2
,�. In

the upb1-1 mutant, the distribution of

O2
,� and H2O2 was altered apparently

as the result of derepression of a set of

peroxidases. In living organisms, H2O2

is more stable than O2
,� (Pitzschke

et al., 2006). O2
,� is transformed into

H2O2 both spontaneously and through
enzymatic activity of superoxide dismutase and other enzymes,

such as apoplastic oxalate oxidase (Caliskan and Cuming,

1998), diamine oxidase (Federico and Angelini, 1986), or perox-

idase (Elstner and Heupel, 1976). Our results indicate that, in

wild-type, O2
,� accumulates primarily in the meristematic

zone whereas H2O2 accumulates mainly in the elongation

zone. Given the changes in ROS distribution in upb1-1 and

35S::UPB1-3YFP, it would appear that O2
,� and H2O2 distribu-

tion are important for localization of the transition zone. In the

upb-1 mutant, the consumption of H2O2 by peroxidases in the

elongation zone might drive production of O2
,� in the meriste-

matic zone to maintain ROS homeostasis. In 35S::UPB1-3YFP,

these peroxidases are repressed, which leads to accumulation

of H2O2 in themeristematic zone. Consistent with this interpreta-

tion, SHAM treated roots haveH2O2 accumulation in themeriste-

matic zone (Figure 6, Figure S4, and Dunand et al., 2007) and at

least five NADPH oxidase genes were up-regulated in the upb1-

1 mutant (Table S1). We also determined the meristem size of 3

NADPH oxidase mutants (AtrbohC, AtrbohD, and AtrbohC).

None of them showed a reduction in meristem size (data not

shown). This finding suggests that there is functional redundancy

among these genes for root meristem maintenance because

inhibition of NADPH oxidase activity by DPI resulted in a reduc-

tion in meristem size (Figure 5K).

These results lead to the following working model. Mainte-

nance of cellular proliferation requires an accumulation of

O2
,�, whereas cellular differentiation requires elevated H2O2

levels. These two different ROS environments coincide with the

meristematic and the elongation zone, as visible in the double

staining of H2O2 and O2
,�. Because of the gradient nature of

the ROS species distribution, the cells that enter the transition

zone can still proliferate. Once the ratio between O2
,� and

H2O2 concentrations reaches a certain level, the cells stop
ovember 12, 2010 ª2010 Elsevier Inc. 613



proliferating and begin to elongate (Figure 6T). According to this

working model, the ROS balance in the transition zone plays

a critical role andUPB1 is one of the key regulators inmaintaining

this balance. Because H2O2 itself affects UPB1 expression, this

regulatory system contains a feedback loop that might play

a role in ROS homeostasis. Because high levels of ROS can

damage cells, a feedback loop could allow the plant to maintain

proper ROS levels. It would also constitute a system for adjusting

ROS levels to maintain the proper balance between proliferation

and differentiation.

To further investigate this hypothesis, we mined the oxidative

stress data available in the public microarray databases. The At-

GenExpress dataset contains experiments in which methyl viol-

ogen, a compound that causes continuous formation of O2
,�

(Asada, 2006) was used. UPB1 was up-regulated after 24 hr of

treatment, and the peroxidases that are direct targets of UPB1

showed decreased expression. Some peroxidases that are not

targets of UPB1 showed increased expression, indicating that

there might be compensatory expression responses to maintain

ROS homeostasis (Figure S5D). Alternatively, the up-regulated

peroxidases might be expressed in other organs or tissues.

Other TFs have been implicated in ROS signaling in the Arabi-

dopsis shoot. In the ascorbate peroxidase 1 (apx1) mutant, which

is a cytosolic H2O2-scavenging enzyme in the Arabidopsis leaf,

heat shock factor 21 (HSF21) was identified as a key transcrip-

tional regulator for ROS response upon light stress (Davletova

et al., 2005a). A dominant negative construct for HSF21 impaired

ZAT12 expression, which was known as a transcriptional regu-

lator of oxidative stress responses (Davletova et al., 2005b).

However, neither HSF21 nor ZAT12 expression was affected in

our microarray data. Furthermore, the meristem size of the

apx1 mutant was the same as wild-type (data not shown). This

may indicate that different ROS sensing and signaling systems

exist in different tissues or organs.

Redox homeostasis is also important for ROS signal transduc-

tion. Thioredoxins (TRX) are known as the key regulators for cell

redox homeostasis (Meyer et al., 2005). We found a TRX reduc-

tase (NTRA; At2g17420) as one of the UPB1 direct target genes

(Table S2). It was reported that ntra or ntrb single mutants do not

show any phenotype (Reichheld et al., 2007) because of strong

functional redundancy. However, the ntra/ntrb double mutant

had a small meristem phenotype (Bashandy et al., 2010). NTR

is important for reducing oxidized thioredoxin and thioredoxin

plays an important role in providing reducing power to the perox-

idases (Nordberg and Arner, 2001). These results also indicate

that redox homeostasis in the root meristem plays an important

role in the transition from cell proliferation to cell differentiation.

ROS Distribution Is Important for the Transition from
Proliferation to Differentiation in Plants and Animals
ROS has also been shown to play an important role in maintain-

ing the balance between cell proliferation and differentiation in

animals. A redox-dependent signaling pathway controls the

induction of cell division through the regulation of cyclinD1

expression (Burch and Heintz, 2005). Distribution of specific

ROS appears to act as an important signal at the transcriptional

and posttranscriptional levels during cell-cycle progression in

animal cells (Menon and Goswami, 2007). For example, in
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Drosophila, changing ROS levels can switch the status of hema-

topoietic cells from proliferation to differentiation (Owusu-Ansah

and Banerjee, 2009). Moreover, it has been shown that manga-

nese superoxide dismutase (MnSOD) activity regulates cell-

cycle progression through modulation of ROS levels, which

control expression of both the cyclinB1 and cyclinD1 genes in

mouse cells (Sarsour et al., 2008). The authors proposed that

O2
,� regulates the proliferative cycle whereas H2O2 induces

quiescence (Sarsour et al., 2008). This would be analogous to

our model, in which O2
,� accumulates in the meristematic

zone and is necessary for proliferation, whereas H2O2 accumu-

lates in the elongation zone when cells arrest division and begin

differentiation. Intriguingly, we found that cell-cycle-related

genes that are up-regulated by UPB1 including cyclinB

and cyclinD genes do not appear to be direct targets accord-

ing to our ChIP-chip data. Thus, it seems likely that UPB1 regu-

lates cell-cycle progression indirectly by controlling ROS

homeostasis.

Peroxidases are known to modify cell walls, mainly through

lignin modification. In fact, class III peroxidases tend to localize

in the extracellular space known as the apoplast (Passardi

et al., 2006), where they can directly modify cell wall structure.

Interestingly, we detected the UPB1 direct target, Per57-GFP

fusion protein in the cytoplasm as well as in the apoplast (Fig-

ure 4C). According to our microarray data, in addition to perox-

idases, UPB1 also regulates the ‘‘lignin synthesis’’ GO category.

This suggests that UPB1 may act both directly and indirectly to

modify cell walls. Thus, regulation of ROS status could act on

the cell cycle to stop proliferation and, at the same time, act to

modify cell walls to initiate cell expansion. The joint analysis of

ROS-dependent changes to meristem cell number and cell

length indicated that the ROS effects on cell division and cell

length are correlated (Figure S5C). This supports a dual role for

ROS, even though these functions would be compartmentalized

as the cell wall modification would occur in the apoplast and the

cell-cycle modulation would occur inside the cell.

UPB1 Regulation of Root Growth Is Independent
of the Auxin/Cytokinin Signaling Pathway
It has been reported that auxin and cytokinin play an important

role in controlling the balance between cell division and differen-

tiation in the root meristem through two transcription factors,

ARR1 and SHY2 (Dello Ioio et al., 2008). UPB1 gene expression

was not affected by either auxin or cytokinin, and in the upb1-1

mutant, SHY2 and ARR1 expression levels and response to

either auxin or cytokinin were similar to wild-type indicating

that UPB1 acts through a pathway independent of this hormonal

signaling pathway. It is surprising that two pathways can exert

a powerful control on the balance between cell division and

differentiation independently of each other. One explanation

might be that the root has to integrate different types of informa-

tion. Hormones usually serve as long distance signals, whereas

the ROS pathway may play a key role in response to local cues

and homeostasis. Interestingly, a role for ROS in local, rapid

developmental decisions has emerged in animals. In zebrafish,

a local gradient of ROS is used to rapidly trigger and execute

a developmental program to recruit leukocytes to wounded

tissue sites (Niethammer et al., 2009).



Although our results strongly suggest that UPB1 is involved in

a pathway distinct from hormonal signaling for controlling the

transition from proliferation to differentiation in the root, it

remains possible that these two signaling systems converge at

some level.

UPB1 May Act Non-Cell-Autonomously
There is an intriguing correlation between the height of the LRC

and the point of transition from proliferation to differentiation.

Comparison of transcriptional and translational fusions of

UPB1 suggests that UPB1 protein may be synthesized in the

LRC and then move to the elongation zone where it becomes

nuclear localized. Alternatively, UPB1 protein may be made at

low levels in the elongation zone and have a long half-life, allow-

ing it to accumulate in these cells.

Consistent with the first hypothesis, UPB1 is only 102 amino

acids in length, suggesting that it could move passively through

plasmodesmata. Additional support for this hypothesis came

from analysis of a 3YFP-–tagged UPB1 protein, which is local-

ized to the LRC in addition to all cells in the elongation zone.

This altered localization pattern is presumably due to the larger

size of the 3YFP tagged version, which may prevent passive

diffusion from the LRC. The 35S::UPB1-3YFP in upb1-1 affected

gene expression in the opposite manner to that of the upb1-1

mutant. This finding indicates that the 3YFP tag does not disrupt

UPB1 protein function as a transcriptional regulator. Taken

together, these data suggest that at least some UPB1 is synthe-

sized in the LRC and then moves to act in all cells of the elonga-

tion zone. In this way, UPB1 may act as a signal from the LRC

indicating the proper location of the transition zone.

EXPERIMENTAL PROCEDURES

See Supplemental Information for details.

Plant Material and Treatment

Arabidopsis thaliana Columbia-0 (Col-0) was used as wild-type unless other-

wise noted. The T-DNA insertion lines for upb1-1 (SALK_115536) and upb1-

2 (SALK_133978) were confirmed using PCR with the primers listed in Table

S3. For characterization of phenotypes, seeds were sown and allowed to

germinate on vertically positioned media plates for 5 days, and then seedlings

were transferred onto the treatment media.

Microarray Experiments

Total RNA was isolated from approximately 60 meristems and elongation

zones of Col-0, upb1-1, and 35S::UPB1-3YFP #2 plants. Two biological repli-

cates were performed for each experiment. Fragmented cRNA probes were

prepared using the two-cycle amplification protocol recommended by Affyme-

trix. Samples were submitted to Expression Analysis Inc. (Durham, NC, USA)

for hybridization to Arabidopsis whole genome ATH1 Affymetrix GeneChip.

ChIP-chip Experiment

pUPB1::UPB1-GFP lines were germinated and grown on the MS media for

6 days. Whole root tissue was fixed and chromatin immunoprecipitation

(ChIP) was performed as described in Leibfried et al. (2005) with some modi-

fication, including the chromatin shearing by using a Bioruptor UCD-200

(Diagenode).

ROS-Related and Plant Hormone Treatments

Chemical treatments were performed by the transferring the 5-day seedling

from MS media to the MS media containing those chemicals for 24 hr. Media
contained H2O2 (100 mM), KI (1 mM), SHAM (100 mM), KCN (100 mM), DPI

(100 mM), IAA (0.5 nM), and trans Zeatin (Zt) (5 mM), respectively.

Nitroblue tetrazolium (NBT) and dihydroethidium (DHE) were used for super-

oxide (O2
,�) staining and 30-(p-hydroxyphenyl) fluorescein (HPF) and BES-

H2O2-AC (WAKO, Japan) were used for hydrogen peroxide (H2O2) staining.
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